
Simulink® Control Design™
User's Guide

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Control Design™ User's Guide
© COPYRIGHT 2004–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.2 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.0.1 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)
March 2009 Online only Revised for Version 2.5 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 3.5 (Release 2012a)
September 2012 Online only Revised for Version 3.6 (Release 2012b)
March 2013 Online only Revised for Version 3.7 (Release 2013a)
September 2013 Online only Revised for Version 3.8 (Release 2013b)
March 2014 Online only Revised for Version 4.0 (Release 2014a)
October 2014 Online only Revised for Version 4.1 (Release 2014b)
March 2015 Online only Revised for Version 4.2 (Release 2015a)
September 2015 Online only Revised for Version 4.2.1 (Release 2015b)
March 2016 Online only Revised for Version 4.3 (Release 2016a)
September 2016 Online only Revised for Version 4.4 (Release 2016b)
March 2017 Online only Revised for Version 4.5 (Release 2017a)
September 2017 Online only Revised for Version 5.0 (Release 2017b)
March 2018 Online only Revised for Version 5.1 (Release 2018a)

Steady-State Operating Points
1

About Operating Points . 1-2
What Is an Operating Point? . 1-2
What Is a Steady-State Operating Point? 1-3
Simulink Model States Included in Operating Point Object . . . 1-3

Compute Steady-State Operating Points 1-5
Steady-State Operating Point Search (Trimming) 1-5
Steady-State Operating Point from Simulation Snapshot 1-6
Which States in the Model Must Be at Steady State? 1-7

View and Modify Operating Points . 1-9
View Model Initial Condition in Linear Analysis Tool 1-9
Modify Operating Point in Linear Analysis Tool 1-10
View and Modify Operating Point Object (MATLAB Code) . . . 1-11

Compute Steady-State Operating Point from State Specificatio
ns . 1-13

Compute Operating Point from State Specifications Using Linear
Analysis Tool . 1-13

Compute Operating Point from State Specifications at
Command Line . 1-22

Compute Steady-State Operating Point from Output Specificati
ons . 1-28

Compute Operating Point from Output Specifications Using
Linear Analysis Tool . 1-28

Compute Operating Point from Output Specifications at
Command Line . 1-36

v

Contents

Initialize Steady-State Operating Point Search Using
Simulation Snapshot . 1-41

Initialize Operating Point Search Using Linear Analysis
Tool . 1-41

Initialize Operating Point Search Using MATLAB® Code . . . 1-44

Change Operating Point Search Optimization Settings 1-46

Import and Export Specifications For Operating
Point Search . 1-48

Compute Operating Points Using Custom Constraints and
Objective Functions . 1-50

Batch Compute Steady-State Operating Points for Multiple
Specifications . 1-61

Batch Compute Steady-State Operating Points for Parameter
Variation . 1-65

Which Parameters Can Be Sampled? 1-65
Vary Single Parameter . 1-65
Multidimension Parameter Grids . 1-66
Vary Multiple Parameters . 1-67
Batch Trim Model for Parameter Variations 1-70
Batch Trim Model at Known States Derived from Parameter

Values . 1-72

Batch Compute Steady-State Operating Points Reusing
Generated MATLAB Code . 1-75

Compute Operating Points at Simulation Snapshots 1-78
Compute Operating Points at Simulation Snapshots Using

Linear Analysis Tool . 1-78
Find Operating Points at Simulation Snapshots at Command

Line . 1-80

Simulate Simulink Model at Specific Operating Point 1-83

Handle Blocks with Internal State Representation 1-86
Operating Point Object Excludes Blocks with Internal

States . 1-86
Identifying Blocks with Internal States in Your Model 1-86

vi Contents

Configuring Blocks with Internal States for Steady-State
Operating Point Search . 1-87

Synchronize Simulink Model Changes with Operating Point
Specifications . 1-89

Synchronize Simulink Model Changes Using Linear Analysis
Tool . 1-89

Synchronize Simulink Model Changes at the Command
Line . 1-92

Find Steady-State Operating Points for Simscape Models . . . 1-95
Projection-Based Trim Optimizers . 1-95
Steady-State Simulation with Projection-Based Trim

Optimizer . 1-96

Generate MATLAB Code for Operating Point Configuratio
n . 1-101

Linearization
2

Linearize Nonlinear Models . 2-3
What Is Linearization? . 2-3
Applications of Linearization . 2-5
Linearization in Simulink Control Design 2-6
Model Requirements for Exact Linearization 2-6
Operating Point Impact on Linearization 2-7

Choose Linearization Tools . 2-9
Choosing Simulink Control Design Linearization Tools 2-9
Choosing Exact Linearization Versus Frequency Response

Estimation . 2-10
Linearization Using Simulink Control Design Versus

Simulink . 2-10

Specify Portion of Model to Linearize 2-13
Analysis Points . 2-13
Opening Feedback Loops . 2-17
Ways to Specify Portion of Model to Linearize 2-19

vii

Specify Portion of Model to Linearize in Simulink Model . . . 2-21
Specify Analysis Points . 2-21
Select Bus Elements as Analysis Points 2-24

Specify Portion of Model to Linearize in Linear Analysis
Tool . 2-29

Specify Analysis Points . 2-29
Edit Analysis Points . 2-34
Edit Simulink Model Analysis Points 2-36

Specify Portion of Model to Linearize at Command Line 2-39
Specify Analysis Points . 2-39
Save Analysis Points in Simulink Model 2-40
Obtain Analysis Points from Simulink Model 2-40

How the Software Treats Loop Openings 2-42

Linearize Plant . 2-44
Linearize Plant Using Linear Analysis Tool 2-44
Linearize Plant at Command Line . 2-47

Mark Signals of Interest for Control System Analysis and
Design . 2-51

Analysis Points . 2-51
Specify Analysis Points for MATLAB Models 2-52
Specify Analysis Points for Simulink Models 2-53
Refer to Analysis Points for Analysis and Tuning 2-57

Compute Open-Loop Response . 2-62
Compute Open-Loop Response Using Linear Analysis Tool . . 2-64
Compute Open-Loop Response at the Command Line 2-68

Linearize Simulink Model at Model Operating Point 2-72
Linearize Simulink Model Using Linear Analysis Tool 2-72
Linearize Simulink Model at Command Line 2-76

Visualize Bode Response of Simulink Model During
Simulation . 2-80

Linearize at Trimmed Operating Point 2-88

Linearize at Simulation Snapshot . 2-94

viii Contents

Linearize at Triggered Simulation Events 2-98

Linearization of Models with Delays 2-102

Linearization of Models with Model References 2-109

Visualize Linear System at Multiple Simulation Snapshots 2-113

Visualize Linear System of a Continuous-Time Model
Discretized During Simulation . 2-120

Plotting Linear System Characteristics of a Chemical
Reactor . 2-124

Order States in Linearized Model . 2-133
Control State Order of Linearized Model using Linear Analysis

Tool . 2-133
Control State Order of Linearized Model using MATLAB

Code . 2-137

Validate Linearization In Time Domain 2-139
Validate Linearization in Time Domain 2-139
Choosing Time-Domain Validation Input Signal 2-142

Validate Linearization In Frequency Domain 2-143
Validate Linearization in Frequency Domain using Linear

Analysis Tool . 2-143
Choosing Frequency-Domain Validation Input Signal 2-145

View Linearized Model Equations Using Linear Analysis
Tool . 2-147

Analyze Results Using Linear Analysis Tool Response Plots 2-149
View System Characteristics on Response Plots 2-149
Generate Additional Response Plots of Linearized System . . 2-150
Add Linear System to Existing Response Plot 2-153
Customize Characteristics of Plot in Linear Analysis Tool . . 2-155
Print Plot to MATLAB Figure in Linear Analysis Tool 2-155

Generate MATLAB Code for Linearization from Linear Analysis
Tool . 2-157

When to Specify Individual Block Linearization 2-159

ix

Specify Linear System for Block Linearization Using MATLAB
Expression . 2-160

Specify D-Matrix System for Block Linearization Using
Function . 2-161

Augment the Linearization of a Block 2-165

Models with Time Delays . 2-170
Choose Approximate Versus Exact Time Delays 2-170
Specify Exact Representation of Time Delays 2-170

Linearize Multirate Models . 2-172
Change Sample Time of Linear Model 2-172
Change Linearization Rate Conversion Method 2-173
Linearization Using Different Rate Conversion Methods . . . 2-174
Linearization of Multirate Models . 2-178

Change Perturbation Level of Blocks Perturbed During
Linearization . 2-183

Change Block Perturbation Level . 2-183
Perturbation Levels of Integer Valued Blocks 2-184

Linearize Blocks with Nondouble Precision Data Type
Signals . 2-185

Overriding Data Types Using Data Type Conversion Block . 2-185
Overriding Data Types Using Fixed Point Tool 2-186

Linearize Event-Based Subsystems (Externally Scheduled
Subsystems) . 2-187

Linearizing Event-Based Subsystems 2-187
Approaches for Linearizing Event-Based Subsystems 2-187
Periodic Function Call Subsystems for Modeling Event-Based

Subsystems . 2-188
Approximating Event-Based Subsystems Using Curve Fitting

(Lump-Average Model) . 2-191

Configure Models with Pulse Width Modulation
(PWM) Signals . 2-194

Linearize Simscape Networks . 2-196
Find Steady-State Operating Point 2-196
Specify Analysis Points . 2-196

x Contents

Linearize Model . 2-197
Troubleshoot Simscape Network Linearizations 2-197

Specifying Linearization for Model Components Using System
Identification . 2-201

Exact Linearization Algorithm . 2-209
Continuous-Time Models . 2-209
Multirate Models . 2-210
Perturbation of Individual Blocks . 2-211
User-Defined Blocks . 2-213
Look Up Tables . 2-214

Batch Linearization
3

What Is Batch Linearization? . 3-2

Choose Batch Linearization Methods . 3-5
Choose Batch Linearization Tool . 3-7

Batch Linearization Efficiency When You Vary
Parameter Values . 3-10

Tunable and Nontunable Parameters 3-10
Controlling Model Recompilation . 3-10

Mark Signals of Interest for Batch Linearization 3-13
Analysis Points . 3-13
Specify Analysis Points . 3-14
Refer to Analysis Points . 3-18

Batch Linearize Model for Parameter Variations at Single
Operating Point . 3-20

Batch Linearize Model at Multiple Operating Points Derived
from Parameter Variations . 3-25

Batch Linearize Model at Multiple Operating Points Using
linearize Command . 3-28

xi

Vary Parameter Values and Obtain Multiple Transfer
Functions . 3-32

Vary Operating Points and Obtain Multiple Transfer Functions
Using slLinearizer Interface . 3-41

Analyze Command-Line Batch Linearization Results Using
Response Plots . 3-48

Analyze Batch Linearization Results in Linear Analysis
Tool . 3-55

Specify Parameter Samples for Batch Linearization 3-62
About Parameter Samples . 3-62
Which Parameters Can Be Sampled? 3-62
Vary Single Parameter at the Command Line 3-62
Vary Single Parameter in Graphical Tools 3-63
Multi-Dimension Parameter Grids . 3-68
Vary Multiple Parameters at the Command Line 3-69
Vary Multiple Parameters in Graphical Tools 3-71

Batch Linearize Model for Parameter Value Variations Using
Linear Analysis Tool . 3-75

Validate Batch Linearization Results . 3-90

Approximating Nonlinear Behavior Using an Array of LTI
Systems . 3-91

LPV Approximation of a Boost Converter Model 3-117

Troubleshooting Linearization Results
4

Linearization Troubleshooting Overview 4-2
Troubleshooting Workflow . 4-2
Troubleshoot Linearizations of Models with Special

Characteristics . 4-3

Check Operating Point . 4-6

xii Contents

Check Analysis Point Placement . 4-7
Check Linearization I/O Points Placement 4-7
Check Loop Opening Placement . 4-7

Identify and Fix Common Linearization Issues 4-9
Enable Linearization Advisor . 4-9
Blocks That Are Potentially Problematic for Linearization . . . 4-13
Find Specific Blocks in Linearization Results 4-15
Linearization Path . 4-16
Troubleshoot Batch Linearizations . 4-19

Troubleshoot Linearization Results in Linear Analysis Tool . 4-23

Troubleshoot Linearization Results at Command Line 4-42

Find Blocks in Linearization Results Matching Specific
Criteria . 4-54

Run Built-In Queries . 4-55
Create and Run Queries . 4-56

Block Linearization Troubleshooting . 4-61
Diagnostic Messages . 4-63
Linearization Summary . 4-64
Block Linearization . 4-65
Block Operating Point . 4-65
Common Problematic Blocks . 4-66

Speed Up Linearization of Complex Models 4-69
Factors That Impact Linearization Performance 4-69
Blocks with Complex Initialization Functions 4-69
Disabling the Linearization Advisor in the Linear Analysis

Tool . 4-69
Batch Linearization of Large Simulink Models 4-69

Frequency Response Estimation
5

What Is a Frequency Response Model? 5-2
Frequency Response Model Applications 5-3

xiii

Model Requirements . 5-4

Estimation Requires Input and Output Signals 5-5

Estimation Input Signals . 5-7
What Is a Sinestream Signal? . 5-7
What Is a Chirp Signal? . 5-12

Create Sinestream Input Signals . 5-13
Create Sinestream Signals Using Linear Analysis Tool 5-13
Create Sinestream Signals Using MATLAB Code 5-15

Create Chirp Input Signals . 5-18
Create Chirp Signals Using Linear Analysis Tool 5-18
Create Chirp Signals Using MATLAB Code 5-20

Modify Estimation Input Signals . 5-22
Modify Sinestream Signal Using Linear Analysis Tool 5-22
Modify Sinestream Signal Using MATLAB Code 5-24

Estimate Frequency Response Using Linear Analysis Tool . . 5-25

Estimate Frequency Response with Linearization-Based Input
Using Linear Analysis Tool . 5-28

Estimate Frequency Response at the Command Line 5-32

Analyze Estimated Frequency Response 5-37
View Simulation Results . 5-37
Interpret Frequency Response Estimation Results 5-39
Analyze Simulated Output and FFT at Specific Frequencies . 5-41
Annotate Frequency Response Estimation Plots 5-43
Displaying Estimation Results for Multiple-Input Multiple-

Output (MIMO) Systems . 5-44

Troubleshooting Frequency Response Estimation 5-45
When to Troubleshoot . 5-45
Time Response Not at Steady State 5-45
FFT Contains Large Harmonics at Frequencies Other than the

Input Signal Frequency . 5-48
Time Response Grows Without Bound 5-50
Time Response Is Discontinuous or Zero 5-51
Time Response Is Noisy . 5-53

xiv Contents

Effects of Time-Varying Source Blocks on Frequency Response
Estimation . 5-56

Setting Time-Varying Sources to Constant for Estimation Using
Linear Analysis Tool . 5-56

Setting Time-Varying Sources to Constant for Estimation
(MATLAB Code) . 5-62

Disable Noise Sources During Frequency Response
Estimation . 5-65

Estimate Frequency Response Models with Noise Using Signal
Processing Toolbox . 5-71

Estimate Frequency Response Models with Noise Using System
Identification Toolbox . 5-73

Generate MATLAB Code for Repeated or Batch Frequency
Response Estimation . 5-75

Managing Estimation Speed and Memory 5-77
Ways to Speed up Frequency Response Estimation 5-77
Speeding Up Estimation Using Parallel Computing 5-79
Managing Memory During Frequency Response Estimation . 5-82

PID Controller Tuning
6

Introduction to Model-Based PID Tuning in Simulink 6-3
What Plant Does PID Tuner See? . 6-4
PID Tuning Algorithm . 6-4

Open PID Tuner . 6-6
Prerequisites for PID Tuning . 6-6
Opening PID Tuner . 6-6

Analyze Design in PID Tuner . 6-9
Plot System Responses . 6-9
View Numeric Values of System Characteristics 6-13
Export Plant or Controller to MATLAB Workspace 6-14
Refine the Design . 6-16

xv

Verify the PID Design in Your Simulink Model 6-18

Tune at a Different Operating Point . 6-19
Known State Values Yield the Desired Operating

Conditions . 6-19
Model Reaches Desired Operating Conditions at a Finite

Time . 6-19
You Computed an Operating Point in the Linear Analysis

Tool . 6-20

Tune PID Controller to Favor Reference Tracking or
Disturbance Rejection . 6-23

Design Two-Degree-of-Freedom PID Controllers 6-36
About Two-Degree-of-Freedom PID Controllers 6-36
Tuning Two-Degree-of-Freedom PID Controllers 6-36
Fixed-Weight Controller Types . 6-37

Tune PID Controller Within Model Reference 6-41
Models with Multiple Instances of the Referenced Model . . . 6-43
Referenced Model in Accelerated or Other Simulation

Modes . 6-43

Specify PI-D and I-PD Controllers . 6-44
About PI-D and I-PD Controllers . 6-44
Specify PI-D and I-PD Controllers Using PID Controller (2DOF)

Block . 6-46
Automatic Tuning of PI-D and I-PD Controllers 6-46

Design PID Controller from Plant Frequency-Response
Data . 6-49

Use Frequency Response Based PID Tuner 6-49
Use frestimate or Linear Analysis Tool 6-49

Frequency-Response Based Tuning . 6-51
How Frequency Response Based PID Tuner Works 6-51
Open Frequency Response Based PID Tuner 6-51
Configure Experiment Settings . 6-54
Configure Design Goals . 6-55
Tune and Validate Controller Gains . 6-56

Design PID Controller Using Plant Frequency Response Near
Bandwidth . 6-58

xvi Contents

Import Measured Response Data for Plant Estimation 6-67

Interactively Estimate Plant from Measured or Simulated
Response Data . 6-73

System Identification for PID Control 6-81
Plant Identification . 6-81
Linear Approximation of Nonlinear Systems for PID

Control . 6-81
Linear Process Models . 6-83
Advanced System Identification Tasks 6-83

Preprocess Data . 6-85
Ways to Preprocess Data . 6-85
Remove Offset . 6-86
Scale Data . 6-86
Extract Data . 6-87
Filter Data . 6-87
Resample Data . 6-87
Replace Data . 6-88

Input/Output Data for Identification . 6-89
Data Preparation . 6-89
Data Preprocessing . 6-89

Choosing Identified Plant Structure . 6-90
Process Models . 6-90
State-Space Models . 6-94
Existing Plant Models . 6-96
Switching Between Model Structures 6-97
Estimating Parameter Values . 6-98
Handling Initial Conditions . 6-98

Design PID Controller Using FRD Model Obtained From
"frestimate" Command . 6-100

Designing a Family of PID Controllers for Multiple Operating
Points . 6-110

Implement Gain-Scheduled PID Controllers 6-119

Plant Cannot Be Linearized or Linearizes to Zero 6-126
How to Fix It . 6-126

xvii

Cannot Find a Good Design in PID Tuner 6-128
How to Fix It . 6-128

Simulated Response Does Not Match the PID Tuner
Response . 6-129

Cannot Find an Acceptable PID Design in the Simulated
Model . 6-131

How to Fix It . 6-131

Controller Performance Deteriorates When Switching Time
Domains . 6-133

How To Fix It . 6-133

When Tuning the PID Controller, the D Gain Has a Different
Sign from the I Gain . 6-134

PID Autotuning
7

When to Use PID Autotuning . 7-2
PID Autotuning for a Physical Plant . 7-2
PID Autotuning for a Plant Model in Simulink 7-2
Closed-Loop vs. Open-Loop PID Autotuning 7-3
When Not to Use PID Autotuning . 7-4

How PID Autotuning Works . 7-6
Autotuning Process . 7-6
Worfklow for PID Autotuning . 7-7

PID Autotuning for a Plant Modeled in Simulink 7-9
Workflow for Autotuning in Simulink . 7-9
Step 1. Incorporate Autotuner into Model 7-9
Step 2. Configure Start/Stop Signal 7-11
Step 3. Specify Controller Parameters and Tuning Goals 7-12
Step 4. Set Experiment Parameters 7-13
Step 5. Run Model and Initiate Tuning Experiement 7-13
Step 6. Stop Experiment and Examine Tuned Gains 7-14
Step 7. Update PID Controller with Tuned Gains 7-14

xviii Contents

PID Autotuning in Real Time . 7-17
Workflow . 7-17
Step 1. Create Deployable Simulink Model with PID Autotuner

Block . 7-18
Step 2. Configure Start/Stop Signal 7-21
Step 3. Set PID Tuning Parameters . 7-21
Step 4. Set Experiment Parameters 7-22
Step 5. Tune and Validate . 7-23
Access Autotuning Parameters After Deployment 7-24

Control Real-Time PID Autotuning in Simulink 7-27
Simulink Model for External-Mode Tuning 7-27
Run the Model and Tune the Controller Gains 7-29
Reduce Memory Footprint When Using External Mode 7-29

Classical Control Design
8

Choose a Control Design Approach . 8-2
Design in Simulink . 8-2
Real-Time PID Autotuning . 8-4

Control System Designer Tuning Methods 8-6
Graphical Tuning Methods . 8-6
Automated Tuning Methods . 8-7
Effective Plant for Tuning . 8-8
Tuning Compensators In Simulink . 8-9
Select a Tuning Method . 8-9

What Blocks Are Tunable? . 8-12

Designing Compensators for Plants with Time Delays 8-14

Design Compensator Using Automated PID Tuning and
Graphical Bode Design . 8-17

Analyze Designs Using Response Plots 8-38
Analysis Plots . 8-38
Editor Plots . 8-41
Plot Characteristics . 8-42

xix

Plot Tools . 8-43
Design Requirements . 8-45

Compare Performance of Multiple Designs 8-48

Update Simulink Model and Validate Design 8-53

Single Loop Feedback/Prefilter Compensator Design 8-54

Cascaded Multi-Loop/Multi-Compensator Feedback
Design . 8-64

Tune Custom Masked Subsystems . 8-75

Tuning Simulink Blocks in the Compensator Editor 8-85

Control System Tuning
9

Automated Tuning Overview . 9-3

Choosing an Automated Tuning Approach 9-5

Automated Tuning Workflow . 9-7

Specify Control Architecture in Control System Tuner 9-9
About Control Architecture . 9-9
Predefined Feedback Architecture . 9-9
Arbitrary Feedback Control Architecture 9-11
Control System Architecture in Simulink 9-12

Open Control System Tuner for Tuning Simulink Model 9-13
Command-Line Equivalents . 9-14

Specify Operating Points for Tuning in Control System
Tuner . 9-15

About Operating Points in Control System Tuner 9-15
Linearize at Simulation Snapshot Times 9-15
Compute Operating Points at Simulation Snapshot Times . . . 9-17
Compute Steady-State Operating Points 9-21

xx Contents

Specify Blocks to Tune in Control System Tuner 9-24

View and Change Block Parameterization in Control System
Tuner . 9-26

View Block Parameterization . 9-26
Fix Parameter Values or Limit Tuning Range 9-28
Custom Parameterization . 9-30
Block Rate Conversion . 9-31

Setup for Tuning Control System Modeled in MATLAB 9-35

How Tuned Simulink Blocks Are Parameterized 9-36
Blocks With Predefined Parameterization 9-36
Blocks Without Predefined Parameterization 9-37
View and Change Block Parameterization 9-38

Specify Goals for Interactive Tuning . 9-39

Quick Loop Tuning of Feedback Loops in Control System
Tuner . 9-48

Quick Loop Tuning . 9-58
Purpose . 9-58
Description . 9-58
Feedback Loop Selection . 9-58
Desired Goals . 9-59
Options . 9-60
Algorithms . 9-61

Step Tracking Goal . 9-62
Purpose . 9-62
Description . 9-62
Step Response Selection . 9-63
Desired Response . 9-64
Options . 9-65
Algorithms . 9-66

Step Rejection Goal . 9-68
Purpose . 9-68
Description . 9-68
Step Disturbance Response Selection 9-69
Desired Response to Step Disturbance 9-70
Options . 9-71

xxi

Algorithms . 9-72

Transient Goal . 9-74
Purpose . 9-74
Description . 9-74
Response Selection . 9-75
Initial Signal Selection . 9-76
Desired Transient Response . 9-76
Options . 9-77
Tips . 9-78
Algorithms . 9-79

LQR/LQG Goal . 9-81
Purpose . 9-81
Description . 9-81
Signal Selection . 9-82
LQG Objective . 9-83
Options . 9-84
Tips . 9-84
Algorithms . 9-85

Gain Goal . 9-86
Purpose . 9-86
Description . 9-86
I/O Transfer Selection . 9-87
Options . 9-88
Algorithms . 9-90

Variance Goal . 9-92
Purpose . 9-92
Description . 9-92
I/O Transfer Selection . 9-92
Options . 9-93
Tips . 9-94
Algorithms . 9-95

Reference Tracking Goal . 9-97
Purpose . 9-97
Description . 9-97
Response Selection . 9-98
Tracking Performance . 9-99
Options . 9-100
Algorithms . 9-102

xxii Contents

Overshoot Goal . 9-104
Purpose . 9-104
Description . 9-104
Response Selection . 9-105
Options . 9-106
Algorithms . 9-107

Disturbance Rejection Goal . 9-109
Purpose . 9-109
Description . 9-109
Disturbance Scenario . 9-110
Rejection Performance . 9-111
Options . 9-112
Algorithms . 9-112

Sensitivity Goal . 9-114
Purpose . 9-114
Description . 9-114
Sensitivity Evaluation . 9-115
Sensitivity Bound . 9-116
Options . 9-116
Algorithms . 9-117

Weighted Gain Goal . 9-119
Purpose . 9-119
Description . 9-119
I/O Transfer Selection . 9-119
Weights . 9-120
Options . 9-121
Algorithms . 9-122

Weighted Variance Goal . 9-124
Purpose . 9-124
Description . 9-124
I/O Transfer Selection . 9-124
Weights . 9-125
Options . 9-126
Tips . 9-127
Algorithms . 9-127

Minimum Loop Gain Goal . 9-129
Purpose . 9-129
Description . 9-129

xxiii

Open-Loop Response Selection . 9-131
Desired Loop Gain . 9-132
Options . 9-132
Algorithms . 9-133

Maximum Loop Gain Goal . 9-135
Purpose . 9-135
Description . 9-135
Open-Loop Response Selection . 9-137
Desired Loop Gain . 9-138
Options . 9-138
Algorithms . 9-139

Loop Shape Goal . 9-141
Purpose . 9-141
Description . 9-141
Open-Loop Response Selection . 9-143
Desired Loop Shape . 9-144
Options . 9-144
Algorithms . 9-146

Margins Goal . 9-148
Purpose . 9-148
Description . 9-148
Feedback Loop Selection . 9-149
Desired Margins . 9-150
Options . 9-150
Algorithms . 9-151

Passivity Goal . 9-153
Purpose . 9-153
Description . 9-153
I/O Transfer Selection . 9-154
Options . 9-155
Algorithms . 9-156

Conic Sector Goal . 9-158
Purpose . 9-158
Description . 9-158
I/O Transfer Selection . 9-159
Options . 9-160
Tips . 9-161
Algorithms . 9-162

xxiv Contents

Weighted Passivity Goal . 9-165
Purpose . 9-165
Description . 9-165
I/O Transfer Selection . 9-166
Weights . 9-167
Options . 9-168
Algorithms . 9-169

Poles Goal . 9-171
Purpose . 9-171
Description . 9-171
Feedback Configuration . 9-172
Pole Location . 9-173
Options . 9-174
Algorithms . 9-174

Controller Poles Goal . 9-176
Purpose . 9-176
Description . 9-176
Constrain Dynamics of Tuned Block 9-177
Keep Poles Inside the Following Region 9-177
Algorithms . 9-178

Manage Tuning Goals . 9-179

Generate MATLAB Code from Control System Tuner for
Command-Line Tuning . 9-181

Interpret Numeric Tuning Results . 9-184
Tuning-Goal Scalar Values . 9-184
Tuning Results at the Command Line 9-185
Tuning Results in Control System Tuner 9-185
Improve Tuning Results . 9-187

Visualize Tuning Goals . 9-189
Tuning-Goal Plots . 9-189
Difference Between Dashed Line and Shaded Region 9-191
Improve Tuning Results . 9-197

Create Response Plots in Control System Tuner 9-198

Examine Tuned Controller Parameters in Control System
Tuner . 9-205

xxv

Compare Performance of Multiple Tuned Controllers 9-207

Create and Configure slTuner Interface to Simulink Model 9-212

Stability Margins in Control System Tuning 9-218
Stability Margins Plot . 9-218
Gain and Phase Margins . 9-219
Combined Gain and Phase Variations 9-219
Interpreting the Gain and Phase Margin Plot 9-220
Algorithm . 9-222

Tune Control System at the Command Line 9-223

Speed Up Tuning with Parallel Computing Toolbox
Software . 9-225

Validate Tuned Control System . 9-227
Extract and Plot System Responses 9-227
Validate Design in Simulink Model 9-230

Extract Responses from Tuned MATLAB Model at the
Command Line . 9-232

Gain-Scheduled Controllers
10

Gain Scheduling Basics . 10-2
Gain Scheduling in Simulink . 10-2
Tune Gain Schedules . 10-3

Model Gain-Scheduled Control Systems in Simulink 10-4
Model Scheduled Gains . 10-4
Gain-Scheduled Equivalents for Commonly Used Control

Elements . 10-7
Custom Gain-Scheduled Control Structures 10-12
Tunability of Gain Schedules . 10-13

Tune Gain Schedules in Simulink . 10-15
Workflow for Tuning Gain Schedules 10-15

xxvi Contents

Plant Models for Gain-Scheduled Controller Tuning 10-18
Obtaining the Family of Linear Models 10-19
Set Up for Gain Scheduling by Linearizing at Design

Points . 10-20
Sample System at Simulation Snapshots 10-23
Sample System at Varying Parameter Values 10-23
Eliminate Samples at Unneeded Design Points 10-24
LPV Plants in MATLAB . 10-25

Multiple Design Points in slTuner Interface 10-26
Block Substitution for Plant . 10-26
Multiple Block Substitutions . 10-26
Substituting Blocks that Depend on the Scheduling

Variables . 10-28
Resolving Mismatches Between a Block and its

Substitution . 10-29
Block Substitution for LPV Blocks . 10-30

Parameterize Gain Schedules . 10-32
Basis Function Parameterization . 10-32
Tunable Gain Surfaces . 10-35
Tunable Gain With Two Independent Scheduling

Variables . 10-36
Tunable Surfaces in Simulink . 10-38
Tunable Surfaces in MATLAB . 10-40

Change Requirements with Operating Condition 10-42
Define Variable Tuning Goal . 10-42
Enforce Tuning Goal at Subset of Design Points 10-44
Exclude Design Points from systune Run 10-45

Validate Gain-Scheduled Control Systems 10-46
Examine Tuned Gain Surfaces . 10-46
Visualize Tuning Goals . 10-46
Check Linear Performance . 10-49
Validate Gain Schedules in Nonlinear System 10-50

xxvii

Loop-Shaping Design
11

Structure of Control System for Tuning With looptune 11-2

Set Up Your Control System for Tuning with looptune 11-4
Set Up Your Control System for looptunein MATLAB 11-4
Set Up Your Control System for looptune in Simulink 11-4

Tune MIMO Control System for Specified Bandwidth 11-6

Model Verification
12

Monitor Linear System Characteristics in Simulink
Models . 12-2

Define Linear System for Model Verification Blocks 12-4

Verifiable Linear System Characteristics 12-5

Verify Model at Default Simulation Snapshot Time 12-6

Verify Model at Multiple Simulation Snapshots 12-15

Verify Model Using Simulink Control Design and Simulink
Verification Blocks . 12-25

xxviii Contents

Alphabetical List
13

Blocks — Alphabetical List
14

Objects — Alphabetical List
15

Model Advisor Checks
16

Simulink Control Design Checks . 16-2
Identify time-varying source blocks interfering with frequency

response estimation . 16-2

xxix

Steady-State Operating Points

• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5
• “View and Modify Operating Points” on page 1-9
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot”

on page 1-41
• “Change Operating Point Search Optimization Settings” on page 1-46
• “Import and Export Specifications For Operating Point Search” on page 1-48
• “Compute Operating Points Using Custom Constraints and Objective Functions”

on page 1-50
• “Batch Compute Steady-State Operating Points for Multiple Specifications”

on page 1-61
• “Batch Compute Steady-State Operating Points for Parameter Variation”

on page 1-65
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-75
• “Compute Operating Points at Simulation Snapshots” on page 1-78
• “Simulate Simulink Model at Specific Operating Point” on page 1-83
• “Handle Blocks with Internal State Representation” on page 1-86
• “Synchronize Simulink Model Changes with Operating Point Specifications”

on page 1-89
• “Find Steady-State Operating Points for Simscape Models” on page 1-95
• “Generate MATLAB Code for Operating Point Configuration” on page 1-101

1

About Operating Points

What Is an Operating Point?
An operating point of a dynamic system defines the states and root-level input signals of
the model at a specific time. For example, in a car engine model, variables such as engine
speed, throttle angle, engine temperature, and surrounding atmospheric conditions
typically describe the operating point.

The following Simulink model has an operating point that consists of two variables:

• A root-level input signal set to 1
• An Integrator block state set to 5

The following table summarizes the signal values for the model at this operating point.

Block Block Input Block Operation Block Output
Integrator 1 Integrate input 5, set by the initial

conditionx0 = 5
Square 5, set by the initial

condition of the
Integrator block

Square input 25

Sum 25 from Square
block, 1 from
Constant block

Sum inputs 26

Gain 26 Multiply input by 3 78

The following block diagram shows how the model input and the initial state of the
Integrator block propagate through the model during simulation.

1 Steady-State Operating Points

1-2

If your model initial states and inputs already represent the desired steady-state
operating conditions, you can use this operating point for linearization or control design.

What Is a Steady-State Operating Point?
A steady-state operating point of a model, also called an equilibrium or trim condition,
includes state variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped
pendulum has two steady-state operating points at which the pendulum position does not
change with time. A stable steady-state operating point occurs when a pendulum hangs
straight down. When the pendulum position deviates slightly, the pendulum always
returns to equilibrium. In other words, small changes in the operating point do not cause
the system to leave the region of good approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long
as the pendulum points exactly upward, it remains in equilibrium. However, when the
pendulum deviates slightly from this position, it swings downward and the operating point
leaves the region around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your
initial guesses for the states and input levels must be near the desired operating point to
ensure convergence.

When linearizing a model with multiple steady-state operating points, it is important to
have the right operating point. For example, linearizing a pendulum model around the
stable steady-state operating point produces a stable linear model, whereas linearizing
around the unstable steady-state operating point produces an unstable linear model.

Simulink Model States Included in Operating Point Object
In Simulink Control Design software, an operating point for a Simulink model is
represented by an operating point (operpoint) object. The object stores the tunable

 About Operating Points

1-3

model states and their values, along with other data about the operating point. The states
of blocks that have internal representation, such as Backlash, Memory, and Stateflow®
blocks, are excluded.

States that are excluded from the operating point object cannot be used in trimming
computations. These states cannot be captured with operspec or operpoint, or written
with initopspec. Such states are also excluded from operating point displays or
computations using Linear Analysis Tool. The following table summarizes which states are
included and which are excluded from the operating point object.

State Type Included in Operating Point?
Double-precision real-valued states . Yes
States whose value is not of type
double. For example, complex-valued
states, single-type states, int8-type
states.

No

States from root-level inport blocks with
double-precision real-valued inputs.

Yes

Internal state representations that
impact block output, such as states in
Backlash, Memory, or Stateflow blocks.

No (see “Handle Blocks with Internal State
Representation” on page 1-86)

States that belong to a Unit Delay block
whose input is a bus signal.

No

See Also
operpoint

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Handle Blocks with Internal State Representation” on page 1-86
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Compute Operating Points at Simulation Snapshots” on page 1-78

1 Steady-State Operating Points

1-4

Compute Steady-State Operating Points

Steady-State Operating Point Search (Trimming)
You can compute a steady-state operating point (or equilibrium operating point) using
numerical optimization methods to meet your specifications. The resulting operating point
consists of the equilibrium state values and corresponding model input levels. A
successful operating point search finds an operating point very close to a true steady-
state solution.

Use an optimization-based search when you have knowledge about the operating point
states and the corresponding model input and output signal levels. You can use this
knowledge to specify initial guesses or constraints for the following variables at
equilibrium:

• Initial state values
• States at equilibrium
• Maximum or minimum bounds on state values, input levels, and output levels
• Known (fixed) state values, input levels, or output levels

Your operating point search might not converge to a steady-state operating point when
you overconstrain the optimization by specifying:

• Initial guesses for steady-state operating point values that are far away from the
desired steady-state operating point.

• Incompatible input, output, or state constraints at equilibrium.

You can control the accuracy of your operating point search by configuring the
optimization algorithm settings.

Advantages of Using Simulink Control Design vs. Simulink Operating Point
Search

Simulink provides the trim command for steady-state operating point searches. However,
findop in Simulink Control Design provides several advantages over using trim when
performing an optimization-based operating point search.

 Compute Steady-State Operating Points

1-5

 Simulink Control Design
Operating Point Search

Simulink Operating Point
Search

User interface Yes No
Only trim is available.

Multiple optimization
methods

Yes No
Only one optimization method

Constrain state, input,
and output variables
using upper and lower
bounds

Yes No

Specify the output value
of blocks that are not
connected to root model
outports

Yes No

Steady-operating points
for models with discrete
states

Yes No

Model reference
support

Yes No

Simscape™
Multibody™ integration

Yes No

Steady-State Operating Point from Simulation Snapshot
You can compute a steady-state operating point by simulating your model until it reaches
a steady-state condition. To do so, specify initial conditions for the simulation that are
near the desired steady-state operating point.

Use a simulation snapshot when the time it takes for the simulation to reach steady state
is sufficiently short. The algorithm extracts operating point values once the simulation
reaches steady state.

Simulation-based computations produce poor operating point results when you specify:

• A simulation time that is insufficiently long to drive the model to steady state.
• Initial conditions that do not cause the model to reach true equilibrium.

1 Steady-State Operating Points

1-6

You can usually combine a simulation snapshot and an optimization-based search to
improve your operating point results. For example, simulate your model until it reaches
the neighborhood of steady state and use the resulting simulation snapshot to define the
initial conditions for an optimization-based search.

Note If your Simulink model has internal states, do not linearize this model at the
operating point you compute from a simulation snapshot. Instead, try linearizing the
model using a simulation snapshot or at an operating point from optimization-based
search.

Which States in the Model Must Be at Steady State?
When computing a steady-state operating point, not all states are required to be at
equilibrium. A pendulum is an example of a system where it is possible to find an
operating point with all states at steady state. However, for other types of systems, there
may not be an operating point where all states are at equilibrium, and the application
does not require that all operating point states be at equilibrium.

For example, suppose that you build an automobile model for a cruise control application
with these states:

• Vehicle position and velocity
• Fuel and air flow rates into the engine

If your goal is to study the automobile behavior at constant cruising velocity, you need an
operating point with the velocity, air flow rate, and fuel flow rate at steady state. However,
the position of the vehicle is not at steady state because the vehicle is moving at constant
velocity. The lack of a steady-state position variable is fine for the cruise control
application because the position does not have significant impact on the cruise control
behavior. In this case, you do not need to overconstrain the optimization search for an
operating point by requiring that all states be at equilibrium.

Similar situations also appear in aerospace systems when analyzing the dynamics of an
aircraft under different maneuvers.

See Also
findop | trim

 See Also

1-7

More About
• “About Operating Points” on page 1-2
• “Handle Blocks with Internal State Representation” on page 1-86
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Compute Operating Points at Simulation Snapshots” on page 1-78
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page

1-41

1 Steady-State Operating Points

1-8

View and Modify Operating Points

View Model Initial Condition in Linear Analysis Tool
This example shows how to view the model initial condition in the Linear Analysis Tool.

1 Open the Simulink model.

sys = 'magball';
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Linear Analysis Tool, in the Operating Point drop-down list, click View

Model Initial Condition.

This action opens the Model Initial Condition Viewer dialog box, which shows the
model initial condition (default operating point).

You cannot edit the Model Initial Condition operating point using the Linear
Analysis Tool. To edit the initial conditions of the model, change the appropriate
parameter of the relevant block in your Simulink model. For example, double-click the
magball/Magnetic Ball Plant/Current block to open the Block Parameters dialog
box and edit the value in the Initial condition box. Click OK.

 View and Modify Operating Points

1-9

Modify Operating Point in Linear Analysis Tool
This example shows how to modify an existing operating point in the Linear Analysis Tool.

1 Open the Simulink model.

sys = 'magball';
open_system(sys)

Opening magball loads the operating points magball_op1 and magball_op2 into
the MATLAB® Workspace.

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Linear Analysis Tool, in the Operating Point drop-down list, select

magball_op1.
4 In the Operating Point drop-down list, select Edit magball_op1.

The Edit dialog box opens for magball_op1. Use this dialog box to view and edit the
operating point.

Select the state or input Value to edit its value.
5 Alternatively, in the Linear Analysis Tool, in the MATLAB Workspace, double-click

the name of an operating point to open the Edit dialog box.

1 Steady-State Operating Points

1-10

Note You cannot edit an operating point that you created by trimming a model in the
Linear Analysis Tool.

View and Modify Operating Point Object (MATLAB Code)
This example shows how to view and modify the states in a Simulink model using an
operating point object.

Create an operating point object from the Simulink Model.

sys = 'watertank';
load_system(sys)
op = operpoint(sys)

 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) watertank/PID Controller/Integrator
 x: 0
(2.) watertank/Water-Tank System/H
 x: 1

Inputs: None

The operating point, op, contains the states and input levels of the model.

Set the value of the first state.

op.States(1).x = 1.26;

View the operating point state values.

op.States

(1.) watertank/PID Controller/Integrator
 x: 1.26
(2.) watertank/Water-Tank System/H
 x: 1

If you modify your Simulink model after creating an operating point object, then use
update to update your operating point.

 View and Modify Operating Points

1-11

See Also
operspec | update

More About
• “Simulate Simulink Model at Specific Operating Point” on page 1-83

1 Steady-State Operating Points

1-12

Compute Steady-State Operating Point from State
Specifications

You can compute a steady-state operating point for a Simulink model by specifying
constraints on the model states, and finding a model operating condition that satisfies
these constraints. For more information on steady-state operating points, see “About
Operating Points” on page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

You can trim your model to meet state specifications interactively using the Linear
Analysis Tool or programmatically at the MATLAB command line. For each state in your
model, you can specify a known value or you can constrain the state value using minimum
and maximum bounds. If a state is not known, you can specify an initial guess. You can
also specify which states must be at steady-state at the trimmed operating point.

You can also constrain the derivatives of states that are not at steady-state.

Compute Operating Point from State Specifications Using
Linear Analysis Tool
This example shows how to compute a steady-state operating point by specifying known
state values and constraints using the Linear Analysis Tool.

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

 Compute Steady-State Operating Point from State Specifications

1-13

To open the Linear Analysis Tool, in the Simulink model window, select Analysis >
Control Design > Linear Analysis.

1 Steady-State Operating Points

1-14

In the Linear Analysis Tool, on the Linear Analysis tab, in the Operating Point drop-
down list, select Trim Model.

 Compute Steady-State Operating Point from State Specifications

1-15

By default, on the States tab, the software specifies both model states to be at
equilibrium, as shown by the check marks in the Steady State column. both states are
also specified as unknown values; that is, their steady-state values are calculated during
trimming, with an initial guess specified in the Value column.

Change the second state, the engine angular velocity, to be a known value. In the Known
column, select the corresponding row and, in the Value column, set the value to 180.

1 Steady-State Operating Points

1-16

You can also specify bounds for model states during trimming. For this example, constrain
the first state to be between 0.5 and 0.7. To do so, enter these values in the Minimum
and Maximum columns, respectively.

 Compute Steady-State Operating Point from State Specifications

1-17

To compute the operating point that meets these specifications, click Start trimming.

The software uses optimization to find the operating point that meets your specifications.

1 Steady-State Operating Points

1-18

The Trim progress viewer shows the optimization progress and that the optimization
algorithm terminated successfully. The (Maximum Error) column shows the maximum
constraint violation at each iteration. The Block column shows the block to which the
constraint violation applies.

The trimmed operating point, op_trim1, appears in the Linear Analysis Workspace.

To evaluate whether the resulting operating point values meet the specifications, in the
Linear Analysis Workspace, double-click op_trim1.

In the Edit dialog box, on the State tab, the Actual Value for the first state falls within
the Desired Value bounds, and the actual angular velocity is 180, as specified.

The Actual dx column shows the rates of change of the state values at the operating
point. Since these values are at or near zero the states are not changing, showing that the
operating point is in a steady state.

 Compute Steady-State Operating Point from State Specifications

1-19

You can also constrain the derivatives of states that are not at steady state. Using such
constraints, you can trim derivatives to known nonzero values or specify derivative
tolerances for states that cannot reach steady state.

For example, suppose that you want to find the operating condition at which the engine
angular velocity is 180 rad/s and the angular acceleration is 50 rad/s2. To do so, first open
the Trim the model dialog box. In the Linear Analysis Tool, in the Operating Point drop-
down list, select Trim Model.

In the Steady State column, clear the selection in the corresponding row. Then, in the dx
Minimum and dx Maximum columns, set both state derivative bounds to 50.

1 Steady-State Operating Points

1-20

To compute the operating point, click Start trimming.

In the Linear Analysis Tool, in the Linear Analysis Workspace, double-click op_trim2.

In the Edit dialog box, in the second row, the Actual dx column matches the Desired dx
column. Therefore the operating point meets the specified state derivative constraints.

 Compute Steady-State Operating Point from State Specifications

1-21

Compute Operating Point from State Specifications at
Command Line
This example shows how to compute a steady-state operating point by specifying known
state values and constraints.

Open the Simulink model.

mdl = 'scdspeed';
open_system(mdl)

1 Steady-State Operating Points

1-22

Create a default operating point specification for the model.

opspec = operspec(mdl)

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, initial guess: 209

Inputs:

(1.) scdspeed/Throttle perturbation
 initial guess: 0

Outputs: None

By default, both states are specified to be at equilibrium, as shown by the dx = 0
specification. Both states are also specified as unknown values; that is, their steady-state
values are calculated during trimming, with an initial guess defined in the
specification.

 Compute Steady-State Operating Point from State Specifications

1-23

Change the second state, the engine angular velocity, to be a known value, and view the
updated state specifications.

opspec.States(2).Known = 1;
opspec.States

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, x: 209

The value defined in the second state specification is now the known state value and not
an initial guess.

Find an operating point that meets these specifications.

op1 = findop(mdl,opspec);

 Operating point search report:

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.544 dx: 2.03e-13 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 209 dx: -4.57e-13 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 0.00501 [-Inf Inf]

Outputs: None

The operating point search report shows that the specifications were met successfully,
and that both states are at steady state as expected (dx = 0).

1 Steady-State Operating Points

1-24

You can also specify bounds for model states during trimming. For example, modify the
operating point specifications to trim the second state to a known value of 180, while
constraining the first state to be between 0.5 and 0.7.

opspec.States(2).x = 180;
opspec.States(1).Min = 0.5;
opspec.States(1).Max = 0.7;

Find the operating point that meets these specifications.

op2 = findop(mdl,opspec);

 Operating point search report:

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.57 dx: 2.47e-10 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 180 dx: 2.03e-13 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: -0.881 [-Inf Inf]

Outputs: None

The operating point search report shows that the specifications were met successfully,
and that the first state is within the specified bounds.

Finally, you can also constrain the derivatives of states that are not at steady state. Using
such constraints, you can trim derivatives to known nonzero values or specify derivative
tolerances for states that cannot reach steady state.

For example, suppose that you want to find the operating condition at which the engine
angular velocity is 180 rad/s and the angular acceleration is 50 rad/s^2. To do so, disable

 Compute Steady-State Operating Point from State Specifications

1-25

the SteadyState specification for that state, and set both state derivative bounds to the
same target value.

opspec.States(2).SteadyState = 0;
opspec.States(2).dxMin = 50;
opspec.States(2).dxMax = 50;

The updated state specifications show the new state derivative constraints.

opspec.States

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: 50 <= dx <= 50, x: 180

Find an operating point that meets these updated specifications.

op3 = findop(mdl,opspec);

 Operating point search report:

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.666 dx: 2.01e-08 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 180 dx: 50 [50, 50]

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 0.163 [-Inf Inf]

Outputs: None

1 Steady-State Operating Points

1-26

See Also
Apps
Linear Analysis Tool

Functions
findop | operspec

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Compute Operating Points at Simulation Snapshots” on page 1-78
• “Change Operating Point Search Optimization Settings” on page 1-46

 See Also

1-27

Compute Steady-State Operating Point from Output
Specifications

You can compute a steady-state operating point of a Simulink model by specifying
constraints on the model outputs, and finding a model operating condition that satisfies
these constraints. For more information on steady-state operating points, see “About
Operating Points” on page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

You can trim your model to meet output specifications interactively using the Linear
Analysis Tool or programmatically at the MATLAB command line. For each output, you
can specify a known value or you can constrain the output value using minimum and
maximum bounds. If an output is not known, you can specify an initial guess. You can also
specify which outputs must be at steady-state at the trimmed operating point.

Compute Operating Point from Output Specifications Using
Linear Analysis Tool
This example shows how to compute a steady-state operating point by specifying known
output values and constraints using the Linear Analysis Tool.

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

1 Steady-State Operating Points

1-28

For this example, find a steady-state operating point at which the engine speed is fixed at
2000 rpm.

In the Simulink model window, select Analysis > Control Design > Linear Analysis.

In the Linear Analysis Tool, on the Linear Analysis tab, in the Operating Point drop-
down list, select Trim Model.

In the Trim the model dialog box, on the Outputs tab, there are no outputs listed since
the model has no root-level outputs.

 Compute Steady-State Operating Point from Output Specifications

1-29

For this example, specify a known steady-state engine speed. To do so, in the Simulink
model window, right-click the output signal of the rad/s to rpm block, and select Linear
Analysis Points > Trim Output Constraint.

The signal constraint marker appears in the model, indicating that the signal is
available for trimming to an output constraint. The signal now appears in the Trim the
model dialog box, under the Outputs tab.

1 Steady-State Operating Points

1-30

Specify a known speed value. In the Known column, select the corresponding row and, in
the Value column, set the value to 2000.

 Compute Steady-State Operating Point from Output Specifications

1-31

To compute the operating point that meets these specifications, click Start trimming.

The software uses optimization to find the operating point that meets your specifications.

1 Steady-State Operating Points

1-32

The Trim progress viewer shows the optimization progress and that the optimization
algorithm terminated successfully. The (Maximum Error) column shows the maximum
constraint violation at each iteration. The Block column shows the block to which the
constraint violation applies.

The trimmed operating point, op_trim1, appears in the Linear Analysis Workspace.

To evaluate whether the resulting operating point values meet the specifications, in the
Linear Analysis Workspace, double-click op_trim1.

In the Edit dialog box, on the State tab, the Actual dx column shows the rates of change
of the state values at the operating point. Since these values are at or near zero, the
states are not changing, showing that the operating point is in a steady state.

 Compute Steady-State Operating Point from Output Specifications

1-33

On the Output tab, the Actual Value and Desired Value are both 2000, showing that
the output constraint has been satisfied.

You can also specify bounds for outputs during trimming. For example, suppose that you
know that there is a steady-state condition between 1900 and 2100 rpm. To specify this
range, in the Trim the model dialog box, on the Outputs tab:

1 Steady-State Operating Points

1-34

• In the Known column, clear the entry for the output specification.
• In the Minimum and Maximum columns, specify the constraint bounds.
• In the Value column, specify an initial guess for the value, if you have one.

To compute the operating point, click Start trimming.

The trimmed operating point, op_trim2, appears in the Linear Analysis Workspace.

Double-click op_trim2.

In the Edit dialog box, on the Output tab, the Actual Value is within the bounds shown
in the Desired Value column.

 Compute Steady-State Operating Point from Output Specifications

1-35

Compute Operating Point from Output Specifications at
Command Line
This example shows how to compute a steady-state operating point by specifying known
output values and constraints.

Open the Simulink model.

mdl = 'scdspeed';
open_system(mdl)

1 Steady-State Operating Points

1-36

Create a default operating point specification for the model.

opspec = operspec(mdl)

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, initial guess: 209

Inputs:

(1.) scdspeed/Throttle perturbation
 initial guess: 0

Outputs: None

Since there are no root-level outputs in the model, the default operating point
specification object has no output specifications.

 Compute Steady-State Operating Point from Output Specifications

1-37

For this example, specify a known steady-state engine speed. To do so, add an output
specification at the output of the rad/s to rpm block.

opspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

Specify a known value of 2000 rpm for the output constraint.

opspec.Outputs(1).Known = 1;
opspec.Outputs(1).y = 2000;

View the updated operating point specification.

opspec

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, initial guess: 209

Inputs:

(1.) scdspeed/Throttle perturbation
 initial guess: 0

Outputs:

(1.) scdspeed/rad//s to rpm
 spec: y = 2e+03

Find an operating point that meets these specifications.

op1 = findop(mdl,opspec);

 Operating point search report:

1 Steady-State Operating Points

1-38

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.544 dx: 2.66e-13 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 209 dx: -8.48e-12 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 0.00382 [-Inf Inf]

Outputs:

(1.) scdspeed/rad//s to rpm
 y: 2e+03 (2e+03)

The operating point search report shows that the specifications were met successfully,
and that both states are at steady state as expected (dx = 0).

You can also specify bounds for outputs during trimming. For example, suppose that you
know that there is a steady-state condition between 1900 and 2100 rpm. To trim the
speed to this range, modify the operating point specifications.

opspec.Outputs(1).Min = 1900;
opspec.Outputs(1).Max = 2100;

In this case, since you do not know the output value, specify the output as unknown. You
can also provide an initial guess for the output value.

opspec.Outputs(1).Known = 0;
opspec.Outputs(1).y = 2050;

Find an operating point that meets these specifications.

op2 = findop(mdl,opspec);

 Operating point search report:

 Compute Steady-State Operating Point from Output Specifications

1-39

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.544 dx: 2.99e-13 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 209 dx: -9.9e-13 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 0.005 [-Inf Inf]

Outputs:

(1.) scdspeed/rad//s to rpm
 y: 2e+03 [1.9e+03 2.1e+03]

The operating point search report shows that the specifications were met successfully.

See Also
Apps
Linear Analysis Tool

Functions
addoutputspec | findop | operspec

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Operating Points at Simulation Snapshots” on page 1-78
• “Change Operating Point Search Optimization Settings” on page 1-46

1 Steady-State Operating Points

1-40

Initialize Steady-State Operating Point Search Using
Simulation Snapshot

Initialize Operating Point Search Using Linear Analysis Tool
This example shows how to use the Linear Analysis Tool to initialize the values of an
operating point search using a simulation snapshot.

If you know the approximate time when the model reaches the neighborhood of a steady-
state operating point, you can use simulation to get state values to use as the initial
conditions for numerical optimization.

1 Open the Simulink model.

sys = ('watertank');
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Linear Analysis Tool, in the Operating Point drop-down list, click Take

Simulation Snapshot.
4 In the Enter snapshot times to linearize dialog box, enter 10 in the Simulation

snapshot times field to extract the operating point at this simulation time.

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-41

5 Click Take Snapshots to take a snapshot of the system at the specified time.

The snapshot, op_snapshot1, appears in the Linear Analysis Workspace and
contains all of the system state values at the specified time.

6 In the Linear Analysis tab, in the Operating Point drop-down list, click Trim
Model.

The Trim the model dialog box opens.
7 Initialize the operating point states with the simulation snapshot values.

Click Import.
8 In the Import initial values and specifications dialog box, select op_snapshot1, and

click Import.

1 Steady-State Operating Points

1-42

The state values displayed in the Trim the model dialog box update to reflect the
imported values.

9 Click Start trimming to find the optimized operating point using the states at t =
10 as the initial values.

10 Double-click op_trim1 in the Linear Analysis Workspace to evaluate whether the
resulting operating point values meet the specifications.

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-43

The Actual dx values are at or near zero, showing that the operating point is at a
steady state.

Initialize Operating Point Search Using MATLAB® Code
This example shows how to initialize operating point values for optimization-based
operating searches.

Open the Simulink model.

sys = 'watertank';
load_system(sys)

Simulate the model for ten time units and extract an operating point snapshot.

opsim = findop(sys,10);

Create an operating point specification object. By default, all model states are specified to
be at steady state.

opspec = operspec(sys);

Configure initial values for operating point search.

opspec = initopspec(opspec,opsim);

Find the steady-state operating point that meets these specifications.

[op,opreport] = findop(sys,opspec);

1 Steady-State Operating Points

1-44

 Operating point search report:

 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=10)

Operating point specifications were successfully met.
States:

(1.) watertank/PID Controller/Integrator
 x: 1.26 dx: 0 (0)
(2.) watertank/Water-Tank System/H
 x: 10 dx: -1.1e-14 (0)

Inputs: None

Outputs: None

The time derivative of each state, dx, is effectively zero. This value of the state derivative
indicates that the operating point is at steady state.

See Also
initopspec

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Change Operating Point Search Optimization Settings” on page 1-46
• “Compute Steady-State Operating Point from State Specifications” on page 1-13

 See Also

1-45

Change Operating Point Search Optimization Settings
This example shows how to control the accuracy of your operating point search by
configuring the optimization algorithm.

Typically, you adjust the optimization settings based on the operating point search report,
which is automatically created after each search.

Code Alternative

Use findopOptions to configure optimization algorithm settings for findop.

1 In the Linear Analysis Tool, open the Linear Analysis tab. In the Operating Point
drop-down list, click Trim Model.

2 In the Trim the model dialog box, select the Options tab.

1 Steady-State Operating Points

1-46

3 Configure your operating point search by selecting an optimization method and
changing the appropriate settings.

This table lists the most common optimization settings.

Optimization Status Option to Change Comment
Optimization ends before
completing (too few iterations)

Maximum iterations Increase the number of
iterations

State derivative or error in
output constraint is too large

Function tolerance or
Constraint tolerance
(depending on selected
algorithm)

Decrease the tolerance value

Note You can get help on each option by right-clicking the option label and selecting
What's This?.

See Also

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-75

 See Also

1-47

Import and Export Specifications For Operating Point
Search

When you modify an operating point specification in the Linear Analysis Tool, you can
export the specification to the MATLAB workspace or the Linear Analysis Tool workspace.
Exported specifications are saved as operating point specifications objects (see
operspec). Exporting specifications can be useful when you expect to perform multiple
trimming operations using the same or a very similar set of specifications. Additionally,
you can export interactively-edited operating point specifications when you want to use
the findop command to perform multiple trimming operations with a single compilation
of the model. (See “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.)

You can also import saved operating point specifications to the Linear Analysis Tool and
use them to interactively compute trimmed operating points. Importing a specification
can be useful when you want to trim a model to a specification that is similar to one you
previously saved. In that case, you can import the specification to the Linear Analysis Tool
and interactively change it. You can then export the modified specification, or compute a
trimmed operating point from it.

To import or export an operating point specification:

• In the Linear Analysis Tool, on the Linear Analysis tab, select Trim Model from the
Operating Point drop-down list.

The Trim the model dialog box opens.

1 Steady-State Operating Points

1-48

• Click Import to load a saved operating point specification from the Linear Analysis
Workspace or the MATLAB Workspace.

• Click Export to save an operating point specification to the Linear Analysis Workspace
or the MATLAB Workspace.

For more information about operating point specifications, see the operspec and findop
reference pages.

See Also
findop | operspec

More About
• “View and Modify Operating Points” on page 1-9
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page

1-61

 See Also

1-49

Compute Operating Points Using Custom Constraints
and Objective Functions

Typically, when computing a steady-state operating point using an optimization-based
search, you specify known fixed values or bounds to constrain your model states, inputs,
or outputs. However, some systems or applications require additional flexibility in
defining the optimization search parameters.

For such systems, you can specify custom constraints, an additional optimization objective
function, or both. When the software computes a steady-state operating point, it applies
these custom constraints and objective function in addition to the standard state, input,
and output specifications. The following example shows how to define custom constraints
and a custom objective function for a Simulink model.

You can specify custom equality and inequality constraints as algebraic combinations of
model states, inputs, and outputs. These constraints let you limit the operating point
search space by specifying known relationships between inputs, outputs, and states. For
example, you can specify that one model state is the sum of two other states.

You can also specify a custom scalar objective function as an algebraic combination of
model states, inputs, and outputs. Using the objective function you can optimize the
steady-state operating point based on your application requirements. For example,
suppose that your model has multiple potential equilibrium points. You can specify an
objective function to find the steady-state point with the minimum input energy.

Simulink Model

For this example, use a model of three tanks connected with each other by orifices.

mdl = 'scdTanks';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

1 Steady-State Operating Points

1-50

The flow between Tank1 and Tank2 is desired. The flow between Tank2 and Tank3 is
undesired unavoidable leakage.

At the expected steady state of this system:

• Tank1 and Tank2 have the same pressure.
• Tank2 and Tank3 have an almost constant pressure difference of 1 that compensates a

load.

Due to the weak connectivity between Tank1 and Tank2, it is difficult to trim the model
such that the pressures in Tank1 and Tank2 are equal.

 Compute Operating Points Using Custom Constraints and Objective Functions

1-51

Trim Model Without Customizations

Create a default operating point specification for the model. The specification configures
all three tank pressures as free states that must be at steady state in the trimmed
operating point.

opspec = operspec(mdl);

Create an option set for trimming the model, suppressing the Command Window display
of the operating point search report. The specific trimming options depend on your
application. For this example, use nonlinear least squares optimization.

opt = findopOptions('OptimizerType','lsqnonlin');
opt.DisplayReport = 'off';

Trim the model, and view the trimmed tank pressures.

[op0,rpt0] = findop(mdl,opspec,opt);
op0.States

(1.) scdTanks/Inertia
 x: 0
(2.) scdTanks/Tank1
 x: 9
(3.) scdTanks/Tank2
 x: 9.5
(4.) scdTanks/Tank3
 x: 10.5

The trimmed pressures in Tank1 and Tank2 do not match. Thus, the default operating
point specification fails to find an operating point that meets the expected steady-state
requirements. If you reduce the constraint tolerance,
opt.OptimizationOptions.TolCon, you cannot achieve a feasible steady-state
solution due to the leakage between Tank2 and Tank3.

Add Custom Constraints

To specify custom constraints, define a function in the current working folder or on the
MATLAB path with input arguments:

• x - Operating point specification states, specified as a vector.
• u - Operating point specification inputs, specified as a vector.
• y - Operating point specification outputs, specified as a vector.

1 Steady-State Operating Points

1-52

and output arguments:

• c_ineq - Inequality constraints which must satisfy c_ineq <= 0 during trimming,
returned as a vector.

• c_eq - Equality constraints which must satisfy c_eq = 0 during trimming, returned
as a vector.

Each element of c_ineq and c_eq specifies a single constraint. Define the specific
constraints for your application as algebraic combinations of the states, inputs, and
outputs. If there are no custom equality or inequality constraints, return the
corresponding output argument as [].

For this example, to satisfy the conditions of the expected steady state, define the
following custom constraint function.

function [c_ineq,c_eq] = myConstraints(x,u,y)
 c_ineq = [];
 c_eq = [x(2)-x(3); % Tank1 pressure - Tank2 pressure
 x(3)-x(4)+1]; % Tank2 pressure - Tank3 pressure + 1
end

The first entry of c_eq constrains the pressures of Tank1 and Tank2 to be the same value.
The second equality constraint defines the pressure drop between Tank2 and Tank3.

Add the custom constraint function to the operating point specification.

opspec.CustomConstrFcn = @myConstraints;

Trim the model using the revised operating point specification that contains the custom
constraints, and view the trimmed state values.

[op1,rpt1] = findop(mdl,opspec,opt);
op1.States

(1.) scdTanks/Inertia
 x: 0
(2.) scdTanks/Tank1
 x: 9.33
(3.) scdTanks/Tank2
 x: 9.33
(4.) scdTanks/Tank3
 x: 10.3

 Compute Operating Points Using Custom Constraints and Objective Functions

1-53

Trimming the model with the custom constraint function produces an operating point
with equal pressures in the first and second tanks, as expected. Also, as expected, there is
a pressure differential of 1 between the third and second tanks.

To examine the final values of the specified constraints, you can check the
CustomEqualityConstr and CustomInequalityConstr properties of the operating
point search report.

rpt1.CustomEqualityConstr

ans =

 1.0e-06 *

 -0.0001
 -0.1540

The near-zero values indicate that the equality constraints are satisfied.

Add Custom Objective Function

To specify a custom objective function, define a function with the same input arguments
as the custom constraint function (x, u, and y), and output argument F. F is an objective
function value to be minimized during trimming, returned as a scalar.

Define the objective function for your application as an algebraic combination of the
states, inputs, and outputs.

For this example, assume that you want to keep the pressure in Tank3 in the range
[16,20]. However, this condition is not always feasible. Therefore, rather than impose
hard constraints, add an objective function to incur a penalty if the pressures are not in
the [16,20] range. To do so, define the following custom objective function.

function F = myObjective(x,u,y)
 F = max(x(4)-20, 0) + max(16-x(4), 0);
end

Add the custom objective function to the operating point specification object.

opspec.CustomObjFcn = @myObjective;

1 Steady-State Operating Points

1-54

Trim the operating point using both the custom constraints and the custom objective
function, and view the trimmed state values.

[op2,rpt2] = findop(mdl,opspec,opt);
op2.States

(1.) scdTanks/Inertia
 x: 0
(2.) scdTanks/Tank1
 x: 15
(3.) scdTanks/Tank2
 x: 15
(4.) scdTanks/Tank3
 x: 16

In the trimmed operating point, the pressure in Tank3 is within the [16,20] range
specified in the custom objective function.

To view the final value of the scalar objective function, check the CustomObj property of
the operating point search report.

rpt2.CustomObj

ans =

 0

Add Custom Mapping

For complex models, you can define a custom mapping that selects a subset of the model
states, inputs, and outputs to pass to the custom constraint and objective functions. Doing
so simplifies the constraint and objective functions by eliminating unneeded states,
inputs, and outputs.

To specify a custom mapping, define a function with your operating point specification,
opspec, as an input argument, and output arguments:

• indx - Indices of mapped states
• indu - Indices of mapped inputs
• indy - Indices of mapped outputs

 Compute Operating Points Using Custom Constraints and Objective Functions

1-55

To obtain state, input, and output indices based on block paths and state names use
getStateIndex, getInputIndex, and getOutputIndex. Using these commands is
robust to future model changes, such as the addition of model states. Alternatively, you
can manually specify the indices. For more information on the format of indx, indu, and
indy, see getStateIndex, getInputIndex, and getOutputIndex.

If there are no states, inputs, or outputs used by the custom constraint and objective
functions, return the corresponding output argument as [].

For this example, create a mapping that includes only the pressure states for the three
tanks. To do so, define the following custom mapping function.

function [indx,indu,indy] = myMapping(opspec)
 indx = [getStateIndex(opspec,'scdTanks/Tank1');
 getStateIndex(opspec,'scdTanks/Tank2');
 getStateIndex(opspec,'scdTanks/Tank3')];
 indu = [];
 indy = [];
end

Add the custom mapping to the operating point specification.

opspec.CustomMappingFcn = @myMapping;

When you use a custom mapping function, the indices for the states, inputs, and outputs
in your custom constraint and objective functions must be relative to the order specified
in the mapping function. Update the custom constraint and objective functions with the
new mapping.

function [c_ineq,c_eq] = myConstraintsMap(x,u,y)
 c_ineq = [];
 c_eq = [x(1)-x(2); % Tank1 pressure - Tank2 pressure
 x(2)-x(3)+1]; % Tank2 pressure - Tank3 pressure + 1
end

function F = myObjectiveMap(x,u,y)
 F = max(x(3)-20, 0) + max(16-x(3), 0);
end

1 Steady-State Operating Points

1-56

Here, x, u, and y are vectors of mapped states, inputs, and outputs, respectively. These
vectors contain the mapped values specified in indx, indu, and indy, respectively.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsMap;
opspec.CustomObjFcn = @myObjectiveMap;

Trim the model using the custom mapping, and view the trimmed states, which match the
previous results in op2.

[op3,rpt3] = findop(mdl,opspec,opt);
op3.States

(1.) scdTanks/Inertia
 x: 0
(2.) scdTanks/Tank1
 x: 15
(3.) scdTanks/Tank2
 x: 15
(4.) scdTanks/Tank3
 x: 16

Add Analytic Gradients to Custom Functions

For faster or more reliable computations, you can add analytic gradients to your custom
constraint and objective functions. Adding gradients can reduce the number of function
calls during optimization and potentially improve the accuracy of the optimization result.
If you specify gradients, you must specify them for both the custom constraint and
objective functions. (Gradients for custom trimming are not supported for Simscape™
models.)

To define the gradient of a given constraint or objective function, take the derivative of
the function with respect to a given state, input, or output. For example, if the objective
function is

F = (u(1)+3)^2 + y(1)^2

then the gradient of F with respect to u(1) is

G = 2*(u(1)+3)

To add gradients to your custom constraint function, specify the following additional
output arguments:

 Compute Operating Points Using Custom Constraints and Objective Functions

1-57

• G_ineq - Gradient array for the inequality constraints
• G_eq - Gradient array for the equality constraints

Each column of G_ineq and G_eq contains the gradients for one constraint, and the
order of the columns matches the order of the rows in the corresponding constraint
vector. The number of rows in both G_ineq and G_eq is equal to the total number of
states, inputs, and outputs in x, u, and y. Each column contains gradients with respect to
the states in x, followed by the inputs in u, then the outputs in y.

For this example, add gradients to the constraint function that uses the custom mapping.
You do not have to specify a custom mapping when using gradients. However, defining
gradients is simpler when using mapped subsets of states, inputs, and outputs.

function [c_ineq,c_eq,G_ineq,G_eq] = myConstraintsGrad(x,u,y)
 c_ineq = [];
 c_eq = [x(1)-x(2); % Tank1 pressure - Tank2 pressure
 x(2)-x(3)+1]; % Tank2 pressure - Tank3 pressure + 1

 G_ineq = [];
 G_eq = [1 0;
 -1 1;
 0 -1];
end

In this function, row i of G_eq contains gradients with respect to state x(i).

Similarly, to add gradients to your custom objective function, specify an additional output
argument G, which contains the gradients of F. G is returned as a column vector with the
same format as the columns of G_ineq and G_eq.

function [F,G] = myObjectiveGrad(x,u,y)
 F = max(x(3)-20, 0) + max(16-x(3), 0);

 if x(3) >= 20
 G = [0 0 1]';
 elseif x(3) <= 16
 G = [0 0 -1]';
 else
 G = [0 0 0]';
 end

1 Steady-State Operating Points

1-58

end

Because the objective function in this example is piecewise differentiable, the value of G
depends on the value of the pressure in Tank3.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsGrad;
opspec.CustomObjFcn = @myObjectiveGrad;

To enable gradients in the optimization algorithm, turn on the Jacobian optimization
option.

opt.OptimizationOptions.Jacobian = 'on';

Trim the model using the custom functions with gradients, and view the trimmed states.

[op4,rpt4] = findop(mdl,opspec,opt);
op4.States

(1.) scdTanks/Inertia
 x: 0
(2.) scdTanks/Tank1
 x: 15
(3.) scdTanks/Tank2
 x: 15
(4.) scdTanks/Tank3
 x: 16

The optimization result is the same as the result for the nongradient solution.

To see if the gradients improved the optimization efficiency, view the operating point
search reports. For example, compare the number function evaluations for the solution:

• Without gradients:

rpt3.OptimizationOutput.funcCount

ans =

 25

 Compute Operating Points Using Custom Constraints and Objective Functions

1-59

• With gradients:

rpt4.OptimizationOutput.funcCount

ans =

 5

Adding the analytical gradients decreased the number of function calls during
optimization.

See Also
findop | getInputIndex | getOutputIndex | getStateIndex | operspec

More About
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28

1 Steady-State Operating Points

1-60

Batch Compute Steady-State Operating Points for
Multiple Specifications

This example shows how to find operating points for multiple operating point
specifications using the findop command. You can batch linearize the model using the
operating points and study the change in model behavior.

Each time you call findop, the software compiles the Simulink model. To find operating
points for multiple specifications, you can give findop an array of operating point
specifications, instead of repeatedly calling findop within a for loop. The software uses a
single model compilation to compute the multiple operating points, which is efficient,
especially for models that are expensive to recompile repeatedly.

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Create an array of default operating point specification objects.

opspec = operspec(sys,3);

To find steady-state operating points at which the output of the rad/s to rpm block is fixed,
add a known output specification to each operating point specification object.

opspec = addoutputspec(opspec,[sys '/rad//s to rpm'],1);
for i = 1:3

 Batch Compute Steady-State Operating Points for Multiple Specifications

1-61

 opspec(i).Outputs(1).Known = true;
end

Specify different known output values for each operating point specification.

opspec(1).Outputs(1).y = 1500;
opspec(2).Outputs(1).y = 2000;
opspec(3).Outputs(1).y = 2500;

Alternatively, you can configure operating point specifications using the Linear Analysis
Tool and export the specifications to the MATLAB workspace. For more information, see
“Import and Export Specifications For Operating Point Search” on page 1-48.

Find the operating points that meet each of the three output specifications. findop
computes all the operating points using a single model compilation.

ops = findop(sys,opspec);

 Operating point search report:

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.596 dx: 3.41e-09 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 157 dx: -5.57e-07 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: -1.61 [-Inf Inf]

Outputs:

(1.) scdspeed/rad//s to rpm
 y: 1.5e+03 (1.5e+03)

 Operating point search report:

1 Steady-State Operating Points

1-62

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.544 dx: 2.66e-13 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 209 dx: -8.48e-12 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 0.00382 [-Inf Inf]

Outputs:

(1.) scdspeed/rad//s to rpm
 y: 2e+03 (2e+03)

 Operating point search report:

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.511 dx: 1.33e-08 (0)
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 262 dx: -7.83e-08 (0)

Inputs:

(1.) scdspeed/Throttle perturbation
 u: 1.5 [-Inf Inf]

Outputs:

 Batch Compute Steady-State Operating Points for Multiple Specifications

1-63

(1.) scdspeed/rad//s to rpm
 y: 2.5e+03 (2.5e+03)

ops is a vector of operating points for the scdspeed model that correspond to the
specifications in opspec. The output value for each operating point matches the known
value specified in the corresponding operating point specification.

See Also
findop | operspec

More About
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-75
• “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-

65
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on

page 3-28
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41

1 Steady-State Operating Points

1-64

Batch Compute Steady-State Operating Points for
Parameter Variation

Block parameters configure a Simulink model in several ways. For example, you can use
block parameters to specify various coefficients or controller sample times. You can also
use a discrete parameter, like the control input to a Multiport Switch block, to control the
data path within a model. Varying the value of a parameter helps you understand its
impact on the model behavior. Also, you can vary the parameters of a plant model in a
control system to study the robustness of the controller to plant variations.

When trimming a model using findop, you can specify a set of parameter values for
which to trim the model. The full set of values is called a parameter grid or parameter
samples. findop computes an operating point for each value combination in the
parameter grid. You can vary multiple parameters, thus extending the parameter grid
dimension.

Which Parameters Can Be Sampled?
You can vary any model parameter with a value given by a variable in the model
workspace, the MATLAB workspace, or a data dictionary. In cases where the varying
parameters are all tunable (Simulink), findop requires only one model compilation to
find operating points for varying parameter values. This efficiency is especially
advantageous for models that are expensive to compile repeatedly.

Vary Single Parameter
To vary the value of a single parameter for batch trimming with findop, specify the
parameter grid as a structure having two fields. The Name field contains the name of the
workspace variable that specifies the parameter. The Value field contains a vector of
values for that parameter to take during trimming.

For example, the Watertank model has three parameters defined as MATLAB workspace
variables, a, b, and A. The following commands specify a parameter grid for the single
parameter for A.

param.Name = 'A';
param.Value = Avals;

Here, Avals is an array specifying the sample values for A.

 Batch Compute Steady-State Operating Points for Parameter Variation

1-65

The following table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples
Linearly varying param.Value =

linspace(A_min,A_max,num_samples)
Logarithmically varying param.Value =

logspace(A_min,A_max,num_samples)
Random param.Value = rand(1,num_samples)
Custom param.Value = custom_vector

If the variable used by the model is not a scalar variable, specify the parameter name as
an expression that resolves to a numeric scalar value. For example, suppose that Kpid is
a vector of PID gains. The first entry in that vector, Kpid, is used as a gain value in a
block in your model. Use the following commands to vary that gain using the values given
in a vector Kpvals:

param.Name = 'Kpid(1)';
param.Value = Kpvals;

After you create the structure param, pass it to findop as the param input argument.

Multidimension Parameter Grids
When you vary more than one parameter at a time, you generate parameter grids of
higher dimension. For example, varying two parameters yields a parameter matrix, and
varying three parameters yields a 3-D parameter grid. Consider the following parameter
grid used for batch trimming:

1 Steady-State Operating Points

1-66

Here, you vary the values of three parameters, a, b, and c. The samples form a 3-by-4-by-5
grid. op is an array with same dimensions that contains corresponding trimmed operating
point objects.

Vary Multiple Parameters
To vary the value of multiple parameters for batch trimming with findop, specify
parameter samples as a structure array. The structure has an entry for each parameter
whose value you vary. The structure for each parameter is the same as described in “Vary
Single Parameter” on page 1-65. You can specify the Value field for a parameter as an
array of any dimension. However, the size of the Value field must match for all

 Batch Compute Steady-State Operating Points for Parameter Variation

1-67

parameters. Corresponding array entries for all the parameters, also referred to as a
parameter grid points, must map to a specified parameter combination. When the
software trims the model, it computes an operating point for each grid point.

Specify Full Grid

Suppose that your model has two parameters whose values you want to vary, a and b:

a a a

b b b

=

=

{ , }

{ , }

1 2

1 2

You want to trim the model for every combination of a and b, also referred to as a full
grid:

(,), (,)

(,), (,)

a b a b

a b a b

1 1 1 2

2 1 2 2

Ï
Ì
Ó

¸
˝
˛

Create a rectangular parameter grid using ndgrid.

a1 = 1;
a2 = 2;
a = [a1 a2];

b1 = 3;
b2 = 4;
b = [b1 b2];

[A,B] = ndgrid(a,b)

>> A

A =

 1 1
 2 2

>> B

B =

 3 4
 3 4

1 Steady-State Operating Points

1-68

Create the structure array, params, that specifies the parameter grid.

params(1).Name = 'a';
params(1).Value = A;

params(2).Name = 'b';
params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.

[P1,...,PN] = ndgrid(p1,...,pN);

Here, p1,...,pN are the parameter sample vectors.

Create a 1 x N structure array.

params(1).Name = 'p1';
params(1).Value = P1;
...
params(N).Name = 'pN';
params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, trimming the model
for the full grid can become expensive. In this case, you can specify a subset of the full
grid using a table-like approach. Using the example in “Specify Full Grid” on page 1-68,
suppose that you want to trim the model for the following combinations of a and b:

{(,), (,)}a b a b1 1 21

Create the structure array, params, that specifies this parameter grid.

A = [a1 a1];
params(1).Name = 'a';
params(1).Value = A;

B = [b1 b2];
params(2).Name = 'b';
params(2).Value = B;

 Batch Compute Steady-State Operating Points for Parameter Variation

1-69

Batch Trim Model for Parameter Variations
This example shows how to obtain multiple operating points for a model by varying
parameter values. You can study the controller robustness to plant variations by batch
linearizing the model using the trimmed operating points.

Open the Simulink model.

sys = 'watertank';
open_system(sys)

Vary parameters A and b within 10% of their nominal values. Specify three values for A
and four values for b, creating a 3-by-4 value grid for each parameter.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each
parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model, which specifies that both
model states are unknown and must be at steady state in the trimmed operating point.

opspec = operspec(sys)

1 Steady-State Operating Points

1-70

 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) watertank/PID Controller/Integrator
 spec: dx = 0, initial guess: 0
(2.) watertank/Water-Tank System/H
 spec: dx = 0, initial guess: 1

Inputs: None

Outputs: None

By default, findop displays an operating point search report in the Command Window
for each trimming operation. To suppress the report display, create a trimming option set
and turn off the operating point search report display.

opt = findopOptions('DisplayReport','off');

Trim the model using the specified operating point specification, parameter grid, and
option set.

[op,opreport] = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. The software uses only one
model compilation. op is a 3-by-4 array of operating point objects that correspond to the
specified parameter grid points.

View the operating point in the first row and first column of op.

op(1,1)

 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) watertank/PID Controller/Integrator

 Batch Compute Steady-State Operating Points for Parameter Variation

1-71

 x: 1.41
(2.) watertank/Water-Tank System/H
 x: 10

Inputs: None

Batch Trim Model at Known States Derived from Parameter
Values
This example shows how to batch trim a model when the specified parameter variations
affect the known states for trimming.

In the “Batch Trim Model for Parameter Variations” on page 1-70 example, the model is
trimmed to meet a single operating point specification that contains unknown states. In
other cases, the model states are known for trimming, but depend on the values of the
varying parameters. In this case, you cannot batch trim the model using a single
operating point specification. You must create a separate specification for each parameter
value grid point.

Open the Simulink model.

sys = 'scdairframeTRIM';
open_system(sys)

In this model, the aerodynamic forces and moments depend on the speed, , and
incidence, .

1 Steady-State Operating Points

1-72

Vary the and parameters, and create a 6-by-4 parameter grid.

nA = 6; % number of alpha values
nV = 4; % number of V values
alphaRange = linspace(-20,20,nA)*pi/180;
vRange = linspace(700,1400,nV);
[alphaGrid,vGrid] = ndgrid(alphaRange,vRange);

Since some known state values for trimming depend on the values of and , you must
create a separate operating point specification object for each parameter combination.

for i = 1:nA
 for j = 1:nV
 % Set parameter values in model.
 alpha_ini = alphaGrid(i,j);
 v_ini = vGrid(i,j);

 % Create default specifications based on the specified parameters.
 opspec(i,j) = operspec(sys);

 % Specify which states are known and which states are at steady state.
 opspec(i,j).States(1).Known = [1;1];
 opspec(i,j).States(1).SteadyState = [0;0];

 opspec(i,j).States(3).Known = [1;1];
 opspec(i,j).States(3).SteadyState = [0;1];

 opspec(i,j).States(2).Known = 1;
 opspec(i,j).States(2).SteadyState = 0;

 opspec(i,j).States(4).Known = 0;
 opspec(i,j).States(4).SteadyState = 1;
 end
end

Create a parameter structure for batch trimming. Specify a name and value grid for each
parameter.

params(1).Name = 'alpha_ini';
params(1).Value = alphaGrid;
params(2).Name = 'v_ini';
params(2).Value = vGrid;

 Batch Compute Steady-State Operating Points for Parameter Variation

1-73

Trim the model using the specified parameter grid and operating point specifications.
When you specify an array of operating point specifications and varying parameter values,
the dimensions of the specification array must match the parameter grid dimensions.

opt = findopOptions('DisplayReport','off');
op = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. op is a 6-by-4 array of
operating point objects that correspond to the specified parameter grid points.

See Also
findop | linearize | operspec

More About
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page

1-61
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-75
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on

page 3-28
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41

1 Steady-State Operating Points

1-74

Batch Compute Steady-State Operating Points Reusing
Generated MATLAB Code

This example shows how to batch compute steady-state operating points for a model
using generated MATLAB code. You can batch linearize a model using the operating
points and study the change in model behavior.

If you are new to writing scripts, interactively configure your operating points search
using the Linear Analysis Tool. You can use Simulink Control Design to automatically
generate a script based on your Linear Analysis Tool settings.

1 Open the Simulink model.

sys = 'magball';
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Linear Analysis Tool, in the Operating Point drop-down list, click Trim

Model.

By default, the software specifies all model states to be at equilibrium, as shown in
the Steady State column.

4 In the States tab, select the Known check box for the magball/Magnetic Ball
Plant/height state.

 Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code

1-75

5 Click Start trimming to compute the operating point using numerical optimization.

The Trim progress viewer shows that the optimization algorithm terminated
successfully. The (Maximum Error) Block area shows the progress of reducing the
error of a specific state or output during the optimization.

6 In the Trim the model dialog box, click Generate MATLAB Script

The MATLAB Editor window opens with an automatically generated script.
7 Modify the script to trim the model at multiple operating points.

a Remove unneeded comments from the generated script.
b Define the height variable, height, with values at which to compute operating

points.
c Add a for loop around the operating point search code to compute a steady-state

operating point for each height value. Within the loop, before calling findop,
update the reference ball height, specified by the Desired Height block.

Your script should now look similar to this:
%% Specify the model name
model = 'magball';

1 Steady-State Operating Points

1-76

%% Create the operating point specification object.
opspec = operspec(model);

% State (5) - magball/Magnetic Ball Plant/height
% - Default model initial conditions are used to initialize optimization.
opspec.States(5).Known = true;

%% Create the options
opt = findopOptions('DisplayReport','iter');

%% Specify ball heights at which to compute operating points
height = [0.05;0.1;0.15];

%% Loop over height values to find the corresponding operating points
for i = 1:length(height)
 % Set the ball height in the specification
 opspec.States(5).x = height(i);

 % Update the model ball haight reference parameter
 set_param('magball/Desired Height','Value',num2str(height(i)))

 % Trim the model
 [op(i),opreport(i)] = findop(model,opspec,opt);
end

After running this script, op contains operating points corresponding to each of the
specified height values.

See Also
findop

More About
• “Generate MATLAB Code for Operating Point Configuration” on page 1-101
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on

page 3-28
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page

1-61
• “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-

65

 See Also

1-77

Compute Operating Points at Simulation Snapshots
You can compute a steady-state operating point using a model simulation. The resulting
operating point consists of the state values and model input levels at a specified
simulation snapshot time.

To use simulation-based operating point computation, first configure your model initial
conditions such that the model converges to equilibrium. You can then simulate your
model and create operating points interactively using the Linear Analysis Tool or
programmatically at the MATLAB command line.

To verify that the operating point is at steady state, initialize your model with the
operating point values, simulate the model, and check if key signals and states are at
equilibrium. For more information on initializing your model with an operating point, see
“Simulate Simulink Model at Specific Operating Point” on page 1-83.

Note If your Simulink model contains blocks with internal states, do not linearize the
model at an operating point you compute from a simulation snapshot. Instead, try
linearizing the model using a simulation snapshot or at an operating point found using
trimming.

Compute Operating Points at Simulation Snapshots Using
Linear Analysis Tool
This example shows how to compute an operating point at specified simulation snapshot
times using the Linear Analysis Tool.

Open the Simulink model.

sys = 'magball';
open_system(sys)

1 Steady-State Operating Points

1-78

To open the Linear Analysis Tool, in the Simulink model window, select Analysis >
Control Design > Linear Analysis.

To specify the simulation snapshot time, in the Linear Analysis Tool, on the Linear
Analysis tab, in the Operating Point drop-down list, select Take Simulation
Snapshot.

Take simulation snapshots at 1 and 10 time units. In the Enter snapshot times to linearize
dialog box, in the Simulation snapshot times box, enter [1,10].

To take the snapshots, click Take Snapshots.

The software simulates the model and creates an operating point at each simulation
snapshot time. Each operating point contains the input and states values of the model at
the corresponding snapshot time.

An array of operating points, op_snapshot1, appears in the Linear Analysis
Workspace. This array contains two operating points, one for each specified snapshot
time.

 Compute Operating Points at Simulation Snapshots

1-79

To view the operating points, in the Linear Analysis Workspace, double-click
op_snapshot1. You can select which operating point to view using the Select
Operating Point drop-down list.

Find Operating Points at Simulation Snapshots at Command
Line
This example shows how to compute a steady-state operating point at specified simulation
snapshot times.

Open the Simulink model.

sys = 'magball';
open_system(sys)

1 Steady-State Operating Points

1-80

Simulate the model, and create operating points at 1 and 10 time units. The software
simulates the model and computes an operating point at each simulation snapshot time.

op = findop(sys,[1 10]);

op is a column vector of operating points, with one element for each specified snapshot
time.

Display the first operating point.

op(1)

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=1)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 5.76e-06
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: -6.7e-08
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

 Compute Operating Points at Simulation Snapshots

1-81

Inputs: None

See Also
Apps
Linear Analysis Tool

Functions
findop

More About
• “About Operating Points” on page 1-2
• “Simulate Simulink Model at Specific Operating Point” on page 1-83
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page

1-41

1 Steady-State Operating Points

1-82

Simulate Simulink Model at Specific Operating Point
This example shows how to initialize a model at a specific operating point for simulation.

1 Compute a steady-state operating point using one of the following:

• State specifications, see “Compute Steady-State Operating Point from State
Specifications” on page 1-13

• Output Specifications, see “Compute Steady-State Operating Point from Output
Specifications” on page 1-28

• Simulation snapshot, see “Compute Operating Points at Simulation Snapshots” on
page 1-78.

2 In the Linear Analysis Tool, double-click the computed operating point or simulation
snapshot variable in the Linear Analysis Workspace.

The Edit dialog box opens.

Note If you computed multiple operating points using a simulation snapshot. Select
an operating point from the Select Operating Point list.

 Simulate Simulink Model at Specific Operating Point

1-83

3 Click Initialize model.

In the Initialize Model dialog box, specify a Variable Name for the operating point
object. Alternatively, you can use the default variable name.

Click OK to export the operating point to the MATLAB Workspace.

This action also sets the operating point values in the Data Import/Export pane of
the Configuration Parameters dialog box. Simulink derives the initial conditions from
this operating point when simulating the model.

Tip If you want to store this operating point with the model, export the operating
point to the Model Workspace instead.

In the Simulink Editor, select Simulation > Run to simulate the model starting at the
specified operating point.

1 Steady-State Operating Points

1-84

See Also

Related Examples
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Compute Operating Points at Simulation Snapshots” on page 1-78

 See Also

1-85

Handle Blocks with Internal State Representation

Operating Point Object Excludes Blocks with Internal States
The operating point object used for linearization and control design does not include
these Simulink blocks with internal state representation:

• Memory blocks
• Transport Delay and Variable Transport Delay blocks
• Disabled If Action Subsystem and Switch Case Action Subsystem blocks
• Backlash blocks
• MATLAB Function blocks with persistent data
• Rate Transition blocks
• Stateflow blocks
• S-Function blocks with states not registered as Continuous or Double Value Discrete

For example, if you compute a steady-state operating point for the following Simulink
model, the resulting operating point object does not include the Backlash block states
because these states have an internal representation. If you use this operating point
object to initialize a Simulink model, the initial conditions of the Backlash blocks might be
incompatible with the operating point.

Identifying Blocks with Internal States in Your Model
Generate a list of blocks that have internal state representations.

sldiagnostics(sys,'CountBlocks')

1 Steady-State Operating Points

1-86

where sys is the model name. This command also returns the number of occurrences of
each block.

Configuring Blocks with Internal States for Steady-State
Operating Point Search
Blocks with internal states can cause problems for steady-state operating point search
(trimming). Where there is no direct feedthrough, the input to the block at the current
time does not determine the output of the block at the current time.

To fix this issue for Memory, Transport Delay, or Variable Transport Delay blocks, select
the Direct feedthrough of input during linearization option in the Block Parameters
dialog box before searching for an operating point or linearizing a model at a steady
state. This setting makes such blocks behave as if they have a gain of one during an
operating point search.

For example, the next model includes a Transport Delay block. In this case, you cannot
find a steady state operating point using optimization because the output of the Transport
Delay is always zero. Because the reference signal is 1, the input to the Plant block must
be nonzero to get the plant block to have an output of 1 and be at steady state.

Select the Direct feedthrough of input during linearization option in the Block
Parameters dialog box before searching for an operating point. This setting allows the
PID Controller block to pass a nonzero value to the Plant block.

You can also set direct feedthrough options at the command-line.

Block Command to specify direct feedthrough
Memory set_param(blockname,'LinearizeMemory','on')
Transport Delay or Variable
Transport Delay

set_param(blockname,'TransDelayFeedthrough','on
')

 Handle Blocks with Internal State Representation

1-87

For other blocks with internal states, determine whether the output of the block impacts
the state derivatives or desired output levels before computing operating points. If the
block impacts these derivatives or output levels, consider replacing it using a
configurable subsystem.

See Also

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5

1 Steady-State Operating Points

1-88

Synchronize Simulink Model Changes with Operating
Point Specifications

Modifying your Simulink model can change, add, or remove states, inputs, or outputs,
which changes the operating point. You can synchronize existing operating point
specification objects to reflect the changes in your model.

Synchronize Simulink Model Changes Using Linear Analysis
Tool
If you change your Simulink model while the Linear Analysis Tool is open, you must sync
the operating point specifications in the Linear Analysis Tool to reflect the changes in the
model.

Modifying your Simulink model can change, add, or remove states, inputs, or outputs,
which changes the operating point.

1 Open the Simulink model.

sys = ('scdspeedctrl');
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens, with the default operating point being
set to the model initial condition.

3 In the Linear Analysis Tool, in the Operating Points drop-down list, select Trim
Model.

The Trim the model dialog box appears.

 Synchronize Simulink Model Changes with Operating Point Specifications

1-89

The Reference Filter block contains just one state.
4 In the Simulink Editor, double-click the Reference Filter block. Change the

Numerator of the transfer function to [100], and change the Denominator to [1
20 100]. Click OK.

1 Steady-State Operating Points

1-90

This change increases the order of the filter, adding a state to the Simulink model.
5 In the Trim the model dialog, click Sync with Model to synchronize the operating

point specifications in the Linear Analysis Tool with the updated model states.

 Synchronize Simulink Model Changes with Operating Point Specifications

1-91

The dialog now shows two states for the Reference Filter block.
6 To compute the operating point, click Start trimming.

Synchronize Simulink Model Changes at the Command Line
This example shows how to update an existing operating point specification object with
changes in the Simulink model.

1 Open the Simulink model.

sys = 'scdspeedctrl';
open_system(sys)

2 Create operating point specification object.

opspec = operspec(sys);

By default, all model states are specified to be at steady state.
3 In the Simulink Editor, double-click the Reference Filter block. Change the

Numerator of the transfer function to [100] and the Denominator to [1 20 100].
Click OK.

1 Steady-State Operating Points

1-92

4 Attempt to find the steady-state operating point that meets these specifications.

op = findop(sys,opspec);

This command results in an error because the changes to your model are not
reflected in your operating point specification object:

??? The model scdspeedctrl has been modified and the operating point
object is out of date. Update the object by calling the function
update on your operating point object.

5 Update the operating point specification object with changes to the model. Repeat
the operating point search.

opspec = update(opspec);
op = findop(sys,opspec);
bdclose(sys)

 Operating Point Search Report:

 Operating Report for the Model scdspeedctrl.

 Synchronize Simulink Model Changes with Operating Point Specifications

1-93

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) scdspeedctrl/External Disturbance/Transfer Fcn
 x: 0 dx: 0 (0)
 x: 0 dx: 0 (0)
(2.) scdspeedctrl/PID Controller/Filter
 x: 0 dx: -0 (0)
(3.) scdspeedctrl/PID Controller/Integrator
 x: 8.98 dx: -4.51e-14 (0)
(4.) scdspeedctrl/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 x: 0.544 dx: 2.94e-15 (0)
(5.) scdspeedctrl/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 x: 209 dx: -1.52e-13 (0)
(6.) scdspeedctrl/Reference Filter/State Space
 x: 200 dx: 0 (0)

Inputs: None

Outputs: None

After updating the operating point specifications object, the optimization algorithm
successfully finds the operating point.

See Also
update

More About
• “Simulate Simulink Model at Specific Operating Point” on page 1-83

1 Steady-State Operating Points

1-94

Find Steady-State Operating Points for Simscape
Models

You can find operating points for models with Simscape components using Simulink
Control Designsoftware. In particular, you can find steady-state operating points using
one of the following methods:

• Optimization-based trimming — Specify constraints on model inputs, outputs, or
states, and compute a steady-state operating point that satisfies these constraints. For
more information, see “Compute Steady-State Operating Point from State
Specifications” on page 1-13 and “Compute Steady-State Operating Point from Output
Specifications” on page 1-28.

By default, you can define operating point specifications for any Simulink and
Simscape states in your model, and any root-level input and output ports of your
model. You can also define additional output specifications on Simulink signals. To
apply output specifications to a Simscape physical signal, first convert the signal using
a PS-Simulink Converter block.

• Simulation snapshot — Specify model initial conditions near an expected
equilibrium point, and simulate the model until it reaches steady state. You can then
create an operating point based on the steady-state signals and states in the model.
For more information, see “Compute Operating Points at Simulation Snapshots” on
page 1-78.

Projection-Based Trim Optimizers
To produce better trimming results for Simscape models, you can use projection-based
trim optimizers. These optimizers enforce the consistency of the model initial condition at
each evaluation of the objective function or nonlinear constraint function. Using
projection-based trim optimizers requires Optimization Toolbox™ software.

You can use these projection-based optimizers when trimming models from the command
line and in the Linear Analysis Tool.

To specify the optimizer type at the command line, create a findopOptions option set,
and specify the Optimizer option as one of the following:

• 'lsqnonlin-proj' — Nonlinear least squares with projection
• 'graddescent-proj' — Gradient descent with projection

 Find Steady-State Operating Points for Simscape Models

1-95

When using gradient descent with projection at the command line, you can specify
whether the algorithm enforces the model initial conditions using hard or soft constraints
by specifying the ConstraintType option in findopOptions.

To specify the optimizer type in the Linear Analysis Tool, first open the Trim the model
dialog box. In the Linear Analysis Tool, in the Operating Point drop-down list, select
Trim Model.

Then, in the Trim the model dialog box, on the Options tab, in the Optimization
Method drop-down list, select an optimizer.

When you use gradient descent with projection in the Linear Analysis Tool, the algorithm
enforces the model initial conditions using hard constraints.

Steady-State Simulation with Projection-Based Trim Optimizer
This example shows how to find a steady-state operating point for a Simscape™
Multibody™ model using findop with a projection-based optimizer. Results are verified
using simulation.

1 Steady-State Operating Points

1-96

Open Model

Open the Simulink model.

mdl = 'scdbackhoeTRIM';
open_system(mdl)

Define Operating Point Specifications

Before creating an operating point specification, configure the model to use the model
initial condition.

set_param(mdl,'LoadExternalInput','off')
set_param(mdl,'LoadInitialState','off')

Create a default operating point specification object.

 Find Steady-State Operating Points for Simscape Models

1-97

ops = operspec(mdl);

Impose constraints on the outputs.

ops.Outputs(1).Known = true(10,1);
ops.Outputs(1).y(1) = 0; % Bucket angle
ops.Outputs(1).y(3) = 50; % Upper angle
ops.Outputs(1).y(5) = -50; % Lower angle
ops.Outputs(1).y(7) = 0; % Base angle
ops.Outputs(1).y(9) = -45; % Support angle

Configure Trim Options

Configure trim optimizer options. Set the 'OptimizerType' option to 'graddescent-
proj', which is a projection-based trim optimizer that enforces consistency of the model
physical states. To display trim progress, set the 'DisplayReport' option to 'iter'.

opt = findopOptions('OptimizerType','graddescent-proj',...
 'DisplayReport','iter');
opt.OptimizationOptions.MaxFunEvals = 20000;

Trim Model

Find the steady-state operating point that meets these specifications. The following
command takes a few minutes.

[op,rpt] = findop(mdl,ops,opt);

To save time, load precomputed results.

load('scdbackhoe_op.mat')

Simulate Model

Simulate the model from the computed steady state.

set_param(mdl, 'LoadExternalInput','on')
set_param(mdl, 'ExternalInput','getinputstruct(op)')
set_param(mdl, 'LoadInitialState','on')
set_param(mdl, 'InitialState','getstatestruct(op)')
sim(mdl)

Open scope to inspect results.

open_system([mdl, '/Joint Angle Trajectories'])

1 Steady-State Operating Points

1-98

 Find Steady-State Operating Points for Simscape Models

1-99

The simulation results show that the five angles are trimmed to their expected values,
however the trajectory deviates slightly over time due to numerical noise and instability.
You can stabilize the angles using feedback controllers.

bdclose(mdl)

See Also
Apps
Linear Analysis Tool

Functions
findop | findopOptions | operspec

Blocks
PS-Simulink Converter

More About
• “About Operating Points” on page 1-2

1 Steady-State Operating Points

1-100

Generate MATLAB Code for Operating Point
Configuration

This topic shows how to generate MATLAB code from the Linear Analysis Tool for
operating point configuration. You can generate a MATLAB script to programmatically
reproduce a result that you obtained interactively. You can also modify the script to
compute multiple operating points with systematic variations in operating point
specifications (batch computing).

To generate MATLAB code for configuring operating points:

1 In the Linear Analysis Tool, in the Linear Analysis tab, in the Operating Points
drop-down list, click Trim Model.

2 In the Trim the model dialog box, in the Specifications tab, configure the operating
point state, input, and output specifications.

3 In the Options tab, specify search optimization settings.
4 Click Generate MATLAB Script to generate code that creates an operating point

using your specifications and search options.

You can examine the generated code in the MATLAB Editor. To modify the script to
perform batch operating point computation, see “Batch Compute Steady-State
Operating Points Reusing Generated MATLAB Code” on page 1-75.

See Also
findop

 Generate MATLAB Code for Operating Point Configuration

1-101

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-75

1 Steady-State Operating Points

1-102

Linearization

• “Linearize Nonlinear Models” on page 2-3
• “Choose Linearization Tools” on page 2-9
• “Specify Portion of Model to Linearize” on page 2-13
• “Specify Portion of Model to Linearize in Simulink Model” on page 2-21
• “Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-29
• “Specify Portion of Model to Linearize at Command Line” on page 2-39
• “How the Software Treats Loop Openings” on page 2-42
• “Linearize Plant” on page 2-44
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-51
• “Compute Open-Loop Response” on page 2-62
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Linearize at Trimmed Operating Point” on page 2-88
• “Linearize at Simulation Snapshot” on page 2-94
• “Linearize at Triggered Simulation Events” on page 2-98
• “Linearization of Models with Delays” on page 2-102
• “Linearization of Models with Model References” on page 2-109
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124
• “Order States in Linearized Model” on page 2-133
• “Validate Linearization In Time Domain” on page 2-139
• “Validate Linearization In Frequency Domain” on page 2-143
• “View Linearized Model Equations Using Linear Analysis Tool” on page 2-147
• “Analyze Results Using Linear Analysis Tool Response Plots” on page 2-149

2

• “Generate MATLAB Code for Linearization from Linear Analysis Tool” on page 2-157
• “When to Specify Individual Block Linearization” on page 2-159
• “Specify Linear System for Block Linearization Using MATLAB Expression”

on page 2-160
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-161
• “Augment the Linearization of a Block” on page 2-165
• “Models with Time Delays” on page 2-170
• “Linearize Multirate Models” on page 2-172
• “Change Perturbation Level of Blocks Perturbed During Linearization” on page 2-183
• “Linearize Blocks with Nondouble Precision Data Type Signals” on page 2-185
• “Linearize Event-Based Subsystems (Externally Scheduled Subsystems)”

on page 2-187
• “Configure Models with Pulse Width Modulation (PWM) Signals” on page 2-194
• “Linearize Simscape Networks” on page 2-196
• “Specifying Linearization for Model Components Using System Identification”

on page 2-201
• “Exact Linearization Algorithm” on page 2-209

2 Linearization

2-2

Linearize Nonlinear Models

What Is Linearization?
Linearization is a linear approximation of a nonlinear system that is valid in a small region
around an operating point.

For example, suppose that the nonlinear function is y x=
2 . Linearizing this nonlinear

function about the operating point x = 1, y = 1 results in a linear function y x= -2 1 .

Near the operating point, y x= -2 1 is a good approximation to y x=
2 . Away from the

operating point, the approximation is poor.

The next figure shows a possible region of good approximation for the linearization of

y x=
2 . The actual region of validity depends on the nonlinear model.

 Linearize Nonlinear Models

2-3

Extending the concept of linearization to dynamic systems, you can write continuous-time
nonlinear differential equations in this form:

&x t f x t u t t

y t g x t u t t

() (), (),

() (), (), .

= ()

= ()

In these equations, x(t) represents the system states, u(t) represents the inputs to the
system, and y(t) represents the outputs of the system.

A linearized model of this system is valid in a small region around the operating point
t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

2 Linearization

2-4

To represent the linearized model, define new variables centered about the operating
point:

d

d

d

x t x t x

u t u t u

y t y t y

() ()

() ()

() ()

= -

= -

= -

0

0

0

The linearized model in terms of δx, δu, and δy is valid when the values of these variables
are small:

d d d

d d d

&x t A x t B u t

y t C x t D u t

() () ()

() () ()

= +

= +

Applications of Linearization
Linearization is useful in model analysis and control design applications.

Exact linearization of the specified nonlinear Simulink model produces linear state-space,
transfer-function, or zero-pole-gain equations that you can use to:

• Plot the Bode response of the Simulink model.
• Evaluate loop stability margins by computing open-loop response.
• Analyze and compare plant response near different operating points.
• Design linear controller

Classical control system analysis and design methodologies require linear, time-
invariant models. Simulink Control Design automatically linearizes the plant when you
tune your compensator. See “Choose a Control Design Approach” on page 8-2.

• Analyze closed-loop stability.
• Measure the size of resonances in frequency response by computing closed-loop linear

model for control system.
• Generate controllers with reduced sensitivity to parameter variations and modeling

errors.

 Linearize Nonlinear Models

2-5

Linearization in Simulink Control Design
You can use Simulink Control Designsoftware to linearize continuous-time, discrete-time,
or multirate Simulink models. The resulting linear time-invariant model is in state-space
form.

By default, Simulink Control Design linearizes models using a block-by-block approach.
This block-by-block approach individually linearizes each block in your Simulink model
and combines the results to produce the linearization of the specified system.

You can also linearize your system using full-model numerical perturbation, where the
software computes the linearization of the full model by perturbing the values of the root-
level inputs and states. For each input and state, the software perturbs the model by a
small amount and computes a linear model based on the model response to these
perturbations. You can perturb the model using either forward differences or central
differences.

The block-by-block linearization approach has several advantages to full-model numerical
perturbation:

• Most Simulink blocks have a preprogrammed linearization that provides an exact
linearization of the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model

simulation.
• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control

Toolbox™ software).
• You can obtain detailed diagnostic information.
• When linearizing multirate models, you can use different rate conversion methods.

Full-model numerical perturbation can only use zero-order-hold rate conversion.

Model Requirements for Exact Linearization
Exact linearization supports most Simulink blocks.

However, Simulink blocks with strong discontinuities or event-based dynamics linearize
(correctly) to zero or large (infinite) gain. Models that include event-based or

2 Linearization

2-6

discontinuous behavior require special handling by Simulink Control Design software.
Such event-based or discontinuous behavior can come from blocks such as:

• Blocks from Discontinuities library
• Stateflow charts
• Triggered subsystems
• Pulse width modulation (PWM) signals

For most applications, the states in your Simulink model should be at steady state.
Otherwise, your linear model is only valid over a small time interval.

Operating Point Impact on Linearization
Choosing the right operating point for linearization is critical for obtaining an accurate
linear model. The linear model is an approximation of the nonlinear model that is valid
only near the operating point at which you linearize the model.

Although you specify which Simulink blocks to linearize, all blocks in the model affect the
operating point.

A nonlinear model can have two very different linear approximations when you linearize
about different operating points.

The linearization result for this model is shown next, with the initial condition for the
integration x0 = 0.

 Linearize Nonlinear Models

2-7

This table summarizes the different linearization results for two different operating
points.

Operating Point Linearization Result
Initial Condition = 5, State x1 = 5 30/s
Initial Condition = 0, State x1 = 0 0

You can linearize your Simulink model at three different types of operating points:

• Trimmed operating point — “Linearize at Trimmed Operating Point” on page 2-88
• Simulation snapshot — “Linearize at Simulation Snapshot” on page 2-94
• Triggered simulation event — “Linearize at Triggered Simulation Events” on page 2-

98

See Also

More About
• “Exact Linearization Algorithm” on page 2-209
• “Linearize Plant” on page 2-44
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80

2 Linearization

2-8

Choose Linearization Tools

Choosing Simulink Control Design Linearization Tools
Simulink Control Design software lets you perform linear analysis of nonlinear models
using a user interface, functions, or blocks.

Linearization Tool When to Use
Linear Analysis Tool • Interactively explore Simulink model

linearization under different operating
conditions.

• Diagnose linearization problems.
• Batch linearize for varying model parameter

values.
• Automatically generate MATLAB code for

batch linearization.
linearize • Linearize a Simulink model for command-line

analysis of poles and zeros, plot responses,
and control design.

• Batch linearize for varying model parameter
values and operating points.

slLinearizer Batch linearize for varying model parameter
values, operating points, and I/O sets.

Linear Analysis Plots blocks on page 2-
80

• Visualize linear characteristics of your
Simulink model during simulation.

• View bounds on linear characteristics of your
Simulink model on plots.

• Optionally, check that the linear
characteristics of your Simulink model
satisfy specified bounds.

Note Linear Analysis Plots blocks do not
support code generation. You can only use these
blocks in Normal simulation mode.

 Choose Linearization Tools

2-9

Choosing Exact Linearization Versus Frequency Response
Estimation
In most cases, to obtaining a linear approximation of a Simulink model, you should use
exact linearization instead of frequency response estimation.

Exact linearization:

• Is faster because it does not require simulation of the Simulink model.
• Returns a parametric state-space model.

Frequency response estimation returns frequency response data. To create a transfer
function or a state-space model from the resulting frequency response data, you must
fit a model to the data using System Identification Toolbox™ software.

Use frequency response estimation:

• To validate exact linearization accuracy. For more information, see “Validate
Linearization In Frequency Domain” on page 2-143.

• When your Simulink model contains discontinuities or non-periodic event-based
dynamics.

• To study the impact of amplitude size on frequency response. For more information,
see“Describing Function Analysis of Nonlinear Simulink Models”.

Linearization Using Simulink Control Design Versus Simulink
How is Simulink linmod different from Simulink Control Design functionality for
linearizing nonlinear models?

Although both Simulink Control Design and Simulink linmod perform block-by-block
linearization, Simulink Control Design functionality is enhanced by a more flexible user
interface and Control System Toolbox™ numerical algorithms.

2 Linearization

2-10

 Simulink Control Design
Linearization

Simulink Linearization

Graphical-user interface Yes
See “Linearize Simulink Model at
Model Operating Point” on page 2-
72.

No

Flexibility in defining
which portion of the model
to linearize

Yes. Lets you specify linearization
I/O points at any level of a
Simulink model, either graphically
or programmatically without
having to modify your model.
See “Linearize at Trimmed
Operating Point” on page 2-88.

No. Only root-level linearization
I/O points, which is equivalent to
linearizing the entire model.
Requires that you add and
configure additional Linearization
Point blocks.

Open-loop analysis Yes. Lets you open feedback loops
without deleting feedback signals
in the model.
See “Compute Open-Loop
Response” on page 2-62.

Yes, but requires that you delete
feedback signals in your model to
open the loop

Control linear model state
ordering

Yes
See “Order States in Linearized
Model” on page 2-133.

No

Control linearization of
individual blocks

Yes. Lets you specify custom
linearization behavior for both
blocks and subsystems.
See “When to Specify Individual
Block Linearization” on page 2-
159.

No

Linearization diagnostics Yes. Identifies problematic blocks
and lets you examine the
linearization value of each block.
See “Linearization
Troubleshooting Overview” on
page 4-2.

No

Block detection and
reduction

Yes. Block reduction detects blocks
that do not contribute to the
overall linearization yielding a
minimal realization.

No

 Choose Linearization Tools

2-11

 Simulink Control Design
Linearization

Simulink Linearization

Control of rate conversion
algorithm for multirate
models

Yes No

See Also

More About
• “Linearize Nonlinear Models” on page 2-3

2 Linearization

2-12

Specify Portion of Model to Linearize
To linearize a subsystem, loop, or block in your model, you use analysis points. Each
analysis point that you define in the model can serve one or more of the following
purposes:

• Input — The software injects an additive input signal at an analysis point, for
example, to model a disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the
impact of a disturbance on the plant output.

• Loop Opening — The software interprets a break in the signal flow at a point, for
example, to study the open-loop response at the plant input.

To compute a linear model for a portion of your system, specify a linearization input point
and output point on the input and output signal to the portion of the model you want to
linearize. To compute an open-loop response, specify loop openings to break the signal
flow. You can also compute MIMO linear models by defining multiple input and output
points.

Analysis Points
You can specify the following types of linear analysis points using Simulink Control Design
software. These analysis points are pure annotations and do not impact model simulation.

Analysis
Point

Description Example System

 Input
perturbatio
n

Specifies an additive input to a signal.

To define a transfer function for a
linearized system, you can use an input
perturbation with an output measurement
or open-loop output.

For example, to compute the response
G/(1+GK) in the example system, specify
an input perturbation du and an output
measurement y as shown.

+

-
K G

er

+

du

+

 y

 Specify Portion of Model to Linearize

2-13

Analysis
Point

Description Example System

 Output
measureme
nt

Takes a measurement at a signal.

To define a transfer function for a
linearized system, you can use an output
measurement with an input perturbation
or an open-loop input.

For example, to compute the response -
K/(1+KG) in the example system, specify
an output measurement point u and an
input perturbation dy as shown.

+

-
K G

er

 u

+

dy

+

 Loop
break

Specifies a loop opening.

Use a loop break to compute open-loop
transfer function around a loop. Typically,
you use loop breaks when you have
nested loops or want to ignore the effect
of some loops.

In the example system, the loop break
stops the signal flow at u. As a result, the
transfer function from the input
perturbation de to the output
measurement y is 0.

+

-
K G

ur

de

+

 y

 Open-
loop input

Specifies a loop break followed by an
input perturbation.

To linearize a plant or controller, you can
use an open-loop input with an output
measurement or an open-loop output.

For example, to linearize the plant in the
example system, add an open-loop input
before G and an output measurement y
after G, as shown. The open-loop input
breaks the signal flow at u, and adds an
input perturbation du.

+

-
K G

e ur

 y
du

2 Linearization

2-14

Analysis
Point

Description Example System

 Open-
loop output

Specifies an output measurement
followed by a loop break.

To linearize a plant or controller, you can
use an open-loop output with an input
perturbation or an open-loop input.

For example, to compute the response -K
in the example system, add an open-loop
output after K and an input perturbation
dy after G, as shown. The open-loop
output breaks the signal flow and adds an
output measurement u.

+

-
K G

er

 u

+

dy

+

 Loop
transfer
function

Specifies an output measurement before a
loop break followed by an input
perturbation.

To compute the open-loop transfer
function around a loop, use a loop
transfer analysis point.

For example, to compute -KG in the
example system, specify the loop transfer
analysis point as shown. The software
adds an output measurement u breaks the
signal flow, and adds an input
perturbation du.

+

-
K G

e yr

u

du

 Specify Portion of Model to Linearize

2-15

Analysis
Point

Description Example System

Sensitivity
function

Specifies an input perturbation followed
by an output measurement.

The sensitivity function measures how
sensitive a signal is to an added
disturbance. Sensitivity is a closed-loop
measure. Feedback reduces the
sensitivity in the frequency band where
the open-loop gain is greater than 1.

For example, to compute the sensitivity at
the plant input of the example system,
add a sensitivity function analysis point as
shown. The software adds an input
perturbation du followed by an output
measurement u. The closed-loop transfer
function from du to u is 1/(1+GK).

+

-
K G

er

+

du

+

u

2 Linearization

2-16

Analysis
Point

Description Example System

Complemen
tary
sensitivity
function

Specifies an output measurement
followed by an input perturbation.

The complementary sensitivity function at
a point is the transfer function from an
additive disturbance at the point to a
measurement at the same point. In
contrast to the sensitivity function, the
disturbance is added after the
measurement. Use this analysis point to
compute closed-loop transfer function
around the loop.

For example, to compute the closed-loop
transfer function for the example system,
add a complementary sensitivity function
analysis point as shown. The software
adds an output measurement u followed
by and input perturbation du. The closed-
loop transfer function from du to u is
GK/(1+GK).

+

-
K G

e yr

du

+

+

u

Opening Feedback Loops
If your model contains one or more feedback loops, you can choose to linearize an open-
loop or a closed-loop system.

To remove the effects of a feedback loop, using analysis points lets you insert a loop
opening without manually breaking the signal line. Manually removing the feedback
signal from a nonlinear model changes the model operating point and produces a
different linearized model. For more information, see “How the Software Treats Loop
Openings” on page 2-42.

Proper placement of the loop opening is important for obtaining the linear model that you
want. To understand the difference between open-loop and closed-loop analysis, consider
the following single-loop control system.

 Specify Portion of Model to Linearize

2-17

Suppose that you want to linearize the plant P about an equilibrium operating point of the
model.

To linearize only the plant, you open the loop at the output of block P. If you do not open
the loop, the linearized model between U and Y includes the effect of the feedback loop.

Loop open at Y? Transfer Function from U to Y
Yes P s()

No P s

P s C s

()

() ()1+

The loop opening does not have to be in the same location as the linearization input or
output point. For example, the following system has a loop opening after the gain on the
outer feedback loop, which removes the effect of this loop from the linearization. As a
result, only the blue blocks are on the linearization path.

2 Linearization

2-18

In this example, if you place a loop opening at the same location as the linearization
output point, the effect of the inner loop is also removed from the linearization result.

Ways to Specify Portion of Model to Linearize
There are several ways to define the portion of the model you want to linearize using
linear analysis points. Each method has its own advantages and depends on which
linearization tool you use. For more information on choosing linearization tools, see
“Choose Linearization Tools” on page 2-9.

Specify portion
of model...

Use this method if... For more Information, see...

In Simulink
model

You want to save the analysis points
directly in the model or graphically
display the analysis points within
the model.

“Specify Portion of Model to
Linearize in Simulink Model” on
page 2-21

Using Linear
Analysis Tool

You want to linearize your model
interactively using the Linear
Analysis Tool without changing the
Simulink model. Using this method
you can specify multiple open-loop
or closed-loop transfer functions for
your model.

“Specify Portion of Model to
Linearize in Linear Analysis Tool”
on page 2-29

At command line
using linio
command

You want to linearize your model
using the linearize command.
Using linio does not change the
Simulink model.

“Specify Portion of Model to
Linearize at Command Line” on
page 2-39

Using
slLinearizer
interface

You want to obtain multiple open-
loop or closed-loop transfer
functions from the linearized
system without recompiling the
model. Using this method does not
change the Simulink model.

“Mark Signals of Interest for
Batch Linearization” on page 3-
13

 Specify Portion of Model to Linearize

2-19

Specify portion
of model...

Use this method if... For more Information, see...

Using slTuner
interface

You want to obtain multiple open-
loop or closed-loop transfer
functions from a tuned control
system without recompiling the
model. Using this method does not
change the Simulink model.

“Mark Signals of Interest for
Control System Analysis and
Design” on page 2-51

As a specific
block or
subsystem

You want to linearize a specific
block or subsystem without
defining analysis points for all the
block inputs and outputs. Using this
method does not change the
Simulink model.

“Linearize Plant” on page 2-44

See Also
linearize | linio | slLinearizer | slTuner

More About
• “Choose Linearization Tools” on page 2-9
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62

2 Linearization

2-20

Specify Portion of Model to Linearize in Simulink Model
To specify the portion of the model to linearize, you can define and save linear analysis
points directly in your Simulink model. Analysis points represent linearization inputs,
outputs, and loop openings for your model.

Alternatively, to specify analysis points without changing your model, you can define
analysis points:

• In the Linear Analysis Tool. For more information, see “Specify Portion of Model to
Linearize in Linear Analysis Tool” on page 2-29.

• At the command line. For more information, see “Specify Portion of Model to Linearize
at Command Line” on page 2-39.

Specify Analysis Points
To specify analysis points directly in your Simulink model:

1 Right-click the signal you want to define as an analysis point, and hover the cursor
over Linear Analysis Points.

 Specify Portion of Model to Linearize in Simulink Model

2-21

2 Under Linear Analysis Points, select the type of analysis point you want to define.

•
 Input Perturbation — Specifies an additive input to a signal.

2 Linearization

2-22

•
 Output Measurement — Takes a measurement at a signal.

•
 Loop Break — Specifies a loop opening.

•
 Open-Loop Input — Specifies a loop break followed by an input

perturbation.
•

 Open-Loop Output — Specifies an output measurement followed by a loop
break.

•
 Loop Transfer — Specifies an output measurement before a loop break

followed by an input perturbation.
•

 Sensitivity — Specifies an input perturbation followed by an output
measurement.

•
 Complementary Sensitivity — Specifies an output measurement followed by

an input perturbation.

For more information on the different types of analysis points, see “Specify Portion of
Model to Linearize” on page 2-13.

When you specify analysis points, the software adds annotations to your model
indicating the linear analysis point type.

3 Repeat steps 1 and 2 for all signals you want to define as analysis points.

For each linear analysis point that you specify, the software adds an annotation to your
model indicating the analysis point type.

Input Point Output Point

Loop
Opening

 Specify Portion of Model to Linearize in Simulink Model

2-23

Select Bus Elements as Analysis Points
This example shows how to select individual elements in a bus signal as analysis points.

1 Open Simulink model.

sys = 'scdbusselection';
open_system(sys)

2 Specify a bus signal as a linear analysis point.

In the Simulink model window, right-click a bus signal, such as the OUTPUTBUS
signal, and select Linear Analysis Points > Select Bus Element.

2 Linearization

2-24

In the Select Linearization Points in the Bus dialog box, in the Bus Hierarchy
section, expand the limits bus, and select upper_saturation_limit. limits is
a nested bus within the OUTPUTBUS signal.

Tip To filter bus elements by name within a large bus, you can enter search text in
the Filter by name box. The name match is case-sensitive. Also, you can enter a
MATLAB regular expression (MATLAB).

To modify the filtering options, click next to the Filter by name box.

 Specify Portion of Model to Linearize in Simulink Model

2-25

Filtering Options

You can specify the following options when filtering the list of bus signals.

• Regular expression — Use MATLAB regular expressions for filtering signal
names. For example, entering t$ displays all signals whose names end with a
lowercase t (and their immediate parents).

• Show filtered results as a flat list — Display the filtered signals in a flat list. By
default, filtered signals are displayed using a tree format. The flat list format uses
dot notation to reflect the hierarchy of bus signals.

To add the selected signal to the Linearization Inputs/Outputs section, click Add.
By default, the signal is configured as an Input Perturbation analysis point.

You can change the analysis point type using the Configuration drop-down list. For
example, to specify a linearization output point, select Output Measurement.

2 Linearization

2-26

3 To add additional analysis points from within the same bus signal, repeat step 2.

To remove an analysis point, select the signal in the Linearization Inputs/Outputs
section, and click Remove.

Once you have defined all of the required analysis points for that bus, click OK.
4 To specify analysis points for another bus signal, repeat steps 2 and 3.
5 To view linear analysis point indicators in the Simulink model, in the model window,

select Display > Signals & Ports > Linearization Indicators.

The software adds graphical annotations to the bus signals indicating the type of
analysis points specified. For example, if you specify a linearization input in the
COUNTERBUS signal and a linearization output in the OUTPUTBUS signal, the software
adds the corresponding annotations to the signals.

 Specify Portion of Model to Linearize in Simulink Model

2-27

You can specify different analysis point types for multiple elements in the same bus.
In this case, the software adds the annotation to the signal.

See Also

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62

2 Linearization

2-28

Specify Portion of Model to Linearize in Linear Analysis
Tool

To specify the portion of your Simulink model to linearize, you can define linear analysis
points using the Linear Analysis Tool. Analysis points represent linearization inputs,
outputs, and loop openings for your model. Using this method, you can specify multiple
sets of analysis points without changing your model.

Alternatively, you can define analysis points:

• Programmatically at the command line. For more information, see “Specify Portion of
Model to Linearize at Command Line” on page 2-39.

• Directly in your Simulink model. Use this method to save your analysis points in the
model. For more information, see “Specify Portion of Model to Linearize in Simulink
Model” on page 2-21.

Specify Analysis Points
In the Linear Analysis Tool, you specify analysis points using linearization I/O sets. You
can specify one or more linearization I/O sets, without introducing changes to the model.

To create a linearization I/O set:

1 On the Linear Analysis tab, in the Analysis I/Os drop-down list, select Create New
Linearization I/Os.

 Specify Portion of Model to Linearize in Linear Analysis Tool

2-29

1 In your Simulink model, select one or more signals that you want to define as analysis
points.

The selected signals appear in the Create linearization I/O set dialog box under
Currently selected signals.

2 Linearization

2-30

2 Under Currently selected signals, click the signal you want to add. To select
multiple signals, hold Ctrl and click each signal you want to add.

To add a signal from within a bus signal, expand the bus and select the signal. For
example, select the data signal within the COUNTERBUS signal.

3 To add the signal to list of Analysis I/Os, click Add.

 Specify Portion of Model to Linearize in Linear Analysis Tool

2-31

4 In the Configuration drop-down list for the signal, select the type of analysis point
you want to define:

•
 Input Perturbation — Specifies an additive input to a signal.

•
 Output Measurement — Takes a measurement at a signal.

•
 Loop Break — Specifies a loop opening.

•
 Open-Loop Input — Specifies a loop break followed by an input

perturbation.
•

 Open-Loop Output — Specifies an output measurement followed by a loop
break.

•
 Loop Transfer — Specifies an output measurement before a loop break

followed by an input perturbation.
•

 Sensitivity — Specifies an input perturbation followed by an output
measurement.

•
 Complementary Sensitivity — Specifies an output measurement followed by

an input perturbation.

For more information on the different types of analysis points, see “Specify Portion of
Model to Linearize” on page 2-13.

2 Linearization

2-32

5 Repeat steps 1–4 for any other signals you want to define as analysis points.

Tip To highlight the source block of an analysis point in the Simulink model, in the
Analysis I/Os list, select the analysis point, and click Highlight.

6 In the Variable name box, enter a name for the I/O set.
7 Click OK.

The software adds the linearization I/O set to the Linear Analysis Workspace.

The software also adds the linearization I/O set to the Analysis I/Os drop-down list and
automatically selects it.

 Specify Portion of Model to Linearize in Linear Analysis Tool

2-33

Edit Analysis Points
You can interactively edit a linearization I/O set stored in the Linear Analysis Tool using
the Edit dialog box. To open the Edit dialog box, in the Linear Analysis Workspace,
double-click the I/O set you want to edit.

Alternatively, you can open the Edit dialog box for the current selected linearization I/O
set in the Analysis I/Os drop-down list. To do so, in the drop-down list, under View/Edit,
click Edit.

In the Edit dialog box, you can add or remove analysis points, change the type for existing
analysis points, or enable or disable analysis points. Once you have finished editing the
I/O set, save your changes by closing the dialog box.

2 Linearization

2-34

Tip To highlight the location in the Simulink model of any signal in the current list of
analysis I/O points, select the I/O point in the list, and click Highlight.

Add Analysis Point to I/O Set

To add an analysis point to the linearization I/O set:

1 In your Simulink model, select one or more signals that you want to add to the
linearization I/O set.

The selected signals appear in the Edit dialog box under Currently selected
signals.

2 Under Currently selected signals, click the signal you want to add. To select
multiple signals, hold Ctrl, and click each signal you want to add.

3 To add the signal to list of Analysis I/Os, click Add.
4 In the Configuration drop-down list for the signal, select the type of analysis point

you want to define. For example, if you want the signal to be an open-loop
linearization output point, select Open-loop Output.

Remove Analysis Point from I/O Set

To remove an analysis point from the linearization I/O set, in the Analysis I/Os section,
click the signal you want to remove, and click Delete.

 Specify Portion of Model to Linearize in Linear Analysis Tool

2-35

Change Analysis Point Type

To change the linear analysis point type for a signal, in the Analysis I/Os section, in the
Configuration drop-down list for the signal, select the analysis point type. For example,
if you want the signal to be a linearization output point, select Output Measurement.

Enable or Disable Analysis Points

To modify an existing linearization I/O set without removing analysis points, you can
disable one or more analysis points. To do so, in the Analysis I/Os section, under Active,
clear the corresponding check box.

When you linearize your model using the linearization I/O set, the software ignores any
disabled analysis points.

To enable a disabled analysis point, select the corresponding check box.

Edit Simulink Model Analysis Points
You can modify analysis points stored in your Simulink model using the Linear Analysis
Tool. To do so, on the Linear Analysis tab, in the Analysis I/Os drop-down list, select
Model I/Os, and then, in same drop-down list, select Edit Model I/Os.

2 Linearization

2-36

In the Edit model I/Os dialog box, you can:

• Change the type for an analysis point using the corresponding Configuration drop-
down list.

• Delete an analysis point from the model. To do so, click the signal you want to remove,
and click Delete.

• Enable or disable an analysis point using the corresponding Active check box. When
you disable an analysis point, in the Simulink model, the software removes the
annotation from the corresponding signal.

Note If you close the Linear Analysis Tool, any analysis points that you disabled in this
manner are deleted from the Simulink model. To keep the analysis points in the model,
reenable them before closing the Linear Analysis Tool.

For information on adding analysis points to the model, see “Specify Portion of Model to
Linearize in Simulink Model” on page 2-21.

 Specify Portion of Model to Linearize in Linear Analysis Tool

2-37

See Also
Linear Analysis Tool

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62

2 Linearization

2-38

Specify Portion of Model to Linearize at Command Line
To specify the portion of your Simulink model to linearize, you can define linear analysis
points at the command line using the linio, setlinio, and getlinio functions.
Analysis points represent linearization inputs, outputs, and loop openings for your model.
Using this method, you can specify multiple sets of analysis points without changing your
model.

Alternatively, you can define analysis points:

• In the Linear Analysis Tool. For more information, see “Specify Portion of Model to
Linearize in Linear Analysis Tool” on page 2-29.

• Directly in your Simulink model. Use this method to save your analysis points in the
model. For more information, see “Specify Portion of Model to Linearize in Simulink
Model” on page 2-21.

Specify Analysis Points
To specify analysis points at the command line, create linearization I/O objects using the
linio function. To create an analysis point at the output port of a block in your model,
use the following syntax:

io = linio(block,port,type);

where

• block is the full block path of the block, specified as a character vector.
• port is the output port number.
• type is the analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity

 Specify Portion of Model to Linearize at Command Line

2-39

• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to Linearize”
on page 2-13.

After creating an analysis point, you can change its type using dot notation. For example,
to change an analysis point to be an open-loop output, use:

io.Type = 'openoutput';

You can also specify analysis points on bus elements in your model. For an example, see
linio.

To specify multiple analysis points, create a vector of linearization I/O objects. For
example, create a set of analysis points that includes an input perturbation, an output
measurement, and a loop opening.

io(1) = linio(block1,port1,'input');
io(2) = linio(block2,port2,'output');
io(3) = linio(block3,port3,'loopbreak');

To linearize your model using the specified analysis points, use the linearize function.

Save Analysis Points in Simulink Model
You can save your specified analysis points in your Simulink model using the setlinio
function.

setlinio(mdl,io);

Here, mdl is a character vector specifying the name of a model in the current working
folder or on the MATLAB path, and io is a vector of linearization I/O objects.

The analysis points in io overwrite any existing analysis points saved in the model.

Alternatively, you can specify analysis points directly in your model. For more information,
see “Specify Portion of Model to Linearize in Simulink Model” on page 2-21.

Obtain Analysis Points from Simulink Model
To linearize your model with the linearize function using the analysis points saved in
the model, you must first extract the analysis points using the getlinio function.

2 Linearization

2-40

io = getlinio(mdl);

Here, mdl is a character vector specifying the name of a model in the current working
folder or on the MATLAB path.

See Also
getlinio | linearize | linio | setlinio

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62

 See Also

2-41

How the Software Treats Loop Openings
Simulink Control Design software linearizes models using a block-by-block approach. The
software individually linearizes each block in your Simulink model and produces the
linearization of the overall system by combining the individual block linearizations. For
more information, see “Exact Linearization Algorithm” on page 2-209.

To obtain an open-loop transfer function from a model, you specify a loop opening. Loop
openings affect only how the software recombines the individual linearized blocks. In
other words, the software ignores loop openings when determining the input signal levels
for each block, which affects how nonlinear blocks are linearized.

For example, in the following model, to compute the response from e2 to y2 without the
effects of the outer loop, you open the outer loop by placing a loop opening analysis point
at y1.

+

-
 k2

e2 u2 y2

g2 g1
+

-
e1r

 k1
y1

Here, k1, k2, g1, and g2 are nonlinear blocks.

The software linearizes each individual block at the specified operating point, creating the
linearized blocks K1, K2, G1, and G2. At this stage, the software does not break the signal
flow at y1. Therefore, the block linearizations include the effects of the inner-loop and
outer-loop feedback signals.

To compute the transfer function from e2 to y2, the software enforces the loop opening at
y1, injects an input signal at e2, and measures the output at y2.

2 Linearization

2-42

+

-
K2

e2 u2

G2 G1
+

-
e1r

 K1
y1

de2

+

 y2

Here, K1, K2, G1, and G2 are the linearized blocks.

The resulting linearized transfer function is (I+G2K2)-1G2K2.

See Also
addOpening | getCompSensitivity | getIOTransfer | getLoopTransfer |
getSensitivity | linearize

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “Mark Signals of Interest for Batch Linearization” on page 3-13
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-51
• “Compute Open-Loop Response” on page 2-62

 See Also

2-43

Linearize Plant
You can linearize a block or subsystem in your Simulink model without defining separate
analysis points for the block inputs and outputs. The software isolates the selected block
from the rest of the model and computes a linear model of the block from the block inputs
to the block outputs.

Linearizing a block in this way is equivalent to specifying open-loop input and open-loop
output analysis points at the block inputs and outputs, respectively. For more information
on specifying analysis points in your model, see “Specify Portion of Model to Linearize” on
page 2-13.

Linearize Plant Using Linear Analysis Tool
This example shows how to linearize a plant subsystem in a Simulink model using the
Linear Analysis Tool.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

For this system, the Water-Tank System block contains all the nonlinear dynamics. To
linearize this system, open the Linear Analysis Tool, and select the block as a linearization
I/O set.

To open the Linear Analysis Tool, in the Simulink model window, right-click the Water-
Tank System block, and select Linear Analysis > Linearize Block.

2 Linearization

2-44

In the Linear Analysis Tool, on the Linear Analysis tab, in the Analysis I/Os drop-down
list, the software sets the I/O set for linearization to Block: Water-Tank System.

Alternatively, if the Linear Analysis Tool is already open for your system, in the Simulink
model window, click the Water-Tank System block. Then, in the Linear Analysis Tool, in
the Analysis I/Os drop-down list, select Linearize the Currently Selected
Block.

Tip When the specified linearization I/O set is a block, you can highlight the block in the
model by selecting the view option from the Analysis I/Os drop-down list. For example,
to highlight the Water-Tank System block, select View Water-Tank System.

For this example, use the model operating point for linearization. The model operating
point consists of the initial state values and input signals stored in the model. In the
Linear Analysis Tool, on the Linear Analysis tab, in the Operating Point drop-down list,
leave Model Initial Condition selected. For information on linearizing models at
different operating points, see “Linearize at Trimmed Operating Point” on page 2-88 and
“Linearize at Simulation Snapshot” on page 2-94.

To linearize the specified block and generate a Bode plot for the resulting linear model,

click Bode.

The software adds the linearized model, linsys1, to the Linear Analysis Workspace
and generates a Bode plot for the model.

 Linearize Plant

2-45

For more information on analyzing linear models, see “Analyze Results Using Linear
Analysis Tool Response Plots” on page 2-149.

You can also export the linearized model to the MATLAB workspace. To do so, in the Data
Browser, drag linsys1 from the Linear Analysis Workspace to the MATLAB
Workspace.

2 Linearization

2-46

Linearize Plant at Command Line
This example shows how to linearize a plant subsystem in a Simulink® model using the
linearize command.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

 Linearize Plant

2-47

For this system, the Water-Tank System block contains all the nonlinear dynamics. To
linearize this subsystem, first specify its block path.

blockpath = 'watertank/Water-Tank System';

Then, linearize the plant subsystem at the model operating point.

linsys1 = linearize(mdl,blockpath);

The model operating point consists of the initial state values and input signals stored in
the model. For information on linearizing models at different operating points, see
“Linearize at Trimmed Operating Point” on page 2-88 and “Linearize at Simulation
Snapshot” on page 2-94.

You can then analyze the response of the linearized model. For example, plot its Bode
response.

bode(linsys1)

2 Linearization

2-48

For more information on analyzing linear models, see “Linear Analysis” (Control System
Toolbox).

See Also
Linear Analysis Tool | linearize

More About
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Compute Open-Loop Response” on page 2-62

 See Also

2-49

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80

2 Linearization

2-50

Mark Signals of Interest for Control System Analysis and
Design

Analysis Points
Whether you model your control system in MATLAB or Simulink, use analysis points to
mark points of interest in the model. Analysis points allow you to access internal signals,
perform open-loop analysis, or specify requirements for controller tuning. In the block
diagram representation, an analysis point can be thought of as an access port to a signal
flowing from one block to another. In Simulink, analysis points are attached to the
outports of Simulink blocks. For example, in the following model, the reference signal, r,
and the control signal, u, are analysis points that originate from the outputs of the
setpoint and C blocks respectively.

Each analysis point can serve one or more of the following purposes:

• Input — The software injects an additive input signal at an analysis point, for
example, to model a disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the
impact of a disturbance on the plant output.

• Loop Opening — The software inserts a break in the signal flow at a point, for
example, to study the open-loop response at the plant input.

You can apply these purposes concurrently. For example, to compute the open-loop
response from u to y, you can treat u as both a loop opening and an input. When you use
an analysis point for more than one purpose, the software applies the purposes in this
sequence: output measurement, then loop opening, then input.

 Mark Signals of Interest for Control System Analysis and Design

2-51

Using analysis points, you can extract open-loop and closed-loop responses from a control
system model. For example, suppose T represents the closed-loop system in the model
above, and u and y are marked as analysis points. T can be either a generalized state-
space model or an slLinearizer or slTuner interface to a Simulink model. You can
plot the closed-loop response to a step disturbance at the plant input with the following
commands:

Tuy = getIOTransfer(T,'u','y');
stepplot(Tuy)

Analysis points are also useful to specify design requirements when tuning control
systems with the systune command. For example, you can create a requirement that
attenuates disturbances at the plant input by a factor of 10 (20 dB) or more.

Req = TuningGoal.Rejection('u',10);

Specify Analysis Points for MATLAB Models
Consider an LTI model of the following block diagram.

2 Linearization

2-52

G = tf(10,[1 3 10]);
C = pid(0.2,1.5);
T = feedback(G*C,1);

With this model, you can obtain the closed-loop response from r to y. However, you
cannot analyze the open-loop response at the plant input or simulate the rejection of a
step disturbance at the plant input. To enable such analysis, mark the signal u as an
analysis point by inserting an AnalysisPoint block between the plant and controller.

AP = AnalysisPoint('u');
T = feedback(G*AP*C,1);
T.OutputName = 'y';

The plant input, u, is now available for analysis.

In creating the model T, you manually created the analysis point block AP and explicitly
included it in the feedback loop. When you combine models using the connect command,
you can instruct the software to insert analysis points automatically at the locations you
specify. For more information, see connect.

Specify Analysis Points for Simulink Models
In Simulink, you can mark analysis points either explicitly in the block diagram, or
programmatically using the addPoint command for slLinearizer or slTuner
interfaces.

To mark an analysis point explicitly in the model, right-click a signal and, under Linear
Analysis Points, select an analysis point type.

 Mark Signals of Interest for Control System Analysis and Design

2-53

You can select any of the following closed-loop analysis point types, which are equivalent
within an slLinearizer or slTuner interface; that is, they are treated the same way by
analysis functions, such as getIOTransfer, and tuning goals, such as
TuningGoal.StepTracking.

2 Linearization

2-54

• Input Perturbation
• Output Measurement
• Sensitivity
• Complementary Sensitivity

If you want to introduce a permanent loop opening at a signal as well, select one of the
following open-loop analysis point types:

• Open-Loop Input
• Open-Loop Output
• Loop Transfer
• Loop Break

When you define a signal as an open-loop point, analysis functions such as
getIOTransfer always enforce a loop break at that signal during linearization. All open-
loop analysis point types are equivalent within an slLinearizer or slTuner interface.
For more information on how the software treats loop openings during linearization, see
“How the Software Treats Loop Openings” on page 2-42.

When you create an slLinearizer or slTuner interface for a model, any analysis
points defined in the model are automatically added to the interface. If you defined an
analysis point using:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent

opening.

To mark analysis points programmatically, use the addPoint command. For example,
consider the scdcascade model.

open_system('scdcascade')

 Mark Signals of Interest for Control System Analysis and Design

2-55

To mark analysis points, first create an slTuner interface.

ST = slTuner('scdcascade');

To add a signal as an analysis point, use the addPoint command, specifying the source
block and port number for the signal.

addPoint(ST,'scdcascade/C1',1);

If the source block has a single output port, you can omit the port number.

addPoint(ST,'scdcascade/G2');

For convenience, you can also mark analysis points using the:

• Name of the signal.

addPoint(ST,'y2');

• Combined source block path and port number.

addPoint(ST,'scdcascade/C1/1')

• End of the full source block path when unambiguous.

addPoint(ST,'G1/1')

You can also add permanent openings to an slLinearizer or slTuner interface using
the addOpening command, and specifying signals in the same way as for addPoint. For

2 Linearization

2-56

more information on how the software treats loop openings during linearization, see
“How the Software Treats Loop Openings” on page 2-42.

addOpening(ST,'y1m');

You can also define analysis points by creating linearization I/O objects using the linio
command.

io(1) = linio('scdcascade/C1',1,'input');
io(2) = linio('scdcascade/G1',1,'output');
addPoint(ST,io);

As when you define analysis points directly in your model, if you specify a linearization I/O
object with:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent

opening.

When you specify response I/Os in a tool such as Linear Analysis Tool or Control System
Tuner, the software creates analysis points as needed.

Refer to Analysis Points for Analysis and Tuning
Once you have marked analysis points, you can analyze the response at any of these
points using the following analysis functions:

• getIOTransfer — Transfer function for specified inputs and outputs
• getLoopTransfer — Open-loop transfer function from an additive input at a
specified point to a measurement at the same point

• getSensitivity — Sensitivity function at a specified point
• getCompSensitivity — Complementary sensitivity function at a specified point

You can also create tuning goals that constrain the system response at these points. The
tools to perform these operations operate in a similar manner for models created at the
command line and models created in Simulink.

To view the available analysis points, use the getPoints function. You can view the
analysis for models created:

 Mark Signals of Interest for Control System Analysis and Design

2-57

• At the command line:
• In Simulink:

For closed-loop models created at the command line, you can also use the model input
and output names when:

• Computing a closed-loop response.

ioSys = getIOTransfer(T,'u','y');
stepplot(ioSys)

• Computing an open-loop response.

loopSys = getLoopTransfer(T,'u',-1);
bodeplot(loopSys)

2 Linearization

2-58

• Creating tuning goals for systune.

R = TuningGoal.Margins('u',10,60);

Use the same method to refer to analysis points for models created in Simulink. In
Simulink models, for convenience, you can use any unambiguous abbreviation of the
analysis point names returned by getPoints.

ioSys = getIOTransfer(ST,'u1','y1');
sensG2 = getSensitivity(ST,'G2');
R = TuningGoal.Margins('u1',10,60);

Finally, if some analysis points are vector-valued signals or multichannel locations, you
can use indices to select particular entries or channels. For example, suppose u is a two-
entry vector in a closed-loop MIMO model.

 Mark Signals of Interest for Control System Analysis and Design

2-59

G = ss([-1 0.2;0 -2],[1 0;0.3 1],eye(2),0);
C = pid(0.2,0.5);
AP = AnalysisPoint('u',2);
T = feedback(G*AP*C,eye(2));
T.OutputName = 'y';

You can compute the open-loop response of the second channel and measure the impact
of a disturbance on the first channel.

L = getLoopTransfer(T,'u(2)',-1);
stepplot(getIOTransfer(T,'u(1)','y'))

When you create tuning goals in Control System Tuner, the software creates analysis
points as needed.

2 Linearization

2-60

See Also
addPoint | getIOTransfer | getPoints | slLinearizer

 See Also

2-61

Compute Open-Loop Response
The open-loop response of a control system is the combined response of the plant and the
controller, excluding the effect of the feedback loop. For example, the following block
diagram shows a single-loop control system.

If the controller, C(s), and plant, P(s), are linear, the corresponding open-loop transfer
function is C(s)P(s).

To remove the effects of the feedback loop, insert a loop opening analysis point without
manually breaking the signal line. Manually removing the feedback signal from a
nonlinear model changes the model operating point and produces a different linearized
model. For more information, see “How the Software Treats Loop Openings” on page 2-
42.

If you do not insert a loop opening, the resulting linear model includes the effects of the
feedback loop.

To specify the loop opening for this example, you can use either of the following analysis
points.

2 Linearization

2-62

Analysis
Point

Description To compute C(s)P(s)

 Open-
loop input

Specifies a loop
opening followed by
an input
perturbation.

Specify an open-loop input at the input to the
controller and an output measurement at the output
of the plant.

 Open-
loop output

Specifies an output
measurement
followed by a loop
break.

Specify an open-loop output at the output of the plant
and an input perturbation at the input of the
controller.

For some systems, you cannot specify the loop opening at the same location as the
linearization input or output point. For example, to open the outer loop in the following
system, a loop opening point is added to the feedback path using a loop break analysis

point . As a result, only the blue blocks are on the linearization path.

 Compute Open-Loop Response

2-63

Placing the loop opening at the same location as the input or output signal would also
remove the effect of the inner loop from the linearization result.

You can specify analysis points directly in your Simulink model, in the Linear Analysis
Tool, or at the command line. For more information, about the different types of analysis
points and how to define them, see “Specify Portion of Model to Linearize” on page 2-13.

Compute Open-Loop Response Using Linear Analysis Tool
This example shows how to compute a linear model of the combined controller-plant
system without the effects of the feedback signal. You can analyze the resulting linear
model using, for example, a Bode plot.

Open Simulink model.

sys = 'watertank';
open_system(sys)

2 Linearization

2-64

The Water-Tank System block represents the plant in this control system and contains all
of the system nonlinearities.

In the Simulink Editor, specify the portion of the model to linearize. For this example,
specify the loop opening using open-loop output analysis point.

1 Right-click the PID Controller block input signal (the output of the Sum block), and
select Linear Analysis Points > Input Perturbation.

2 Right-click the Water-Tank System output signal, and select Linear Analysis Points
> Open-loop Output.

Annotations appear in the model indicating which signals are designated as analysis
points.

Tip If you do not want to introduce changes to the Simulink model, you can specify the
analysis points in the Linear Analysis Tool. For more information, see “Specify Portion of
Model to Linearize in Linear Analysis Tool” on page 2-29.

Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

By default, the analysis points you specified in the model are selected for linearization, as
displayed in the Analysis I/Os drop-down list.

 Compute Open-Loop Response

2-65

To linearize the model using the specified analysis points and generate a Bode plot of the

linearized model, click Bode.

By default, the Linear Analysis Tool linearizes the model at the model initial conditions, as
shown in the Operating Point drop-down list. For examples of linearizing a model at a
different operating point, see “Linearize at Trimmed Operating Point” on page 2-88 and
“Linearize at Simulation Snapshot” on page 2-94.

Tip To generate response types other than a Bode plot, click the corresponding button in
the plot gallery.

To view the minimum stability margins for the model, right-click the Bode plot, and select
Characteristics > Minimum Stability Margins.

2 Linearization

2-66

The Bode plot displays the phase margin marker. To show a data tip that contains the
phase margin value, click the marker.

 Compute Open-Loop Response

2-67

For this system, the phase margin is 90 degrees at a crossover frequency of 0.4 rad/s.

Compute Open-Loop Response at the Command Line
This example shows how to compute a linear model of the combined controller-plant
system without the effects of the feedback signal. You can analyze the resulting linear
model using, for example, a Bode plot.

Open Simulink model.

sys = 'watertank';
open_system(sys)

2 Linearization

2-68

Specify the portion of the model to linearize by creating an array of analysis points using
the linio command:

• Open-loop input point at the input of the PID Controller block. This signal originates at
the output of the Sum1 block.

• Output measurement at the output of the Water-Tank System block.

io(1) = linio('watertank/Sum1',1,'openinput');
io(2) = linio('watertank/Water-Tank System',1,'output');

The open-loop input analysis point includes a loop opening, which breaks the signal flow
and removes the effects of the feedback loop.

Linearize the model at the default model operating point using the linearize command.

linsys = linearize(sys,io);

linsys is the linearized open-loop transfer function of the system. You can now analyze
the response by, for example, plotting its frequency response and viewing the gain and
phase margins.

margin(linsys)

 Compute Open-Loop Response

2-69

For this system, the gain margin is infinite, and the phase margin is 90 degrees at a
crossover frequency of 0.4 rad/s.

See Also
Linear Analysis Tool | linearize

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “How the Software Treats Loop Openings” on page 2-42

2 Linearization

2-70

• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Linearize Plant” on page 2-44
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80

 See Also

2-71

Linearize Simulink Model at Model Operating Point
If you do not specify an operating point when linearizing a Simulink model, the software
uses the operating point specified in the model by default. The model operating point
consists of the initial state and input signal values stored in the model.

For information on linearizing models at different operating points, see “Linearize at
Trimmed Operating Point” on page 2-88 and “Linearize at Simulation Snapshot” on page
2-94.

Linearize Simulink Model Using Linear Analysis Tool
This example shows how to linearize a Simulink model at the operating point specified in
the model using the Linear Analysis Tool.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

The Water-Tank System block represents the plant in this control system and includes all
of the system nonlinearities.

In the Simulink window, specify the portion of the model to linearize:

1 To specify the linearization input, right-click the output signal of the PID Controller

block, and select Linear Analysis Points > Input Perturbation.

2 Linearization

2-72

2 To specify the linearization output, right-click the output signal of the Water-Tank

System, and select Linear Analysis Points > Open-loop Output. An open-loop
output point is an output measurement followed by a loop opening, which removes
the effects of the feedback signal on the linearization without changing the model
operating point.

When you add linear analysis points, the software adds markers at their respective
locations in the model. For more information on the different types of analysis points, see
“Specify Portion of Model to Linearize” on page 2-13.

For more information on defining analysis points in a Simulink model, see “Specify
Portion of Model to Linearize in Simulink Model” on page 2-21. Alternatively, if you do not
want to introduce changes to the Simulink model, you can define analysis points using the
Linear Analysis Tool. For more information, see “Specify Portion of Model to Linearize in
Linear Analysis Tool” on page 2-29.

To open the Linear Analysis Tool for the model, in the Simulink model window, select
Analysis > Control Design > Linear Analysis.

 Linearize Simulink Model at Model Operating Point

2-73

To use the analysis points you defined in the Simulink model as linearization I/Os, on the
Linear Analysis tab, in the Analysis I/Os drop-down list, leave Model I/Os selected.

For this example, use the model operating point for linearization. In the Operating Point
drop-down list, leave Model Initial Condition selected.

To linearize the system and generate a response plot for analysis, in the Linearize
section, click a response. For this example, to generate a Bode plot for the resulting linear

model, click Bode.

2 Linearization

2-74

The software adds the linearized model, linsys1, to the Linear Analysis Workspace
and generates a Bode plot for the model. linsys1 is the linear model from the specified
input to the specified output, computed at the default model operating point.

For more information on analyzing linear models, see “Analyze Results Using Linear
Analysis Tool Response Plots” on page 2-149.

You can also export the linearized model to the MATLAB workspace. To do so, in the Data
Browser, drag linsys1 from the Linear Analysis Workspace to the MATLAB
Workspace.

 Linearize Simulink Model at Model Operating Point

2-75

Linearize Simulink Model at Command Line
This example shows how to linearize a Simulink® model at the model operating point
using the linearize command.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

2 Linearization

2-76

For this system, the Water-Tank System block contains all the nonlinear dynamics. To
specify the portion of the model to linearize, create an array of linearization I/O objects
using the linio command.

Create an input perturbation analysis point at the output of the PID Controller block.

io(1) = linio('watertank/PID Controller',1,'input');

Create an open-loop output analysis point at the output of the Water-Tank System block.
An open-loop output point is an output measurement followed by a loop opening, which
removes the effects of the feedback signal on the linearization without changing the
model operating point.

io(2) = linio('watertank/Water-Tank System',1,'openoutput');

For information on the different types of analysis points, see “Specify Portion of Model to
Linearize” on page 2-13.

Linearize the model at the model operating point using the specified analysis points.

linsys1 = linearize(mdl,io);

linsys1 is the linear model from the specified input to the specified output, computed at
the default model operating point.

You can then analyze the response of the linearized model. For example, plot its Bode
response.

bode(linsys1)

 Linearize Simulink Model at Model Operating Point

2-77

For more information on analyzing linear models, see “Linear Analysis” (Control System
Toolbox).

See Also
Linear Analysis Tool | linearize

More About
• “Linearize at Trimmed Operating Point” on page 2-88
• “Linearize at Simulation Snapshot” on page 2-94

2 Linearization

2-78

• “Linearize at Triggered Simulation Events” on page 2-98
• “Linearize Plant” on page 2-44
• “Compute Open-Loop Response” on page 2-62
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80

 See Also

2-79

Visualize Bode Response of Simulink Model During
Simulation

This example shows how to visualize linear system characteristics of a nonlinear Simulink
model during simulation, computed at the model operating point (simulation snapshot
time of 0).

1 Open Simulink model.

For example:

open_system('watertank')
2 Open the Simulink Library Browser by selecting View > Library Browser in the

model window.
3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.

b Drag and drop a block, such as the Bode Plot block, into the model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

2 Linearization

2-80

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

 Visualize Bode Response of Simulink Model During Simulation

2-81

Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click at any time to update the Linearization inputs/
outputs table with I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

ii In the Simulink model, click the output signal of the PID Controller block
to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

2 Linearization

2-82

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

ii
Click to add the signal to the Linearization inputs/outputs table.

 Visualize Bode Response of Simulink Model During Simulation

2-83

iii In the Configuration drop-down list of the Linearization inputs/outputs
table, select Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the
signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization I/O
annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option, and specify a variable name in the

Variable name field.

The Logging tab now resembles the following figure.

2 Linearization

2-84

7 Click Show Plot to open an empty plot.

8
Plot the linear system characteristics by clicking in the plot window.

Alternatively, you can simulate the model from the model window.

 Visualize Bode Response of Simulink Model During Simulation

2-85

The software linearizes the portion of the model between the linearization input and
output at the default simulation time of 0, specified in Snapshot times parameter in
the Block Parameters dialog box, and plots the Bode magnitude and phase.

After the simulation completes, the plot window resembles the following figure.

The computed linear system is saved as sys in the MATLAB workspace. sys is a structure
with time and values fields. To view the structure, type:

sys

This command returns the following results:

sys =

 time: 0
 values: [1x1 ss]
 blockName: 'watertank/Bode Plot'

• The time field contains the default simulation time at which the linear system is
computed.

2 Linearization

2-86

• The values field is a state-space object which stores the linear system computed at
simulation time of 0. To learn more about the properties of state-space objects, see ss
in the Control System Toolbox documentation.

(If the Simulink model is configured to save simulation output as a single object, the data
structure sys is a field in the Simulink.SimulationOutput object that contains the
logged simulation data. For more information about data logging in Simulink, see “Export
Simulation Data” (Simulink) and the Simulink.SimulationOutput reference page.)

See Also
Bode Plot

More About
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124
• “Visualize Linear System of a Continuous-Time Model Discretized During

Simulation” on page 2-120

 See Also

2-87

Linearize at Trimmed Operating Point
This example shows how to linearize a model at a trimmed steady-state operating point
(equilibrium operating point) using the Linear Analysis Tool.

The operating point is trimmed by specifying constraints on the operating point values,
and performing an optimization search that meets these state and input value
specifications.

Code Alternative

Use linearize. For examples and additional information, see the linearize reference
page.

1 Open the Simulink model.

sys = 'magball';
open_system(sys)

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 In the Simulink model window, define the portion of the model to linearize for this
linearization task:

a Right-click the Controller block output signal (input signal to the plant). Select
Linear Analysis Points > Input Perturbation.

b Right-click the Magnetic Ball Plant output signal, and select Linear Analysis
Points > Open-loop Output.

2 Linearization

2-88

Annotations appear in the model indicating which signals are designated as analysis
points.

Tip Alternatively, if you do not want to introduce changes to the Simulink model, you
can specify the analysis points in the Linear Analysis Tool. For more information, see
“Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-29.

4 Create a new steady-state operating point at which to linearize the model. In the
Linear Analysis Tool, in the Operating Point drop-down list, select Trim model.

In the Trim the model dialog box, the Specifications tab shows the default
specifications for model trimming. By default, all model states are specified to be at
equilibrium, indicated by the check marks in the Steady State column.

 Linearize at Trimmed Operating Point

2-89

5 Specify a steady-state operating point at which the magnetic ball height remains
fixed at the reference signal value, 0.05. In the States tab, select Known for the
height state. This selection tells Linear Analysis Tool to find an operating point at
which this state value is fixed.

6 Since the ball height is greater than zero, the current must also be greater than zero.
Enter 0 for the minimum bound of the Current block state.

2 Linearization

2-90

7 Compute the operating point.

Click Start trimming.

A new variable, op_trim1, appears in the Linear Analysis Workspace.

In the Operating Point drop-down list, this operating point is now selected as the
operating point to be used for linearization.

 Linearize at Trimmed Operating Point

2-91

8 Linearize the model at the specified operating point and generate a bode plot of the

result. Click Bode. The Bode plot of the linearized plant appears, and the
linearized plant linsys1 appears in the Linear Analysis Workspace.

Tip Instead of a Bode plot, generate other response types by clicking the
corresponding button in the plot gallery.

2 Linearization

2-92

Right-click on the plot and select information from the Characteristics menu to
examine characteristics of the linearized response.

See Also

More About
• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28

 See Also

2-93

Linearize at Simulation Snapshot
This example shows how to use the Linear Analysis Tool to linearize a model by simulating
the model and extracting the state and input levels of the system at specified simulation
times.

Code Alternative

Use linearize. For examples and additional information, see the linearize reference
page.

1 Open the Simulink model.

sys = 'watertank';
open_system(sys)

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 In the Simulink model window, define the portion of the model to linearize:

• Right-click the PID Controller block output signal (input signal to the plant
model). Select Linear Analysis Points > Input Perturbation.

• Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Open-loop Output.

4 Create a new simulation-snapshot operating point at which to linearize the model. In
the Linear Analysis Tool, in the Operating Point drop-down list, select Take
simulation snapshot.

2 Linearization

2-94

5 In the Enter snapshot times to linearize dialog box, in the Simulation Snapshot
Times field, enter one or more snapshot times at which to linearize. For this
example, enter 10 to extract the operating point at this simulation time.

Tip To linearize the model at several operating points, specify a vector of simulation
times in the Simulation Snapshot Times field. For example, entering [1 10]
results in an array of two linear models, one linearized at t = 1 and the other at t =
10.

6
Generate the simulation-snapshot operating point. Click Take Snapshots.

The operating point op_snapshot1 appears in the Linear Analysis Workspace. In the
Operating Point drop-down list, this operating point is now selected as the
operating point to be used for linearization.

7 Linearize the model at the specified operating point and generate a bode plot of the
result.

Click Bode. The Bode plot of the linearized plant appears, and the
linearized plant linsys1 appears in the Linear Analysis Workspace.

 Linearize at Simulation Snapshot

2-95

8 Double click linsys1 in the Linear Analysis Workspace to see the state space
representation of the linear model. Right-click on the plot and select information from
the Characteristics menu to examine characteristics of the linearized response.

9 Close Simulink model.

bdclose(sys);

2 Linearization

2-96

See Also

More About
• “Linearize at Triggered Simulation Events” on page 2-98
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During

Simulation” on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124

 See Also

2-97

Linearize at Triggered Simulation Events
This example shows how to use the Linear Analysis Tool to linearize a model at specific
events in time. Linearization events can be trigger-based events or function-call events.
Specifically, the model is linearized at the steady-state operating points 2500, 3000, and
3500 rpm.

1 Open Simulink model.

sys = 'scdspeedtrigger';
open_system(sys)

To help identify when the system is at steady state, the Generate settling time events
block generates settling events. This block sends rising edge trigger signals to the
Operating Point Snapshot block when the engine speed settles near 2500, 3000, and
3500 rpm for a minimum of five seconds.

2 Linearization

2-98

The model already includes a Trigger-Based Operating Point Snapshot block from the
Simulink Control Design library. This block linearizes the model when it receives
rising edge trigger signals from the Generate settling time events block.

2 Compute the steady-state operating point at 60 time units.

op = findop(sys,60);

This command simulates the model for 60 time units, and extracts the operating
points at each simulation event that occurs during this time interval.

3 Define the portion of the model to linearize.

io(1) = linio('scdspeedtrigger/Reference Steps',1,'input');
io(2) = linio('scdspeedtrigger/rad//s to rpm',1,'output');

4 Linearize the model.

linsys = linearize(sys,op(1:3),io);

 Linearize at Triggered Simulation Events

2-99

5 Compare linearized models at 2500, 3000, and 3500 rpm using Bode plots of the
closed-loop transfer functions.

bode(linsys);

See Also
Functions
findop

Blocks
Trigger-Based Operating Point Snapshot

More About
• “Linearize at Simulation Snapshot” on page 2-94
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113

2 Linearization

2-100

• “Visualize Linear System of a Continuous-Time Model Discretized During
Simulation” on page 2-120

• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124

 See Also

2-101

Linearization of Models with Delays
This example shows how to linearize a Simulink model with delays in it.

Linearization of Models with Continuous Delays

You can linearize a Simulink model with continuous time delays blocks such as the
Transport Delay, Variable Transport Delay, and Variable Time Delay using one of the
following options:

• Use a Pade approximations of the delays to get a rational linear system through
linearizations.

• Compute a linearization where the delay is exactly represented. Use this option when
you need accurate simulation and frequency responses from a linearized model and
when assessing the accuracy of Pade approximation.

By default, Simulink Control Design uses Pade approximations of the delay blocks in a
Simulink model.

To open the engine speed model used in this example, type

model = 'scdspeed';
open_system(model);

The engine speed model contains a Variable Transport Delay block named dM/dt in the
subsystem Induction to Power Stroke Delay. For convenience you can store the path to the
block in a MATLAB variable by typing

2 Linearization

2-102

DelayBlock = 'scdspeed/Induction to Power Stroke Delay/dM//dt delay';

To compute a linearization using a first order approximation, use one of the following
techniques to set the order of the Pade approximation to 1:

• In the Variable Transport Delay block dialog box, enter 1 in the Pade Order (for
linearization) field.

• At the command line, enter the following command:

set_param(DelayBlock,'PadeOrder','1');

Next, specify the linearization I/O to throttle angle as the input and engine speed as the
output by running:

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');

Compute the linearization using the following linearize command:

sys_1st_order_approx = linearize(model,io);

You can compute a linearization using a second order approximation by setting the Pade
order to 2:

set_param(DelayBlock,'PadeOrder','2');
sys_2nd_order_approx = linearize(model,io);

To compute a linear model with the exact delay representation, set the
'UseExactDelayModel' property in the linoptions object to on:

opt = linearizeOptions;
opt.UseExactDelayModel = 'on';

Linearize the model using the following linearize command:

sys_exact = linearize(model,io,opt);

Compare the Bode response of the Pade approximation model and the exact linearization
model by running:

p = bodeoptions('cstprefs');
p.Grid = 'on';
p.PhaseMatching = 'on';
p.XLimMode = {'Manual'};

 Linearization of Models with Delays

2-103

p.XLim = {[0.1 1000]};
f = figure;
bode(sys_1st_order_approx,sys_2nd_order_approx,sys_exact,p);
h = legend('sys_1st_order_approx','sys_2nd_order_approx','sys_exact',...
 'Location','SouthWest');
h.Interpreter = 'none';

In the case of a first order approximation, the phase begins to diverge around 50 rad/s
and diverges around 100 rad/s.

Close the Simulink model.

bdclose(model)

2 Linearization

2-104

Linearization of Models with Discrete Delays

When linearizing a model with discrete delay blocks, such as (Integer) Delay and Unit
Delay blocks use the exact delay option to account for the delays without adding states to
the model dynamics. Explicitly accounting for these delays improves your simulation
performance for systems with many discrete delays because your fewer states in your
model.

To open the Simulink model of a discrete system with a Delay block with 20 delay state
used for this example, run the following.

model = 'scdintegerdelay';
open_system(model);

By default the linearization includes all of the states folded into the linear model. Set the
linearization I/Os and linearize the model as follows:

io(1) = linio('scdintegerdelay/Step',1,'input');
io(2) = linio('scdintegerdelay/Discrete Filter',1,'output');
sys_default = linearize(model,io);

 Linearization of Models with Delays

2-105

Integrate the resulting model to see that it has 21 states (1 - Discrete Filter, 20 - Integer
Delay).

size(sys_default)

State-space model with 1 outputs, 1 inputs, and 21 states.

You can linearize this same model using the 'UseExactDelayModel' property as follows:

opt = linearizeOptions;
opt.UseExactDelayModel = 'on';
sys_exact = linearize(model,io,opt);

Interrogating the new resulting model shows that it has 1 state and the delays are
accounted for internally in the linearized model.

size(sys_exact)

State-space model with 1 outputs, 1 inputs, and 1 states.

Run a step response simulation of both linearized model to see that they are identical by
running the following commands.

step(sys_default,sys_exact);
h = legend('sys_default','sys_exact',...
 'Location','SouthEast');
h.Interpreter = 'none';

2 Linearization

2-106

Close the Simulink model and clean up figures.

bdclose(model)
close(f)

 Linearization of Models with Delays

2-107

Working with Linearized Models with Delays

For more information on manipulating linearized models with delays, see the Control
System Toolbox documentation along with the examples "Specifying Time Delays" and
"Analyzing Control Systems with Delays" .

See Also
linearize | linearizeOptions

More About
• “Models with Time Delays” on page 2-170

2 Linearization

2-108

Linearization of Models with Model References
This example shows the features available in Simulink Control Design for linearizing
models containing references to other models with a Model block.

Linear Analysis

The model scdspeed_ctrlloop is a componentized version of the model
scdspeedctrl. In this model, the engine speed model is a component represented in the
model scdspeed_plantref which is referenced using a model reference block. To open
the engine model, run:

topmdl = 'scdspeed_ctrlloop';
open_system(topmdl);

Initially, the reference is set to run its simulation in accelerator mode. The accelerator
simulation mode is indicated by the black triangles on the corners of the model block
scdspeed_ctrlloop/Engine Model.

By default, Engine Model reference block is set to accelerator simulation mode, as
indicated by the block triangles on the block. Linearizing the model with this block set to
accelerator simulation mode numerically perturbs the entire Engine Model block. The
accuracy of this linearization is very sensitive to the blocks within the Engine model. In
particular, the variable transport delay block is very problematic.

 Linearization of Models with Model References

2-109

To achieve an accurate linearization, set the model reference block to normal simulation
mode to allow the block-by-block linearization of the referenced model by running the
following command.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')

Notice that the corners of the model block are now white triangles indicating that its
simulation mode is set to normal, as showing in the following figure.

Linearize the model between the speed reference and the speed output and plot the
resulting step response by running:

io(1) = linio('scdspeed_ctrlloop/Speed Reference',1,'input');
io(2) = linio('scdspeed_ctrlloop/Speed Output',1,'output');
sys_normal = linearize(topmdl,io);
step(sys_normal);

2 Linearization

2-110

Close the Simulink model.

bdclose('scdspeed_ctrlloop');

Another benefit of switching the model reference to normal mode simulation is that you
can take advantage of the exact delay representations.

 Linearization of Models with Model References

2-111

For more information on linearizing models with delays see the example "Linearizing
Models with Delays".

See Also
linearize

2 Linearization

2-112

Visualize Linear System at Multiple Simulation
Snapshots

This example shows how to visualize linear system characteristics of a nonlinear Simulink
model at multiple simulation snapshots.

1 Open Simulink model.

For example:

watertank
2 Open the Simulink Library Browser by selecting View > Library Browser in the

model window.
3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.
b Drag and drop a block, such as the Gain and Phase Margin Plot block, into the

Simulink model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

 Visualize Linear System at Multiple Simulation Snapshots

2-113

Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click at any time to update the Linearization inputs/
outputs table with I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

ii In the Simulink model, click the output signal of the PID Controller block
to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

2 Linearization

2-114

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

 Visualize Linear System at Multiple Simulation Snapshots

2-115

ii
Click to add the signal to the Linearization inputs/outputs table.

iii In the Configuration drop-down list of the Linearization inputs/outputs
table, select Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the
signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization I/O
annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in
Linearize on.

b In the Snapshot times field, type [0 1 5].

2 Linearization

2-116

7 Specify a plot type to plot the gain and phase margins. The plot type is Bode by
default.

a Select Nichols in Plot type
b Click Show Plot to open an empty Nichols plot.

8 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option and specify a variable name in the

Variable name field.

The Logging tab now resembles the following figure.

9
Plot the gain and phase margins by clicking in the plot window.

The software linearizes the portion of the model between the linearization input and
output at the simulation times of 0, 1 and 5 and plots gain and phase margins.

After the simulation completes, the plot window resembles the following figure.

 Visualize Linear System at Multiple Simulation Snapshots

2-117

Tip Click to view the legend.

The computed linear system is saved as sys in the MATLAB workspace. sys is a structure
with time and values fields. To view the structure, type:

sys

This command returns the following results:

sys =

 time: [3x1 double]
 values: [4-D ss]
 blockName: 'watertank/Gain and Phase Margin Plot'

• The time field contains the simulation times at which the model is linearized.
• The values field is an array of state-space objects (Control System Toolbox) which

store the linear systems computed at the specified simulation times.

2 Linearization

2-118

(If the Simulink model is configured to save simulation output as a single object, the data
structure sys is a field in the Simulink.SimulationOutput object that contains the
logged simulation data. For more information about data logging in Simulink, see “Export
Simulation Data” (Simulink) and the Simulink.SimulationOutput reference page.)

See Also
Gain and Phase Margin Plot

More About
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124
• “Visualize Linear System of a Continuous-Time Model Discretized During

Simulation” on page 2-120
• “Linearize at Simulation Snapshot” on page 2-94
• “Linearize at Triggered Simulation Events” on page 2-98

 See Also

2-119

Visualize Linear System of a Continuous-Time Model
Discretized During Simulation

This example shows how to discretize a continuous-time model during simulation and plot
the model's discretized linear behavior.

1 Open the Simulink model:

scdcstr

In this model, the Bode Plot block has already been configured with:

• Input point at the coolant temperature input Coolant Temp
• Output point at the residual concentration output CA
• Settings to linearize the model on a rising edge of an external trigger. The trigger

signal is modeled in the Linearization trigger signal block in the model.
• Saving the computed linear system in the MATLAB workspace as

LinearReactor.

To view these configurations, double-click the block.

2 Linearization

2-120

To learn more about the block parameters, see the block reference pages.
2 Specify the sample time to compute the discrete-time linear system.

 Visualize Linear System of a Continuous-Time Model Discretized During Simulation

2-121

a Click adjacent to Algorithm Options.

The option expands to display the linearization algorithm options.

b Specify a sample time of 2 in the Linear system sample time field.

To learn more about this option, see the block reference page.
3 Click Show Plot to open an empty Bode plot window.
4

Plot the Bode magnitude and phase by clicking in the plot window.

During simulation, the software:

• Linearizes the model on encountering a rising edge.
• Converts the continuous-time model into a discrete-time linear model with a

sample time of 2. This conversion uses the default Zero-Order Hold method to
perform the sample time conversion.

The software plots the discrete-time linear behavior in the Bode plot window. After
the simulation completes, the plot window resembles the following figure.

2 Linearization

2-122

The plot shows the Bode magnitude and phase up to the Nyquist frequency, which is
computed using the specified sample time. The vertical line on the plot represents
the Nyquist frequency.

See Also

More About
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Plotting Linear System Characteristics of a Chemical Reactor” on page 2-124
• “Linearize at Simulation Snapshot” on page 2-94
• “Linearize at Triggered Simulation Events” on page 2-98

 See Also

2-123

Plotting Linear System Characteristics of a Chemical
Reactor

This example shows how to plot linearization of a Simulink model at particular conditions
during simulation. The Simulink Control Design software provides blocks that you can
add to Simulink models to compute and plot linear systems during simulation. In this
example, a linear system of a continuous-stirred chemical reactor is computed and plotted
on a Bode plot as the reactor transitions through different operating points.

Chemical Reactor Model

Open the Simulink model of the chemical reactor:

open_system('scdcstr')

The reactor has three inputs and two outputs:

2 Linearization

2-124

• The FeedCon0, FeedTemp0 and Coolant Temp blocks model the feed concentration,
feed temperature, and coolant temperature inputs respectively.

• The T and CA ports of the CSTR block model the reactor temperature and residual
concentration outputs respectively.

This example focuses on the response from coolant temperature, Coolant Temp, to
residual concentration, CA, when the feed concentration and feed temperature are
constant.

For more information on modeling reactors, see Seborg, D.E. et al., "Process Dynamics
and Control", 2nd Ed., Wiley, pp.34-36.

Plotting the Reactor Linear Response

The reactor model contains a Bode Plot block from the Simulink Control Design Linear
Analysis Plots library. The block is configured with:

• A linearization input at the coolant temperature Coolant Temp.

• A linearization output at the residual concentration CA.

The block is also configured to perform linearizations on the rising edges of an external
trigger signal. The trigger signal is computed in the Linearization trigger signal
block which produces a rising edge when the residual concentration is:

• At a steady state value of 2

• In a narrow range around 5

• At a steady state value of 9

Double-clicking the Bode Plot block lets you view the block configuration.

 Plotting Linear System Characteristics of a Chemical Reactor

2-125

2 Linearization

2-126

Clicking Show Plot in the Block Parameters dialog box opens a Bode Plot window which
shows the response of the computed linear system from Coolant Temp to CA. To
compute the linear system and view its response, simulate the model using one of the
following:

• Click the Run button in the Bode Plot window.

• Select Simulation > Run in the Simulink model window.

• Type the following command:

sim('scdcstr')

 Plotting Linear System Characteristics of a Chemical Reactor

2-127

The Bode plot shows the linearized reactor at three operating points corresponding to the
trigger signals defined in the Linearization trigger signal block:

• At 5 sec, the linearization is for a low residual concentration.

• At 38 sec, the linearization is for a high residual concentration.

• At 27 sec, the linearization is as the reactor transitions from a low to high residual
concentration.

2 Linearization

2-128

The linearizations at low and high residual concentrations are similar but the linearization
during the transition has a significantly different DC gain and phase characteristics. At
low frequencies, the phase differs by 180 degrees, indicating the presence of either an
unstable pole or zero.

Logging the Reactor Linear Response

The Logging tab in the Bode Plot block specifies that the computed linear systems be
saved as a workspace variable.

 Plotting Linear System Characteristics of a Chemical Reactor

2-129

2 Linearization

2-130

The linear systems are logged in a structure with time and values fields.

LinearReactor

LinearReactor =

 struct with fields:

 time: [3x1 double]
 values: [1x1x3x1 ss]
 blockName: 'scdcstr/Bode Plot'

The values field stores the linear systems as an array of LTI state-space systems (see
Arrays of LTI Models) in Control System Toolbox documentation for more information).

You can retrieve the individual systems by indexing into the values field.

P1 = LinearReactor.values(:,:,1);
P2 = LinearReactor.values(:,:,2);
P3 = LinearReactor.values(:,:,3);

The Bode plot of the linear system at time 27 sec, when the reactor transitions from low
to high residual concentration, indicates that the system could be unstable. Displaying the
linear systems in pole-zero format confirms this:

zpk(P1)
zpk(P2)
zpk(P3)

ans =

 From input "Coolant Temp" to output "CSTR/2":
 -0.1028

 (s^2 + 2.215s + 2.415)

Continuous-time zero/pole/gain model.

ans =

 From input "Coolant Temp" to output "CSTR/2":

 Plotting Linear System Characteristics of a Chemical Reactor

2-131

matlab:helpview([docroot,'/toolbox/control/control.map'],'concept_of_an_lti_array')

 -0.07514

 (s+0.7567) (s-0.3484)

Continuous-time zero/pole/gain model.

ans =

 From input "Coolant Temp" to output "CSTR/2":
 -0.020462

 (s+0.8542) (s+0.7528)

Continuous-time zero/pole/gain model.

Close the Simulink model:

bdclose('scdcstr')
clear('LinearReactor','P1','P2','P3')

See Also

More About
• “Linearize at Triggered Simulation Events” on page 2-98

2 Linearization

2-132

Order States in Linearized Model

Control State Order of Linearized Model using Linear Analysis
Tool
This example shows how to control the order of the states in your linearized model. This
state order appears in linearization results.

1 Open and configure the model for linearization by specifying linearization I/Os and an
operating point for linearization. You can perform this step as shown, for example, in
“Linearize at Trimmed Operating Point” on page 2-88. To preconfigure the model at
the command line, use the following commands.

sys = 'magball';
open_system(sys)
sys_io(1) = linio('magball/Controller',1,'input');
sys_io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');
setlinio(sys,sys_io)
opspec = operspec(sys);
op = findop(sys,opspec);

These commands specify the plant linearization and compute the steady-state
operating point.

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 Open the Options for exact linearization dialog box.

In the Linear Analysis tab, click More Options.

 Order States in Linearized Model

2-133

4 In the State Ordering tab, check Enable state ordering.
5 Specify the desired state order using the Move Up and Move Down buttons.

Tip If you change the model while its Linear Analysis Tool is open, click Sync with
Model to update the list of states.

2 Linearization

2-134

Click to close the dialog box.
6 Enable the linearization result viewer. In the Linear Analysis tab, check Result

Viewer.

 Order States in Linearized Model

2-135

When this option is checked, the result viewer appears when you linearize the model,
enabling you to view and confirm the state ordering.

Tip If you do not check Result Viewer, or if you close the result viewer, you can
open the result viewer for a previously linearized model. To do so, in the Plots and
Results tab, select the linear model in the Linear Analysis Workspace, and click

 Result Viewer.
7

Linearize the model. For example, click Bode.

A new linearized model, linsys1, appears in the Linear Analysis Workspace. The
linearization result viewer opens, displaying information about that model.

2 Linearization

2-136

The linear model states appear in the specified order.

Control State Order of Linearized Model using MATLAB Code
This example shows how to control the order of the states in your linearized model. This
state order appears in linearization results.

1 Load and configure the model for linearization.

sys = 'magball';
load_system(sys);
sys_io(1)=linio('magball/Controller',1,'input');
sys_io(2)=linio('magball/Magnetic Ball Plant',1,'openoutput');
opspec = operspec(sys);
op = findop(sys,opspec);

These commands specify the plant linearization and compute the steady-state
operating point.

2 Linearize the model, and show the linear model states.

 Order States in Linearized Model

2-137

linsys = linearize(sys,sys_io);
linsys.StateName

The linear model states are in default order. The linear model includes only the states
in the linearized blocks, and not the states of the full model.

ans =
 'height'
 'Current'
 'dhdt'

3 Define a different state order.

stateorder = {'magball/Magnetic Ball Plant/height';...
 'magball/Magnetic Ball Plant/dhdt';...
 'magball/Magnetic Ball Plant/Current'};

4 Linearize the model again and show the linear model states.

linsys = linearize(sys,sys_io,'StateOrder',stateorder);
linsys.StateName

The linear model states are now in the specified order.

ans =
 'height'
 'dhdt'
 'Current'

2 Linearization

2-138

Validate Linearization In Time Domain

Validate Linearization in Time Domain
This example shows how to validate linearization results by comparing the simulated
output of the nonlinear model and the linearized model.

1 Linearize Simulink model.

For example:

sys = 'watertank';
load_system(sys);
sys_io(1) = linio('watertank/PID Controller',1,'input');
sys_io(2) = linio('watertank/Water-Tank System',1,'openoutput');
opspec = operspec(sys);
op = findop(sys,opspec,findopOptions('DisplayReport','off'));
linsys = linearize(sys,op,sys_io);

If you linearized your model in the Linear Analysis Tool, you must export the linear
model to the MATLAB workspace.

2 Create input signal for validation. For example, a step input signal:

input = frest.createStep('Ts',0.1,...
 'StepTime',1,...
 'StepSize',1e-5,...
 'FinalTime',500);

3 Simulate the Simulink model using the input signal.

[~,simout] = frestimate(sys,op,sys_io,input);

simout is the simulated output of the nonlinear model.
4 Simulate the linear model sys, and compare the time-domain responses of the linear

and nonlinear Simulink model.

frest.simCompare(simout,linsys,input)
legend('FRESTIMATE results with Custom input',...
 'Linear simulation of linsys with Custom input',...
 'Location','SouthEast');

 Validate Linearization In Time Domain

2-139

The step response of the nonlinear model and linearized model are close, which
validates that the linearization is accurate.

5 Increase the amplitude of the step signal from 1.0e-005 to 1.

input = frest.createStep('Ts',0.1,...
 'StepTime',1,...
 'StepSize',1,...
 'FinalTime',500);

6 Repeat the frequency response estimation with the increased amplitude of the input
signal, and compare this time response plot to the exact linearization results.

[~,simout2] = frestimate(sys,op,sys_io,input);
frest.simCompare(simout2,linsys,input)

2 Linearization

2-140

legend('FRESTIMATE results with Custom input',...
 'Linear simulation of linsys with Custom input',...
 'Location','SouthEast');

The step response of linear system you obtained using exact linearization does not
match the step response of the estimated frequency response with large input signal
amplitude. The linear model obtained using exact linearization does not match the
full nonlinear model at amplitudes large enough to deviate from the specified
operating point.

 Validate Linearization In Time Domain

2-141

Choosing Time-Domain Validation Input Signal
For time-domain validation of linearization, use frest.createStep to create a step
signal. Use the step signal as an input to frest.simCompare, which compares the
simulated output of the nonlinear model and the linearized model.

The step input helps you assess whether the linear model accurately captures the
dominant time constants as it goes through the step transients.

The step input also shows whether you correctly captured the DC gain of the Simulink
model by comparing the final value of the exact linearization simulation with the
frequency response estimation.

2 Linearization

2-142

Validate Linearization In Frequency Domain

Validate Linearization in Frequency Domain using Linear
Analysis Tool
This example shows how to validate linearization results using an estimated linear model.

In this example, you linearize a Simulink model using the I/Os specified in the model. You
then estimate the frequency response of the model using the same operating point (model
initial condition). Finally, you compare the estimated response to the exact linearization
result.

Linearize Simulink Model

1 Open the model.

sys = 'scdDCMotor';
open_system(sys)

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 Linearize the model at the default operating point and analysis I/Os, and generate a
bode plot of the result.

Click Bode. The Bode plot of the linearized plant appears, and the
linearized plant linsys1 appears in the Linear Analysis Workspace.

Estimate Frequency Response of Model

1 Create a sinestream input signal for computing an approximation of the model by
frequency response estimation. In the Estimation tab, in the Input Signal drop-
down list, select Sinestream.

2 Initialize the input signal frequencies and parameters based on the linearized model.

Click Initialize frequencies and parameters.

 Validate Linearization In Frequency Domain

2-143

The frequency display in the dialog box is populated with frequency points. The
software chooses the frequencies and input signal parameters automatically based on
the dynamics of linsys1.

3 Set the amplitude of the input signal at all frequency points to 1. In the frequency
display, select all the frequency points.

Enter 1 in the Amplitude field, and click OK. The new input signal in_sine1
appears in the Linear Analysis Workspace.

4 Estimate the frequency response and plot its frequency response on the existing Bode

plot of the linearized system response. Click Bode Plot 1.

Examine estimation results.

Bode Plot 1 now shows the Bode responses for the estimated model and the linearized
model.

2 Linearization

2-144

The frequency response for the estimated model matches that of the linearized model.

For more information about frequency response estimation, see “What Is a Frequency
Response Model?” on page 5-2.

Choosing Frequency-Domain Validation Input Signal
For frequency-domain validation of linearization, create a sinestream signal. By analyzing
one sinusoidal frequency at a time, the software can ignore some of the impact of
nonlinear effects.

 Validate Linearization In Frequency Domain

2-145

Input Signal Use When See Also
Sinestream All linearization inputs and

outputs are on continuous
signals.

frest.Sinestream

Sinestream with fixed sample
time

One or more of the linearization
inputs and outputs is on a
discrete signal

frest.createFixedTsSines
tream

You can easily create a sinestream signal based on your linearized model. The software
uses the linearized model characteristics to accurately predict the number of sinusoid
cycles at each frequency to reach steady state.

When diagnosing the frequency response estimation, you can use the sinestream signal to
determine whether the time series at each frequency reaches steady state.

See Also

More About
• “Estimation Input Signals” on page 5-7

2 Linearization

2-146

View Linearized Model Equations Using Linear Analysis
Tool

When you linearize a Simulink model using the Linear Analysis Tool, the software
generates state-space equations for the resulting linear model. To view the linearized
model equations:

1 In the Data Browser, in the Linear Analysis Workspace, select the linear model
you want to view.

2

On the Plots and Results tab, click Result Viewer.

In the Linearization result details dialog box, the software displays:

• General information about the linearization, including the operating point and the
number of inputs, outputs, and states.

• State-space matrices for the linearized model.
• Lists of the state, input, and output names. To highlight a state, input, or output in the

Simulink model, click the corresponding name.

 View Linearized Model Equations Using Linear Analysis Tool

2-147

To display the system using either zero-pole-gain or transfer function equations, in the
Display linearization result as drop-down list, select a format.

You can automatically open the Linearization result details dialog box when you linearize
your model. To do so, on the Linear Analysis tab, select Result Viewer before you
linearize the model.

See Also
Apps
Linear Analysis Tool

More About
• “Analyze Results Using Linear Analysis Tool Response Plots” on page 2-149

2 Linearization

2-148

Analyze Results Using Linear Analysis Tool Response
Plots

This topic explains ways to use and manipulate response plots of linearized systems in
Linear Analysis Tool.

View System Characteristics on Response Plots
To view system characteristics such as stability margins, overshoot, or settling time on a
Linear Analysis Tool response plot, right-click the plot and select Characteristics. Then
select the system characteristic you want to view.

 Analyze Results Using Linear Analysis Tool Response Plots

2-149

For most characteristics, a data marker appears on the plot. Click the marker to show a
data tip that contains information about the system characteristic.

Generate Additional Response Plots of Linearized System
In Linear Analysis Tool, when you have linearized or estimated a system, generate
additional response plots of the system as follows:

1 In the Linear Analysis Tool, click the Plots and Results tab. In the Linear Analysis
Workspace or the MATLAB Workspace, select the system you want to plot.

2 Linearization

2-150

2 In the Plots section of the tab, click the type of plot you want to generate.

 Analyze Results Using Linear Analysis Tool Response Plots

2-151

Tip Click to expand the gallery view.

Linear Analysis Tool generates a new plot of type you select.

Tip To multiple plots at the same time, select a layout in the View tab.

2 Linearization

2-152

Add Linear System to Existing Response Plot
New Linear System

When you compute a new linearization or frequency response estimation, in the Linear
Analysis tab, click the button corresponding to an existing plot to add the new linear
system to that plot.

For example, suppose that you have linearized a model at the default operating point for
the model, and have a step plot of the result, Step Plot 1. Suppose further that you
have specified a new operating point, a linearization snapshot time. To linearize at the

new operating point and add the result to Step Plot 1, click Step Plot 1.
Linear Analysis Tool computes the new linearization and adds the step response of the
new system, linsys2, to the existing step response plot.

 Analyze Results Using Linear Analysis Tool Response Plots

2-153

Linear System in Workspace

There are two ways to add a linear system from the MATLAB Workspace or the Linear
Analysis Workspace to an existing plot in the Linear Analysis Tool.

• Drag the linear system onto the plot from the MATLAB Workspace or the Linear
Analysis Workspace.

• On the Plots and Results tab, in the Linear Analysis Workspace, select the system
you want to add to an existing plot. Then, in the Plots section of the tab, select the
button corresponding to the existing plot you want to update.

For example, suppose that you have a Bode plot of the response of a linear system,
Bode Plot 1. Suppose further that you have an estimated response in the Linear
Analysis Workspace, estsys1. To add the response of estsys1 to the existing Bode

plot, select estsys1 and click Bode Plot 1.

2 Linearization

2-154

Tip Click to expand the gallery view.

Customize Characteristics of Plot in Linear Analysis Tool
To change the characteristics of an existing plot, such as the title, axis labels, or text
styles, double-click the plot to open the properties editor. Edit plot properties as desired.
Plots are updated as you make changes. Click Close when you are finished.

Print Plot to MATLAB Figure in Linear Analysis Tool
To export a plot from the Linear Analysis Tool to a MATLAB figure window:

 Analyze Results Using Linear Analysis Tool Response Plots

2-155

1 Select the plot you want to export. A tab appears with the same name as the plot.

2
Click the new tab. In the Print section, click Print to Figure.

A MATLAB figure window opens containing the plot.

2 Linearization

2-156

Generate MATLAB Code for Linearization from Linear
Analysis Tool

This topic shows how to generate MATLAB code for linearization from the Linear Analysis
Tool. You can generate either a MATLAB script or a MATLAB function. To
programmatically reproduce a linearization result that you obtained interactively, you can
use a generated MATLAB script. To perform multiple linearizations with systematic
variations in your linearization configuration, you can use a generated MATLAB function.

To generate MATLAB code for linearization:

1 In the Linear Analysis Tool, on the Linear Analysis tab, interactively configure the
analysis points, operating points, and parameter variations for linearization.

2 In the Linearize section, expand the gallery by clicking .

3 In the gallery, depending on the type of code you want to create, click:

•
 Script — Generate a MATLAB script that uses your configured analysis

points, operating points, and parameter variations. Select this option when you
want to repeat the same linearization at the MATLAB command line.

•
 Function — Generate a MATLAB function that takes analysis points,

operating points, and parameter variations as input arguments. Select this option
when you want to perform multiple linearizations using different configurations
(batch linearization). For more information on varying operating points and
parameter when using the linearize function, see:

• “Batch Linearize Model for Parameter Variations at Single Operating Point” on
page 3-20

 Generate MATLAB Code for Linearization from Linear Analysis Tool

2-157

• “Batch Linearize Model at Multiple Operating Points Using linearize
Command” on page 3-28

The software creates a MATLAB file that contains the generated code and opens the
file in the MATLAB Editor.

4 In the MATLAB Editor, you can edit and save the file.

See Also
Functions
linearize

Apps
Linear Analysis Tool

More About
• “What Is Batch Linearization?” on page 3-2

2 Linearization

2-158

When to Specify Individual Block Linearization
Some Simulink blocks, including those with sharp discontinuities, can produce poor
linearization results. For example, when your model operates in a region away from the
point of discontinuity, the linearization of the block is zero. Typically, you must specify
custom linearizations for such blocks. You can specify the block linearization as:

• A linear model in the form of a D-matrix.
• A Control System Toolbox model object.
• An uncertain state-space object or an uncertain real object (requires Robust Control

Toolbox software).

See Also

More About
• “Specify Linear System for Block Linearization Using MATLAB Expression” on page

2-160
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-161
• “Augment the Linearization of a Block” on page 2-165
• “Change Perturbation Level of Blocks Perturbed During Linearization” on page 2-

183
• “Block Linearization Troubleshooting” on page 4-61

 When to Specify Individual Block Linearization

2-159

Specify Linear System for Block Linearization Using
MATLAB Expression

This example shows how to specify the linearization of any block, subsystem, or model
reference without having to replace this block in your Simulink model.

1 Right-click the block in the model, and select Linear Analysis > Specify Selected
Block Linearization.

The Block Linearization Specification dialog box opens.
2 In the Specify block linearization using one of the following list, select

MATLAB Expression.
3 In the text field, enter an expression that specifies the linearization.

For example, specify the linearization as an integrator with a gain of k, G(s) = k/s.

In state-space form, this transfer function corresponds to ss(0,1,k,0).

Click OK.
4 Linearize the model.

See Also

Related Examples
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-161
• “Block Linearization Troubleshooting” on page 4-61

2 Linearization

2-160

Specify D-Matrix System for Block Linearization Using
Function

This example shows how to specify custom linearization for a saturation block using a
function.

1 Open Simulink model.

sys = 'configSatBlockFcn';
open_system(sys)

In this model, the limits of the saturation block are -satlimit and satlimit. The
current value of the workspace variable satlimit is 10.

2 Linearize the model at the model operating point using the linear analysis points
defined in the model. Doing so returns the linearization of the saturation block.

io = getlinio(sys);
linsys = linearize(sys,io)

linsys =

 D =
 Constant
 Saturation 1

Static gain.

At the model operating point, the input to the saturation block is 10. This value is
right on the saturation boundary. At this value, the saturation block linearizes to 1.

3 Suppose that you want the block to linearize to a transitional value of 0.5 when the
input falls on the saturation boundary. Write a function that defines the saturation
block linearization to behave this way. Save the function to the MATLAB path.

function blocklin = mySaturationLinearizationFcn(BlockData)
% This function customizes the linearization of a saturation block
% based on the block input signal level, U:

 Specify D-Matrix System for Block Linearization Using Function

2-161

% BLOCKLIN = 0 when |U| > saturation limit
% BLOCKLIN = 1 when |U| < saturation limit
% BLOCKLIN = 1/2 when U = saturation limit

% Get saturation limit.
satlimit = BlockData.Parameters.Value;

% Compute linearization based on the input signal
% level to the block.
if abs(BlockData.Inputs(1).Values) > satlimit
 blocklin = 0;
elseif abs(BlockData.Inputs(1).Values) < satlimit
 blocklin = 1;
else
 blocklin = 1/2;
end

This configuration function defines the saturation block linearization based on the
level of the block input signal. For input values outside the saturation limits, the
block linearizes to zero. Inside the limits, the block linearizes to 1. Right on the
boundary values, the block linearizes to the interpolated value of 0.5. The input to the
function, BlockData, is a structure that the software creates automatically when you
configure the linearization of the Saturation block to use the function. The
configuration function reads the saturation limits from that data structure.

4 In the Simulink model, right-click the Saturation block, and select Linear Analysis >
Specify Selected Block Linearization.

The Block Linearization Specification dialog box opens.
5 Check Specify block linearization using one of the following. Choose

Configuration Function from the list.

Configure the linearization function:

a Enter the name you gave to your saturation function. In this example, the
function name is mySaturationLinearizationFcn.

b Specify the function parameters. mySaturationLinearizationFcn requires
the saturation limit value, which the user must specify before linearization.

Enter the variable name satlimit in Parameter Value. Enter the
corresponding descriptive name in the Parameter Name column,
SaturationLimit.

2 Linearization

2-162

c Click OK.

Configuring the Block Linearization Specification dialog box updates the model to use
the specified linearization function for linearizing the Saturation Block. Specifically,
this configuration automatically populates the Parameters field of the BlockData
structure, which is the input argument to the configuration function.

Note You can add function parameters by clicking . Use to delete selected
parameters.

Code Alternative

This code is equivalent to configuring the Block Linearization Specification dialog
box:

satblk = 'configSatBlockFcn/Saturation';
set_param(satblk,'SCDEnableBlockLinearizationSpecification','on')
rep = struct('Specification','mySaturationLinearizationFcn',...
 'Type','Function',...
 'ParameterNames','SaturationLimit',...

 Specify D-Matrix System for Block Linearization Using Function

2-163

 'ParameterValues','satlimit');
set_param(satblk,'SCDBlockLinearizationSpecification',rep)

6 Define the saturation limit, which is a parameter required by the linearization
function of the Saturation block.

satlimit = 10;
7 Linearize the model again. Now, the linearization uses the custom linearization of the

saturation block.

linsys_cust = linearize(sys,io)

linsys_cust =

 d =
 Constant
 Saturation 0.5

Static gain.

At the model operating point, the input to the saturation block is 10. Therefore, the
block linearizes to 0.5, the linearization value specified in the function for saturation
boundary.

See Also

More About
• “Specify Linear System for Block Linearization Using MATLAB Expression” on page

2-160
• “Block Linearization Troubleshooting” on page 4-61

2 Linearization

2-164

Augment the Linearization of a Block
This example shows how to augment the linearization of a block with additional time
delay dynamics, using a block linearization specification function.

1 Open Simulink model.

mdl = 'scdFcnCall';
open_system(mdl)

This model includes a continuous time plant, Plant, and a discrete-time controller,
Controller. The D/A block discretizes the plant output with a sampling time of 0.1
s. The External Scheduler block triggers the controller to execute with the same
period, 0.1 s. However, the trigger has an offset of 0.05 s relative to the discretized
plant output. For that reason, the controller does not process a change in the
reference signal until 0.05 s after the change occurs. This offset introduces a time
delay of 0.05 s into the model.

2 (Optional) Linearize the closed-loop model at the model operating point without
specifying a linearization for the Controller block.

io = getlinio(mdl);
sys_nd = linearize(mdl,io);

The getlinio function returns the linearization input and output points that are
already defined in the model.

 Augment the Linearization of a Block

2-165

3 (Optional) Check the linearization result by frequency response estimation.

input = frest.Sinestream(sys_nd);
sysest = frestimate(mdl,io,input);
bode(sys_nd,'g',sysest,'r*',{input.Frequency(1),input.Frequency(end)})
legend('Linearization without delay',...
 'Frequency Response Estimation','Location','SouthWest')

The exact linearization does not account for the time delay introduced by the
controller execution offset. A discrepancy results between the linearized model and
the estimated model, especially at higher frequencies.

4 Write a function to specify the linearization of the Controller block that includes
the time delay.

The following configuration function defines a linear system that equals the default
block linearization multiplied by a time delay. Save this configuration function to a

2 Linearization

2-166

location on your MATLAB path. (For this example, the function is already saved as
scdAddDelayFcn.m.)

function sys = scdAddDelayFcn(BlockData)
sys = BlockData.BlockLinearization*thiran(0.05,0.1);

The input to the function, BlockData, is a structure that the software creates
automatically each time it linearizes the block. When you specify a block linearization
configuration function, the software automatically passes BlockData to the function.
The field BlockData.BlockLinearization contains the current linearization of
the block.

This configuration function approximates the time delay as a thiran filter. The filter
indicates a discrete-time approximation of the fractional time delay of 0.5 sampling
periods. (The 0.05 s delay has a sampling time of 0.1 s).

5 Specify the configuration function scdAddDelayFcn as the linearization for the
Controller block.

a Right-click the Controller block, and select Linear Analysis > Specify
Selected Block Linearization.

b Select the Specify block linearization using one of the following check box.
Then, select Configuration Function from the drop-down list.

c Enter the function name scdAddDelayFcn in the text box. scdAddDelayFcn
has no parameters, so leave the parameter table blank.

d Click OK.

 Augment the Linearization of a Block

2-167

6 Linearize the model using the specified block linearization.

sys_d = linearize(mdl,io);

The linear model sys_d is a linearization of the closed-loop model that accounts for
the time delay.

7 (Optional) Compare the linearization that includes the delay with the estimated
frequency response.

bode(sys_d,'b',sys_nd,'g',sysest,'r*',...
 {input.Frequency(1),input.Frequency(end)})
legend('Linearization with delay','Linearization without delay',...
 'Frequency Response Estimation','Location','SouthWest')

2 Linearization

2-168

The linear model obtained with the specified block linearization now accounts for the
time delay. This linear model is therefore a much better match to the real frequency
response of the Simulink model.

See Also
getlinio | linearize

 See Also

2-169

Models with Time Delays

Choose Approximate Versus Exact Time Delays
Simulink Control Design lets you choose whether to linearize models using exact
representation or Pade approximation of continuous time delays. How you treat time
delays during linearization depends on your nonlinear model.

Simulink blocks that model time delays are:

• Transport Delay block
• Variable Time Delay block
• Variable Transport Delay block
• Delay block
• Unit Delay block

By default, linearization uses Pade approximation for representing time delays in your
linear model.

Use Pade approximation to represent time delays when:

• Applying more advanced control design techniques to your linear plant, such as LQR
or H-infinity control design.

• Minimizing the time to compute a linear model.

Specify to linearize with exact time delays for:

• Minimizing errors that result from approximating time delays
• PID tuning or loop-shaping control design methods in Simulink Control Design
• Discrete-time models (to avoid introducing additional states to the model)

The software treats discrete-time delays as internal delays in the linearized model.
Such delays do not appear as additional states in the linearized model.

Specify Exact Representation of Time Delays
Before linearizing your model:

2 Linearization

2-170

• In the Linear Analysis Tool:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, in the Linearization tab, check
Return linear model with exact delay(s).

• At the command line, create a linearizeOptions option set, setting the
UseExactDelayModel to 'on'.

See Also
linearizeOptions

More About
• “Time Delays in Linear Systems” (Control System Toolbox)
• “Time-Delay Approximation” (Control System Toolbox)
• “Linearization of Models with Delays”

 See Also

2-171

Linearize Multirate Models
You can linearize a Simulink model that contains blocks with different sample times using
Simulink Control Design software. By default, the linearization tools:

• Convert sample times using a zero-order hold conversion method.
• Create a linearized model with a sample time equal to the largest sample time of the

blocks on the linearization path.

You can change either of these behaviors by specifying linearization options, which affects
the linearization result.

Change Sample Time of Linear Model
By default, the software chooses the largest sample time of the multirate model. If the
default sample time is not appropriate for your application, you can specify a different
sample time.

To specify the sample time of the linear model in the Linear Analysis Tool:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, on the Linearization tab, in the
Enter sample time (sec) field, specify the sample time. You can specify any of the
following values:

• -1 — Use the largest sample time from the model.
• 0 — Create a continuous-time model. In this case, the software creates a discrete-

time model using the largest sample time from the model, then converts the
resulting model to continuous time.

• Positive scalar — Use the specified value for the sample time.

To specify the sample time of the linear model at the command line, create a
linearizeOptions option set, and set the SampleTime option. For example:

opt = linearizeOptions;
opt.SampleTime = 0.01;

You can then use this option set with linearize or slLinearizer.

2 Linearization

2-172

Change Linearization Rate Conversion Method
When you linearize models with multiple sample times, such as a discrete controller with
a continuous plant, the software uses a rate conversion algorithm to create a single-rate
linear model. The default rate conversion method is zero-order hold.

To specify the rate conversion method in the Linear Analysis Tool:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, on the Linearization tab, in the
Choose rate conversion method drop-down list, select one of the following rate
conversion methods.

Rate Conversion Method When to Use
Zero-Order Hold You need exact discretization of

continuous dynamics in the time
domain for staircase inputs.

Tustin You need good frequency-domain
matching between a continuous-time
system and the corresponding
discretized system, or between an
original system and a resampled
system.

Tustin with Prewarping You need good frequency-domain
matching at a particular frequency
between a continuous-time system and
the corresponding discretized system,
or between an original system and the
resampled system.

Upsampling when possible,
Zero-Order Hold otherwise
Upsampling when possible,
Tustin otherwise
Upsampling when possible,
Tustin with Prewarping
otherwise

Upsample discrete states when
possible to ensure gain and phase
matching of upsampled dynamics. You
can only upsample when the new
sample time is an integer multiple of
the sample time of the original system.
Otherwise, the software uses the
alternate rate conversion method.

 Linearize Multirate Models

2-173

3 If you select either of the following rate conversion methods:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

then, in the Enter prewarp frequency field, specify the prewarp frequency.

To specify the rate conversion method at the command line, create a linearizeOptions
option set, and set the RateConversionMethod and PreWarpFreq options. For
example:

opt = linearizeOptions;
opt.RateConversionMethod = 'prewarp';
opt.PreWarpFreq = 100;

You can then use this option set with linearize or slLinearizer.

Note If you use a rate conversion method other than zero-order hold, the converted
states no longer have the same physical meaning as the original states. As a result, the
state names in the resulting LTI system are '?'.

Linearization Using Different Rate Conversion Methods
This example shows how to specify the rate conversion method for the linearization of a
multirate model. The choice of rate conversion methodology can affect the resulting
linearized model. This example illustrates the extraction of a discrete linear time invariant
model using two different rate conversion methods.

Example Problem

In the Simulink model scdmrate.mdl there are three different sample rates specified in
five blocks. These blocks are

• sysC - a continuous linear block,
• Integrator - a continuous integrator,
• sysTs1 - a block that has a sample time of 0.01 seconds,
• sysTs2 - a block that has a sample time of 0.025 seconds, and
• Zero-Order Hold - a block that samples the incoming signal at 0.01 seconds.

Open the Simulink model.

2 Linearization

2-174

scdmrate

In this example, you linearize the model between the output of the block sysTs1 and the
block Zero-Order Hold. Additionally, you add a loop opening at the block Zero-Order
Hold to extract the plant model for the system.

model = 'scdmrate';
io(1) = linio('scdmrate/sysTs1',1,'input');
io(2) = linio('scdmrate/Zero-Order Hold',1,'openoutput');

Using these linearization points the linearization effectively results in the linearization of
the model scdmrate_ol.

scdmrate_ol

When linearizing a model that contains both continuous and discrete signals, the software
first converts the continuous signals to discrete signals, using a rate conversion method.
The default rate conversion method is zero-order hold. To view or change the rate
conversion method, use the RateConversionMethod property in the linearizeOptions
function. The following command shows that RateConversionMethod is set to the
default setting, zoh:

 Linearize Multirate Models

2-175

opt = linearizeOptions

Options for LINEARIZE:
 LinearizationAlgorithm : blockbyblock
 SampleTime (-1 Auto Detect) : -1
 UseFullBlockNameLabels (on/off): off
 UseBusSignalLabels (on/off) : off
 StoreOffsets (true/false) : false
 StoreAdvisor (true/false) : false

Options for 'blockbyblock' algorithm
 BlockReduction (on/off) : on
 IgnoreDiscreteStates (on/off) : off
 RateConversionMethod (zoh/tustin/prewarp/ : zoh
 upsampling_zoh/
 upsampling_tustin/
 upsampling_prewarp
 PreWarpFreq : 10
 UseExactDelayModel (on/off) : off
 AreParamsTunable (true/false) : true

Options for 'numericalpert' algorithm
 NumericalPertRel : 1.000000e-05
 NumericalXPert : []
 NumericalUPert : []

The following command performs a linearization using the zero-order hold method.
Because the linearization includes the Zero-Order Hold block, the sample time of the
linearization is 0.01.

sys_zoh = linearize(model,io,opt);

The following commands change the rate conversion method to the Tustin (Bilinear
transformation) method and then linearize using this method. The sample time of this
linearized model is also 0.01.

opt.RateConversionMethod = 'tustin';
sys_tust = linearize(model,io,opt);

It is also possible to create a continuous-time linearized model by specifying the sample
time as 0 in the options object. The rate conversion method still creates a discrete-time
linearized model but then converts the discrete-time model to a continuous-time model.

2 Linearization

2-176

opt.SampleTime = 0;
sys_c = linearize(model,io,opt);

The Bode plots for the three linearizations show the effects of the two rate conversion
methods. In this example, the Tustin rate conversion method gives the most accurate
representation of the phase response of the continuous system and the zero-order hold
gives the best match to the magnitude response.

p = bodeoptions('cstprefs');
p.YLimMode = {'manual'};
p.YLim = {[-100 0];[-180 -30]};
p.Grid = 'on';
bodeplot(sys_c,sys_zoh,sys_tust,p);
h = legend('sys_c','sys_zoh','sys_tust','Location','SouthWest');
h.Interpreter = 'none';

 Linearize Multirate Models

2-177

Close the models:

bdclose('scdmrate');
bdclose('scdmrate_ol');

Linearization of Multirate Models
This example shows the process that the command linearize uses when extracting a linear
model of a nonlinear multirate Simulink model. To illustrate the concepts, the process is
first performed using functions from the Control System Toolbox before it is repeated
using the linearize command.

2 Linearization

2-178

Example Problem

In the Simulink model scdmrate.slx there are three different sample rates specified in
five blocks. These blocks are:

• sysC - a continuous linear block,
• Integrator - a continuous integrator,
• sysTs1 - a block that has a sample time of 0.01 seconds,
• sysTs2 - a block that has a sample time of 0.025 seconds, and
• Zero-Order Hold - a block that samples the incoming signal at 0.01 seconds.

sysC = zpk(-2,-10,0.1);
Integrator = zpk([],0,1);
sysTs1 = zpk(-0.7463,[0.4251 0.9735],0.2212,0.01);
sysTs2 = zpk([],0.7788,0.2212,0.025);

The model below shows how the blocks are connected.

scdmrate

In this example we linearize the model between the output of the Constant block and the
output of the block sysTs2.

Step 1: Linearizing the Blocks in the Model

The first step of the linearization is to linearize each block in the model. The linearization
of the Saturation and Zero-Order Hold blocks is 1. The LTI blocks are already linear and
therefore remain the same. The new model with linearized blocks is shown below.

scdmratestep1

 Linearize Multirate Models

2-179

Step 2: Rate Conversions

Because the blocks in the model contain different sample rates, it is not possible to create
a single-rate linearized model for the system without first using rate conversion functions
to convert the various sample rates to a representative single rate. The rate conversion
functions use an iterative method. The iterations begin with a least common multiple of
the sample times in the model. In this example the sample times are 0, 0.01, and 0.025
seconds which yields a least common multiple of 0.05. The rate conversion functions then
take the combination of blocks with the fastest sample rate and resample them at the next
fastest sample rate. In this example the first iteration converts the combination of the
linearized continuous time blocks, sysC and integrator to a sample time of 0.01 using
a zero order hold continuous to discrete conversion.

sysC_Ts1 = c2d(sysC*Integrator,0.01);

The blocks sysC and Integrator are now replaced by sysC_Ts1.

scdmratestep2

2 Linearization

2-180

The next iteration converts all the blocks with a sample time of 0.01 to a sample time of
0.025. First, the following command represents the combination of these blocks by
closing the feedback loop.

sysCL = feedback(sysTs1*sysC_Ts1,1);

Next, a zero-order hold method converts the closed loop system, sysCL, from a sample
rate of 0.01 to 0.025.

sysCL_Ts2 = d2d(sysCL,0.025);

The system sysCL_Ts2 then replaces the feedback loop in the model.

scdmratestep3

The final iteration re-samples the combination of the closed loop system and the block
sysTs2 from a rate of 0.025 seconds to a rate of 0.05 seconds.

sys_L = d2d(sysCL_Ts2*sysTs2,0.05)

sys_L =

 0.0001057 (z+22.76) (z+0.912) (z-0.9048) (z+0.06495)

 (z-0.01373) (z-0.6065) (z-0.6386) (z-0.8588) (z-0.9754)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

Linearizing the Model Using Simulink Control Design Commands

We can reproduce these results using the command line interface of Simulink Control
Design.

model = 'scdmrate';
io(1) = linio('scdmrate/Constant',1,'input');

 Linearize Multirate Models

2-181

io(2) = linio('scdmrate/sysTs2',1,'openoutput');
sys = zpk(linearize(model,io))

sys =

 From input "Constant" to output "sysTs2":
 0.0001057 (z+22.76) (z+0.912) (z-0.9048) (z+0.06495)

 (z-0.6065) (z-0.6386) (z-0.8588) (z-0.9754) (z-0.01373)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

See Also
Apps
Linear Analysis Tool

Functions
linearize | linearizeOptions

2 Linearization

2-182

Change Perturbation Level of Blocks Perturbed During
Linearization

Blocks that do not have preprogrammed analytic Jacobians linearize using numerical
perturbation.

Change Block Perturbation Level
This example shows how to change the perturbation level to the Magnetic Ball Plant block
in the magball model. Changing the perturbation level changes the linearization results.

The default perturbation size is 10-5(1+|x|), where x is the operating point value of the
perturbed state or the input.

Open the model before changing the perturbation level.

To change the perturbation level of the states to 10 1
7-

+()x , where x is the state value,
type:

blockname='magball/Magnetic Ball Plant'
set_param(blockname,'StatePerturbationForJacobian','1e-7')

To change the perturbation level of the input to 10 1
7-

+()x , where x is the input signal
value:

1 Open the system and get the block port handles.

sys = 'magball';
open_system(sys)
blockname = 'magball/Magnetic Ball Plant';
ph = get_param(blockname,'PortHandles')

2 Get the handle to the inport value.

p_in = ph.Inport(1)
3 Set the inport perturbation level.

set_param(p_in,'PerturbationForJacobian','1e-7')

 Change Perturbation Level of Blocks Perturbed During Linearization

2-183

matlab: open_system('magball')

Perturbation Levels of Integer Valued Blocks
A custom block that requires integer input ports for indexing might have linearization
issues when this block:

• Does not support small perturbations in the input value
• Accepts double-precision inputs

To fix the problem, try setting the perturbation level of such a block to zero (which sets
the block linearization to a gain of 1).

2 Linearization

2-184

Linearize Blocks with Nondouble Precision Data Type
Signals

You can linearize blocks that have nondouble precision data type signals as either inputs
or outputs, and have no preprogrammed exact linearization. Without additional
configuration, such blocks automatically linearize to zero. For example, logical operator
blocks have Boolean outputs and linearize to 0.

Linearizing blocks that have nondouble precision data type signals requires converting all
signals to double precision. This approach only works when your model can run correctly
in full double precision.

When you have only a few blocks impacted by the nondouble precision data types, use a
Data Type Conversion block to fix this issue.

When you have many nondouble precision signals, you can override all data types with
double precision using the Fixed Point Tool.

Overriding Data Types Using Data Type Conversion Block
Convert individual signals to double precision before linearizing the model by inserting a
Data Type Conversion block. This approach works well for model that have only a few
affected blocks.

After linearizing the model, remove the Data Type Conversion block from your model.

Note Overriding nondouble data types is not appropriate when the model relies on these
data types, such as relying on integer data types to perform truncation from floats.

For example, consider the model configured to linearize the Square block at an operating
point where the input is 1. The resulting linearized model should be 2, but the input to the
Square block is Boolean. This signal of nondouble precision date type results in
linearization of zero.

 Linearize Blocks with Nondouble Precision Data Type Signals

2-185

In this case, inserting a Data Type Conversion block converts the input signal to the
Square block to double precision.

Overriding Data Types Using Fixed Point Tool
When you linearize a model that contains nondouble data types but still runs correctly in
full double precision, you can override all data types with doubles using the Fixed Point
Tool. Use this approach when you have many nondouble precision signals.

After linearizing the model, restore your original settings.

Note Overriding nondouble data types is not appropriate when the model relies on these
data types, such as relying on integer data types to perform truncation from floats.

1 In the Simulink model, select Analysis > Fixed Point Tool.

The Fixed Point Tool opens.
2 In the Data type override menu, select Double.

This setting uses double precision values for all signals during linearization.
3 Restore settings when linearization completes.

2 Linearization

2-186

Linearize Event-Based Subsystems (Externally
Scheduled Subsystems)

Linearizing Event-Based Subsystems
Event-based subsystems (triggered subsystems) and other event-based models require
special handling during linearization.

Executing a triggered subsystem depends on previous signal events, such as zero
crossings. However, because linearization occurs at a specific moment in time, the trigger
event never happens.

An example of an event-based subsystem is an internal combustion (IC) engine. When an
engine piston approaches the top of a compression stroke, a spark causes combustion.
The timing of the spark for combustion is dependent on the speed and the position of the
engine crankshaft.

In the scdspeed model, triggered subsystems generate events when the pistons reach
both the top and bottom of the compression stroke. Linearization in the presence of such
triggered subsystems is not meaningful.

Approaches for Linearizing Event-Based Subsystems
You can obtain a meaningful linearization of triggered subsystems, while still preserving
the simulation behavior, by recasting the event-based dynamics as one of the following:

• Lumped average model that approximates the event-based behavior over time.
• Periodic function call subsystem, with Normal simulation mode.

In the case of periodical function call subsystems, the subsystem linearizes to the
sampling at which the subsystem is periodically executed.

In many control applications, the controller is implemented as a discrete controller,
but the execution of the controller is driven by an external scheduler. You can use such
linearized plant models when the controller subsystem is marked as a Periodic
Function call subsystem.

If recasting event-based dynamics does not produce good linearization results, try
frequency response estimation. See “Estimate Frequency Response Using Linear Analysis
Tool” on page 5-25.

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-187

Note If a triggered subsystem is disabled at the current operating condition and has at
least one direct passthrough I/O pair, then the subsystem will break the linearization path
curing linearization. In such a case, specify a block substitution or ensure that the
subsystem does not have a passthrough I/O pair.

Periodic Function Call Subsystems for Modeling Event-Based
Subsystems
This example shows how to use periodic function call subsystems to approximate event-
based dynamics for linearization.

1 Open Simulink model.

sys = 'scdPeriodicFcnCall';
open_system(sys)

2 Linearize model at the model operating point.

io = getlinio(sys);
linsys = linearize(sys,io)

The linearization is zero because the subsystem is not a periodic function call.

D =
 Desired Wat
 Water-Tank S 0
 Static gain.

Now, specify the Externally Scheduled Controller block as a Periodic Function Call
Subsystem.

3 Double-click the Externally Scheduled Controller (Function-Call Subsystem) block.

Double-click the function block to open the Block Parameters dialog box.

2 Linearization

2-188

4 Set Sample time type to be periodic.

Leave the Sample time value as 0.01, which represents the sample time of the
function call.

5 Linearize the model.

linsys2 = linearize(sys,io)

A =
 H Integrator
 H 0.9956 0.002499
 Integrator -0.0007774 1

B =
 Desired Wat

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-189

 H 0.003886
 Integrator 0.0007774

C =
 H Integrator
 Water-Tank S 1 0

D =
 Desired Wat
 Water-Tank S 0

Sampling time: 0.01
Discrete-time model.

6 Plot step response.

step(linsys2)

7 Close the model.

bdclose(sys);

2 Linearization

2-190

Approximating Event-Based Subsystems Using Curve Fitting
(Lump-Average Model)
This example shows how to use curve fitting to approximate event-based dynamics of an
engine.

The scdspeed model linearizes to zero because scdspeed/Throttle & Manifold/
Intake Manifold is an event-triggered subsystem.

You can approximate the event-based dynamics of the scdspeed/Throttle &
Manifold/Intake Manifold subsystem by adding the Convert to mass charge block
inside the subsystem.

The Convert to mass charge block approximates the relationship between Air Charge,
Manifold Pressure, and Engine Speed as a quadratic polynomial.

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-191

Air Charge p Engine Speed p Manifold Pressure p = ¥ + ¥ + ¥1 2 3 (MManifold Pressure

p Manifold Pressure Engine Speed

)
2

4
+ ¥ ¥ + pp

5

If measured data for internal signals is not available, use simulation data from the
original model to compute the unknown parameters p1, p2, p3, p4, and p5 using a least
squares fitting technique.

When you have measured data for internal signals, you can use the Simulink Design
Optimization™ software to compute the unknown parameters. See “Engine Speed Model
Parameter Estimation” (Simulink Design Optimization) to learn more about computing
model parameters, linearizing this approximated model, and designing a feedback
controlled for the linear model.

The next figure compares the simulations of the original event-based model and the
approximated model. Each of the pulses corresponds to a step change in the engine
speed. The size of the step change is between 1500 and 5500. Thus, you can use the
approximated model to accurately simulate and linearize the engine between 1500 RPM
and 5500 RPM.

2 Linearization

2-192

See Also

More About
• “Linearization of Models with Model References”

 See Also

2-193

Configure Models with Pulse Width Modulation (PWM)
Signals

This example shows how to configure models that use Pulse Width Modulation (PWM)
input signals for linearization. For linearization, specify a custom linearization of the
subsystem that takes the DC signal to be a gain of 1.

Many industrial applications use Pulse Width Modulation (PWM) signals because such
signals are robust in the presence of noise.

The next figure shows two PWM signals. In the top plot, a PWM signal with a 20% duty
cycle represents a 0.2 V DC signal. A 20% duty cycle corresponding to 1 V signal for 20%
of the cycle, followed by a value of 0 V signal for 80% of the cycle. The average signal
value is 0.2 V.

In the bottom plot, a PWM signal with an 80% duty cycle represent a 0.8 V DC signal.

For example, in the scdpwm model, a PWM signal is converted to a constant signal.

2 Linearization

2-194

When linearizing a model containing PWM signals there are two effects of linearization
you should consider:

• The signal level at the operating point is one of the discrete values within the PWM
signal, not the DC signal value. For example, in the model above, the signal level is
either 0 or 1, not 0.8. This change in operating point affects the linearized model.

• The creation of the PWM signal within the subsystem Voltage to PWM, shown in the
next figure, uses the Compare to Zero block. Such comparator blocks do not linearize
well due to their discontinuities and the nondouble outputs.

See Also

More About
• “Specifying Custom Linearizations for Simulink Blocks”
• “Specifying Linearization for Model Components Using System Identification” on

page 2-201

 See Also

2-195

Linearize Simscape Networks
You can linearize models with Simscape components using Simulink Control Design
software. Typically, some states in a Simscape network have dependencies on other states
through constraints.

Find Steady-State Operating Point
To find a steady-state operating point at which to linearize a Simscape model, you can
use:

• Optimization-based trimming — Specify constraints on model inputs, outputs, or
states, and compute a steady-state operating point that satisfies these constraints.

To produce better trimming results for Simscape models, you can use projection-based
trim optimizers. These optimizers enforce the consistency of the model initial
condition at each evaluation of the objective function or nonlinear constraint function.

• Simulation snapshots — Specify model initial conditions near an expected equilibrium
point, and simulate the model until it reaches steady state.

For more information, see “Find Steady-State Operating Points for Simscape Models” on
page 1-95.

Specify Analysis Points
To linearize your model, you must specify the portion of the model you want to linearize
using linear analysis points; that is, linearization inputs and outputs, and loop openings.
You can only add analysis points to Simulink signals.

To add a linearization input or loop opening to the input of a Simscape component, first
convert the Simulink signal using a Simulink-PS Converter block.

To add a linearization output or loop opening to the output of a Simscape component, first
convert the Simscape signal using a PS-Simulink Converter block.

For more information on adding linear analysis points, see “Specify Portion of Model to
Linearize” on page 2-13.

2 Linearization

2-196

Linearize Model
After you specify a steady-state operating point and linear analysis points, you can
linearize your Simscape model using:

• The Linear Analysis Tool.
• The linearize function.
• An slLinearizer interface.

For general linearization examples, see “Linearize Simulink Model at Model Operating
Point” on page 2-72 and “Linearize at Trimmed Operating Point” on page 2-88.

Troubleshoot Simscape Network Linearizations
Simscape networks can commonly linearize to zero when a set of the system equation
Jacobians are zero at a given operating condition. Usually, poor initial conditions of the
network states cause these zero linearizations.

Zero Linearization Example

Consider a system where the mass flow rate from a variable orifice is controlling the
position of a piston. The mass flow rate equation of the variable orifice is:

q C A
p

p p
d

cr

=
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

2

2 2

0 25

m

.

Where:

• q is the mass flow rate.
• Cd is the discharge coefficient.
• A is the area of the variable orifice opening.
• μ is the fluid density.
• p is the pressure drop across the orifice, p = pa - pb.
• pcr is the critical pressure, which is a function of pa and pb.

The control variable for this system is the orifice area, A, which controls the mass flow
rate. The Jacobian of the mass flow rate with respect to the control variable is:

 Linearize Simscape Networks

2-197

∂
∂

=
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

q

A
C

p

p p
d

cr

2

2 2

0 25

m

.

The linearized mass flow rate equation is:

q C
p

p p
A

q

q

p

p

p

q

p

d

cr

cr

cr

a

=
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
∂
∂

+
∂

∂
∂
∂

+
∂
∂

Ê

Ë
Á

ˆ

¯
˜

2

2 2

0 25

m m
m

.

pp
q

p

p

p

q

p
pa

cr

cr

b
b+

∂
∂

∂
∂

-
∂
∂

Ê

Ë
Á

ˆ

¯
˜

where
i

 represents a deviation from the nominal variable.

In the linearized equation, if the nominal pressure drop p across the orifice is zero, then

A
 has no influence on

q
. That is, if the instantaneous pressure drop across the orifice is

zero, the orifice area has no influence on the mass flow rate. Therefore, you cannot
control the piston position using the orifice area control variable.

To avoid this condition, linearize the model about an operating point where the pressure
drop over the orifice is nonzero (pa ≠ pb).

Troubleshooting Tips

To fix linearization problems caused by poor initial conditions of network states, you can:

1 Linearize the system at a snapshot operating point or trimmed operating point. When
possible, this approach is recommended.

2 Find and modify the problematic states of the operating point. This option can be
difficult for models with many states.

Using the first approach, you can ensure that the model states are consistent via the
Simulink and Simscape simulation engine. Simscape initial conditions are not necessarily
in a consistent state. The Simscape engine places them in a consistent state during
simulation and for trimming using the Simscape trim solvers.

A common workflow is to simulate your model, observe at what time the model satisfies
the operating condition at which you want to linearize, then take a simulation snapshot.
Alternatively, you can trim the model about the condition you are interested in. In either
case, the network states are in a consistent condition, which solves most poor
linearization issues.

2 Linearization

2-198

Using the second approach, you search through the physical network states to find
conditions that can create a zero Jacobian. This approach can require some intuition
about the dynamics of the physical components in your model. As a starting point, search
for states that are zero and that interact directly with nonlinear physical elements, such
as the variable orifice in the preceding example.

To search the physical states, you can use the Linearization Advisor, which collects
diagnostic information during linearization. The Linearization Advisor does not provide
diagnostic information on a component-level basis for Simscape networks. Instead, it
groups diagnostic information for multiple Simscape components together.

1 Linearize your model with the Linearization Advisor enabled, and extract the
LinearizationAdvisor object.

opt = linearizeOptions('StoreAdvisor',true);
[linsys,linop,info] = linearize(mdl,io,op,opt);
advisor = info.Advisor;

2 Create a custom query object, and search the diagnostic information for Simscape
blocks.

qSS = linqueryIsBlockType('simscape');
advSS = find(advisor,qSS);

3 To find problematic state values, check the block operating point in each
BlockDiagnostic object.

advSS.BlockDiagnostics(i).OperatingPoint.States

Once you find a problematic state, you can change the value of the state in the model
operating point, or create an operating point using operpoint.

You can also search the Linearization Advisor in the Linear Analysis Tool. For more
information, see “Find Blocks in Linearization Results Matching Specific Criteria” on page
4-54.

See Also
Apps
Linear Analysis Tool

Functions
linearize | slLinearizer

 See Also

2-199

More About
• “Specify Portion of Model to Linearize” on page 2-13
• “Find Steady-State Operating Points for Simscape Models” on page 1-95
• “Linearize Simulink Model at Model Operating Point” on page 2-72

2 Linearization

2-200

Specifying Linearization for Model Components Using
System Identification

This example shows how to use System Identification Toolbox to identify a linear system
for a model component that does not linearize well and use the identified system to
specify its linearization. Note that running this example requires Simscape Power
Systems in addition to System Identification Toolbox.

Linearizing Hard Drive Model

Open the simulink model for the hard drive.

model = 'scdpwmharddrive';
open_system(model);

In this model, the hard drive plant is driven by a current source. The current source is
implemented by a circuit that is driven by a Pulse Width Modulation (PWM) signal so that
its output can be adjusted by the duty cycle. For details of the hard drive model, see the
example "Digital Servo Control of a Hard-Disk Drive" in Control System Toolbox™
examples.

PWM-driven circuits usually have high frequency switching components, such as the
MOSFET transistor in this model, whose average behavior is not well defined. Thus, exact
linearization of this type of circuits is problematic. When you linearize the model from
duty cycle input to the position error, the result is zero.

SimscapeSolver = [model '/PWM driven converter/Solver Configuration'];
set_param(SimscapeSolver,'UseLocalSolver','off'); %turn off for linearization

 Specifying Linearization for Model Components Using System Identification

2-201

io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');
io(2) = linio('scdpwmharddrive/Hard Disk Model',1,'output');
sys = linearize(model,io)
set_param(SimscapeSolver,'UseLocalSolver','on') %turn back on for simulation

sys =

 D =
 Duty cycle
 position err 0

Static gain.

Finding a Linear Model for PWM Component

You can use frequency response estimation to obtain the frequency response of the PWM-
driven current source and use the result to identify a linear model for it. The current
signal has a discrete sample time of 1e-7. Thus, you need to use a fixed sample time
sinestream signal. Create a signal that has frequencies between 2K and 200K rad/s.

idinput = frest.createFixedTsSinestream(Ts,{2000,200000});
idinput.Amplitude = 0.1;

You can then define the input and output points for PWM-driven circuit and run the
frequency response estimation with the sinestream signal.

pwm_io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');
pwm_io(2) = linio('scdpwmharddrive/PWM driven converter',1,'openoutput');
sysfrd = frestimate(model,pwm_io,idinput);

Using the N4SID command from System Identification Toolbox, you can identify a second-
order model using the frequency response data. Then, compare the identified model to
the original frequency response data.

sysid = ss(tfest(idfrd(sysfrd),2));
bode(sysid,sysfrd,'r*');

2 Linearization

2-202

We used frequency response data with frequencies between 2K and 200K rad/s. The
identified model has a flat magnitude response for frequencies smaller than 2K. However,
our estimation did not have include for those frequencies. Assume that you would like to
make sure the response is flat by checking the frequency response for 20 and 200 rad/s.
To do so, create another input signal with those frequencies in it.

lowfreq = [20 200];
inputlow = frest.createFixedTsSinestream(Ts,lowfreq)

The sinestream input signal:

 Frequency : [20 200] (rad/s)
 Amplitude : 1e-05

 Specifying Linearization for Model Components Using System Identification

2-203

 SamplesPerPeriod : [3141593 314159]
 NumPeriods : 4
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : 1
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

In the input signal parameters, we can see that having a very fast sample rate of 1e-7
seconds (10 MHz sampling frequency) for the frequencies 20 and 200 rad/s cause high
SamplesPerPeriod values of 3141593 and 314159. Considering that each frequency has
4 periods, frequency response estimation would log output data with around 14 millions
samples. This would require a lot of memory and it is quite likely that you might run into
memory issues running the estimation.

Obviously, you do not need such a high sampling rate for analyzing 20 and 200 rad/s
frequencies. You can use a smaller sampling rate to avoid memory issues:

Tslow = 1e-4;
wslow = 2*pi/Tslow;
inputlow = frest.createFixedTsSinestream(Tslow,wslow./round(wslow./lowfreq));
inputlow.Amplitude = 0.1;

To make the model compatible with the smaller sampling rate, resample the output data
point using a rate transition block as in the modified model:

modellow = 'scdpwmharddrive_lowfreq';
open_system(modellow);

2 Linearization

2-204

You can now run the analysis for the low frequencies and compare it against identification
result.

load scdpwmharddrive_lowfreqresults.mat
% sysfrdlow = frestimate(modellow,getlinio(modellow),inputlow);
bode(sysid,sysfrdlow,'r*');
bdclose(modellow);

 Specifying Linearization for Model Components Using System Identification

2-205

Specifying the Linearization for PWM Component

As you verified using the frequency response estimation, the low-frequency dynamics of
the PWM-driven component are captured well by the identified system. Now you can
make linearization use this system as the linearization of the PWM-driven component. To
do so, specify block linearization of that subsystem as follows:

pwmblock = 'scdpwmharddrive/PWM driven converter';
set_param(pwmblock,'SCDEnableBlockLinearizationSpecification','on');
rep = struct('Specification','sysid',...
 'Type','Expression',...
 'ParameterNames','',...
 'ParameterValues','');

2 Linearization

2-206

set_param(pwmblock,'SCDBlockLinearizationSpecification',rep);
set_param('scdpwmharddrive/Duty cycle','SampleTime','Ts_plant');

Linearizing the model after specifying the linearization of the PWM component gives us a
non-zero result:

set_param(SimscapeSolver,'UseLocalSolver','off') %turn off for linearization
sys = linearize(model,io);
set_param(SimscapeSolver,'UseLocalSolver','on') %turn back on for simulation

You might still like to validate this linearization result using frequency response
estimation. Doing this as below verifies that our linearization result is quite accurate and
all the resonances exist in the actual dynamics of the model.

valinput = frest.Sinestream(sys);
valinput = fselect(valinput,3e3,1e5);
valinput.Amplitude = 0.1;
sysval = frestimate(model,io,valinput);
bodemag(sys,sysval,'r*');

 Specifying Linearization for Model Components Using System Identification

2-207

Close the model:

bdclose('scdpwmharddrive');

See Also
frestimate | tfest

More About
• “Configure Models with Pulse Width Modulation (PWM) Signals” on page 2-194

2 Linearization

2-208

Exact Linearization Algorithm
Simulink Control Design software linearizes models using a block-by-block approach. The
software individually linearizes each block in your Simulink model and produces the
linearization of the overall system by combining the individual block linearizations.

The software determines the input and state levels for each block from the operating
point, and requests the Jacobian for these levels from each block.

For some blocks, the software cannot compute an analytical linearization. For example:

• Some nonlinearities do not have a defined Jacobian.
• Some discrete blocks, such as state charts and triggered subsystems, tend to linearize

to zero.
• Some blocks do not implement a Jacobian.
• Custom blocks, such as S-Function blocks and MATLAB Function blocks, do not have

analytical Jacobians.

You can specify a custom linearization for any such blocks for which you know the
expected linearization. If you do not specify a custom linearization, the software finds the
linearization by perturbing the block inputs and states and measuring the response to
these perturbations. For more information, see “Perturbation of Individual Blocks” on
page 2-211.

Continuous-Time Models
Simulink Control Design software lets you linearize continuous-time nonlinear systems.
The resulting linearized model is in state-space form.

In continuous time, the state space equations of a nonlinear system are:

&x t f x t u t t

y t g x t u t t

() (), (),

() (), (),

= ()

= ()

where x(t) are the system states, u(t) are the input signals, and y(t) are the output signals.

To describe the linearized model, define a new set of variables of the states, inputs, and
outputs centered about the operating point:

 Exact Linearization Algorithm

2-209

d

d

d

x t x t x

u t u t u

y t y t y

() ()

() ()

() ()

= -

= -

= -

0

0

0

The output of the system at the operating point is y(t0)=g(x0,u0,t0)=y0.

The linearized state-space equations in terms of δx(t), δu(t), and δy(t) are:

d d d

d d d

&x t A x t B u t

y t C x t D u t

() () ()

() () ()

= +

= +

where A, B, C, and D are constant coefficient matrices. These matrices are the Jacobians
of the system, evaluated at the operating point:

A
f

x
B

f

u

C
g

x
D

g

u

t x u t x u

t x u t x u

=
∂

∂
=

∂

∂

=
∂

∂
=

∂

∂

0 0 0 0 0 0

0 0 0 0 0 0

, , , ,

, , , ,

This linear time-invariant approximation to the nonlinear system is valid in a region
around the operating point at t=t0, x(t0)=x0, and u(t0)=u0. In other words, if the values of
the system states, x(t), and inputs, u(t), are close enough to the operating point, the
system behaves approximately linearly.

The transfer function of the linearized model is the ratio of the Laplace transform of δy(t)
and the Laplace transform of δu(t):

P s
Y s

U s
lin

()
()

()
=

d

d

Multirate Models
Simulink Control Design software lets you linearize multirate nonlinear systems. The
resulting linearized model is in state-space form.

2 Linearization

2-210

Multirate models include states with different sampling rates. In multirate models, the
state variables change values at different times and with different frequencies. Some of
the variables might change continuously.

The general state-space equations of a nonlinear, multirate system are:

& …x t f x t x k x k u t t

x k f x t x k

m m() = () () () ()()
+ = () ()

, , , , ,

() ,

1 1

1 1 1 1 11 ,, , , ,

() , , , , ,

…

M M

…

x k u t t

x k f x t x k x k u t

m m

m m i m m

() ()()

+ = () () () ()1 1 1 tt

y t g x t x k x k u t tm m

()
() = () () () ()(), , , , ,1 1 …

where k1,..., km are integer values and tk
1

,..., tk
m

 are discrete times.

The linearized equations that approximate this nonlinear system as a single-rate discrete
model are:

d d d

d d d

x A x B u

y C x D u

k k k

k k k

+ ª +

ª +

1

The rate of the linearized model is typically the least common multiple of the sample
times, which is usually the slowest sample time.

For more information, see “Linearization of Multirate Models”.

Perturbation of Individual Blocks
Simulink Control Design software linearizes blocks that do not have a preprogrammed
linearization using numerical perturbation. The software computes the block linearization
by numerically perturbing the states and inputs of the block about the operating point of
the block.

The block perturbation algorithm introduces a small perturbation to the nonlinear block
and measures the response to this perturbation. The default difference between the

perturbed value and the operating point value is 10 1
5-

+()x , where x is the operating
point value. The software uses this perturbation and the resulting response to compute

 Exact Linearization Algorithm

2-211

the linear state-space of this block. For information on how to change perturbation levels
for individual blocks, see “Change Perturbation Level of Blocks Perturbed During
Linearization” on page 2-183.

In general, a continuous-time nonlinear Simulink block in state-space form is given by:

&x t f x t u t t

y t g x t u t t

() (), (),

() (), (), .

= ()

= ()

In these equations, x(t) represents the states of the block, u(t) represents the inputs of the
block, and y(t) represents the outputs of the block.

A linearized model of this system is valid in a small region around the operating point
t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

To describe the linearized block, define a new set of variables of the states, inputs, and
outputs centered about the operating point:

d

d

d

x t x t x

u t u t u

y t y t y

() ()

() ()

() ()

= -

= -

= -

0

0

0

The linearized state-space equations in terms of these new variables are:

d d d

d d d

&x t A x t B u t

y t C x t D u t

() () ()

() () ()

= +

= +

A linear time-invariant approximation to the nonlinear system is valid in a region around
the operating point.

The state-space matrices A, B, C, and D of this linearized model represent the Jacobians
of the block.

To compute the state-space matrices during linearization, the software performs these
operations:

1 Perturbs the states and inputs, one at a time, and measures the response of the
system to this perturbation by computing d &x and δy.

2 Linearization

2-212

2 Computes the state-space matrices using the perturbation and the response.

A i
x x

x x
B i

x x

u u

C i
y

x o

p i o

u o

p i o

x

p i p i(:,) , (:,)

(:,)

, ,

, ,

=

-

-

=

-

-

=

& & & &

pp i p i

y

x x
D i

y y

u u

o

p i o

u o

p i o

, ,

, ,

, (:,)
-

-

=

-

-

where

• xp,i is the state vector whose ith component is perturbed from the operating point
value.

• xo is the state vector at the operating point.
• up,i is the input vector whose ith component is perturbed from the operating point

value.
• uo is the input vector at the operating point.
•
&x

xp i,

 is the value of &x at xp,i, uo.
•
&x

up i,

 is the value of &x at up,i, xo.
•
&x

o
 is the value of &x at the operating point.

•
y

xp i,

 is the value of y at xp,i, uo.
•

y
up i,

 is the value of y at up,i, xo.
• yo is the value of y at the operating point.

User-Defined Blocks
All user defined blocks such as S-Function and MATLAB Function blocks, are compatible
with linearization. These blocks are linearized using numerical perturbation.

User-defined blocks do not linearize when these blocks use nondouble precision data
types.

 Exact Linearization Algorithm

2-213

See “Linearize Blocks with Nondouble Precision Data Type Signals” on page 2-185.

Look Up Tables
Regular look up tables are numerically perturbed. Pre-lookup tables have a
preprogrammed (exact) block-by-block linearization.

2 Linearization

2-214

Batch Linearization

• “What Is Batch Linearization?” on page 3-2
• “Choose Batch Linearization Methods” on page 3-5
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Mark Signals of Interest for Batch Linearization” on page 3-13
• “Batch Linearize Model for Parameter Variations at Single Operating Point”

on page 3-20
• “Batch Linearize Model at Multiple Operating Points Derived from Parameter

Variations” on page 3-25
• “Batch Linearize Model at Multiple Operating Points Using linearize Command”

on page 3-28
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41
• “Analyze Command-Line Batch Linearization Results Using Response Plots”

on page 3-48
• “Analyze Batch Linearization Results in Linear Analysis Tool” on page 3-55
• “Specify Parameter Samples for Batch Linearization” on page 3-62
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75
• “Validate Batch Linearization Results” on page 3-90
• “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page 3-91
• “LPV Approximation of a Boost Converter Model” on page 3-117

3

What Is Batch Linearization?
Batch linearization refers to extracting multiple linearizations from a model for various
combinations of I/Os, operating points, and parameter values. Batch linearization lets you
analyze the time-domain, frequency-domain, and stability characteristics of your Simulink
model, or portions of your model, under varying operating conditions and parameter
ranges. You can use the results of batch linearization to design controllers that are robust
against parameter variations, or to design gain-scheduled controllers for different
operating conditions. You can also use batch linearization results to implement linear
parameter varying (LPV) approximations of nonlinear systems using the LPV System
block of Control System Toolbox.

To understand different types of batch linearization, consider the magnetic ball levitation
model, magball. For more information about this model, see “magball Simulink Model”.

You can batch linearize this model by varying any combination of the following:

• I/O sets — Linearize a model using different I/Os to obtain any closed-loop or open-
loop transfer function.

For the magball model, some of the transfer functions that you can extract by
specifying different I/O sets include:

• Magnetic ball plant model, controller model
• Closed-loop transfer function from the Reference Signal to the plant output, h
• Open-loop transfer function for the controller and magnetic ball plant combined;

that is, the transfer function from the Error Signal to h with the feedback loop
opened

• Output disturbance rejection model or sensitivity transfer function, obtained at the
outport of Magnetic Ball Plant block

• Operating points — In nonlinear models, the model dynamics vary depending on the
operating conditions. You can linearize a nonlinear model at different operating points

3 Batch Linearization

3-2

to study how model dynamics vary or to design controllers for different operating
conditions.

For an example of model dynamics that vary depending on the operating point,
consider a simple unforced hanging pendulum with angular position and velocity as
states. This model has two equilibrium points, one when the pendulum hangs
downward, which is stable, and another when the pendulum points upward, which is
unstable. Linearizing close to the stable operating point produces a stable model,
whereas linearizing this model close to the unstable operating point produces an
unstable model.

For the magball model, which uses the ball height as a state, you can obtain multiple
linearizations for varying initial ball heights.

• Parameters — Parameters configure a Simulink model in several ways. For example,
you can use parameters to specify model coefficients or controller sample times. You
can also use a discrete parameter, such as the control input to a Multiport Switch
block, to control the data path within a model. Therefore, varying a parameter can
serve a range of purposes, depending on how the parameter contributes to the model.

For the magball model, you can vary the parameters of the PID Controller block,
Controller/PID Controller. The linearizations obtained by varying these
parameters show how the controller affects the control-system dynamics. Alternatively,
you can vary the magnetic ball plant parameter values to determine the controller
robustness to variations in the plant model. You can also vary the parameters of the
input block, Desired Height, and study the effects of varying input levels on the
model response.

If the parameters affect the model operating point, you can batch trim the model using
the parameter samples and then batch linearize the model at the resulting operating
points.

See Also
LPV System

More About
• “Choose Batch Linearization Methods” on page 3-5
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10

 See Also

3-3

• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”
on page 3-75

• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page
3-20

• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41

• “LPV Approximation of a Boost Converter Model” on page 3-117

3 Batch Linearization

3-4

Choose Batch Linearization Methods
Simulink Control Design software provides multiple tools and methods for batch
linearization. Which tool and method you choose depends on your application
requirements and software preferences. The following table describes the batch
linearization workflows supported by Simulink Control Design software.

Application Description Operating Point
Computation Options

Linearization Workflow

Your model has more than
one operating condition that
does not depend on any
varying model parameters.
Use this approach when the
model operating conditions
depend only on the model
states and inputs.

• Batch trim your model
for multiple operating
point specifications,
using a single model
compilation when
possible. Batch trimming
is not supported in the
Linear Analysis Tool.

• Trim the model
separately for each
operating point
specification, which
requires multiple model
compilations. Use this
option with the Linear
Analysis Tool.

• Compute operating
points at multiple
simulation snapshot
times.

1 Compute operating
points.

2 Batch linearize the
model at all operating
points.

For an example, see:

• “Batch Linearize Model
at Multiple Operating
Points Using linearize
Command” on page 3-
28

 Choose Batch Linearization Methods

3-5

Application Description Operating Point
Computation Options

Linearization Workflow

Your model has a single
operating condition, and you
want to linearize the model
at this operating point for
varying model parameters.
Examples of such an
application include:

• Studying the effect of
component tolerances on
model dynamics.

• Examining controller
robustness to variations
in plant parameters.

• Trim the model for a
single operating point
specification.

• Compute an operating
point at a simulation
snapshot time.

1 Compute operating
point.

2 Define parameter
values for linearization.

3 Batch linearize the
model at the computed
operating point for the
specified parameter
variations.

For an example, see:

• “Batch Linearize Model
for Parameter Value
Variations Using Linear
Analysis Tool” on page 3-
75

• “Batch Linearize Model
for Parameter Variations
at Single Operating
Point” on page 3-20

3 Batch Linearization

3-6

Application Description Operating Point
Computation Options

Linearization Workflow

Your model has multiple
operating conditions that
depend on the values of
varying model parameters.
Use this approach when
creating linear time-varying
(LTV) models.

• Batch trim your model
for the varying
parameter values, using
a single model
compilation when
possible. Batch trimming
is not supported in the
Linear Analysis Tool.

• Trim the model
separately for each
parameter value
combination, which
requires multiple model
compilations. Use this
option with the Linear
Analysis Tool.

• Compute an operating
point at a simulation
snapshot for each
parameter value
combination.

1 Define parameter
values for trimming.

2 Compute operating
points for the specified
parameter value
variations.

3 Batch linearize the
model at the computed
operating points using
the corresponding
parameter value
combinations.

For an example, see:

• “Batch Linearize Model
at Multiple Operating
Points Derived from
Parameter Variations” on
page 3-25

• “LPV Approximation of a
Boost Converter Model”
on page 3-117

In addition to varying operating points and model parameters, you can obtain multiple
transfer functions from your system by varying the linearization I/O configuration using
an slLinearizer interface. You can do so for a model with a single operating point and
no parameter variation, and also for any of the batch linearization options in the
preceding table. For more information, see “Vary Operating Points and Obtain Multiple
Transfer Functions Using slLinearizer Interface” on page 3-41 and “Vary Parameter
Values and Obtain Multiple Transfer Functions” on page 3-32.

Choose Batch Linearization Tool
You can perform batch linearization using the Linear Analysis Tool or at the MATLAB
command line using either the linearize function or an slLinearizer interface. Use
the following table to choose a batch linearization tool.

 Choose Batch Linearization Methods

3-7

Reasons to Use Linear
Analysis Tool

Reasons to Use
linearize

Reasons to Use
slLinearizer

• You are new to Simulink
Control Design software.

• You have experience with
the Linear Analysis Tool.

• You do not want to batch
trim your model, which is
not supported in the
Linear Analysis Tool.

• You are new to Simulink
Control Design or have
experience with Linear
Analysis Tool, and you
prefer to work at the
command line or in a
repeatable script.

The workflow for using
linearize closely
mirrors the workflow for
linearizing models using
the Linear Analysis Tool.
When you generate
MATLAB code from the
Linear Analysis Tool to
reproduce your session
programmatically, this
code uses linearize.
You can easily modify
this code to batch
linearize a model.

• You are extracting
linearizations for a single
transfer function; that is,
only one I/O set.

• You want to obtain
multiple open-loop and
closed-loop transfer
functions without
modifying the model or
creating a linearization
I/O set (using linio) for
each transfer function.

• You want to obtain
multiple open-loop and
closed-loop transfer
functions without
recompiling the model
for each transfer
function.

You can also obtain
multiple open-loop and
closed-loop transfer
functions using
linearize or the Linear
Analysis Tool. However,
the software recompiles
the model each time you
change the I/O set.

See Also

More About
• “What Is Batch Linearization?” on page 3-2
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75

3 Batch Linearization

3-8

• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page
3-20

• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on
page 3-28

• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41

 See Also

3-9

Batch Linearization Efficiency When You Vary Parameter
Values

You can use the Simulink Control Design linearization tools to efficiently batch linearize a
model at varying model parameter values. If all the model parameters you vary are
tunable, the linearization tools use a single model compilation to compute linearizations
for all parameter grid points.

Tunable and Nontunable Parameters
The term tunable parameters refers to parameters whose values you can change during
model simulation without recompiling the model. In general, only parameters that
represent mathematical variables are tunable. Common tunable parameters include the
Gain parameter of the Gain block, PID gains of the PID Controller block, and Numerator
and Denominator coefficients of the Transfer Fcn block.

In contrast, when you vary the value of nontunable parameters, the linearization tools
compile the model for each parameter grid point. This repeated compilation makes batch
linearization slower. Parameters that specify the appearance or structure of a block, such
as the number of inputs of a Sum block, are not tunable. Parameters that specify when a
block is evaluated, such as a block's sample time or priority, are also not tunable.

Controlling Model Recompilation
By default, the linearization tools compute all linearizations with a single compilation
whenever it is possible to do so, i.e., whenever all parameters are tunable. If the software
detects nontunable parameters specified for variation, it issues a warning and recompiles
the model for each parameter-grid point. You can change this default behavior at the
command line using the AreParamsTunable option of linearizeOptions. In the

Linear Analysis Tool, click More Options and use the Recompile the model when
parameter values are varied for linearization option. The following table describes
how these options affect the recompilation behavior.

3 Batch Linearization

3-10

 All varying
parameters are
tunable

Some varying
parameters are not
tunable

• Command line: AreParamsTunable =
true (default)

• Linear Analysis Tool: Recompile the
model when parameter values are
varied for linearization is unchecked
(default)

Linearizations are
computed for all
parameter-grid points
with a single
compilation.

Model is recompiled
for each parameter-
grid point. Software
issues a warning.

• Command line: AreParamsTunable =
false

• Linear Analysis Tool: Recompile the
model when parameter values are
varied for linearization is checked

Model is recompiled
for each parameter-
grid point.

Model is recompiled
for each parameter-
grid point. Warning
is suppressed.

Suppose that you are performing batch linearization by varying the values of tunable
parameters and notice that the software is recompiling the model more than necessary. To
ensure that linearizations are computed with a single compilation whenever possible,
make sure that:

• At the command line, the AreParamsTunable option is set to true.
• In Linear Analysis Tool, Recompile the model when parameter values are varied

for linearization is unchecked.

See Also
linearize | linearizeOptions | slLinearizer

More About
• “Set Block Parameter Values” (Simulink)
• “Model Parameters” (Simulink)
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page

3-20

 See Also

3-11

• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
• “Specify Parameter Samples for Batch Linearization” on page 3-62

3 Batch Linearization

3-12

Mark Signals of Interest for Batch Linearization
When batch linearizing a model using an slLinearizer interface, you can mark signals
of interest using analysis points. You can then analyze the response of your system at any
of these points using functions such as getIOTransfer and getLoopTransfer.

Alternatively, if you are batch linearizing your model using the:

• Linear Analysis Tool, specify analysis points as shown in “Specify Portion of Model to
Linearize in Linear Analysis Tool” on page 2-29.

• linearize command, specify analysis points using linio.

For more information on selecting a batch linearization tool, see “Choose Batch
Linearization Methods” on page 3-5.

Analysis Points
Analysis points identify locations within a Simulink model that are relevant for linear
analysis. Each analysis point is associated with a signal that originates from the outport of
a Simulink block. For example, in the following model, the reference signal r and the
control signal u are analysis points that originate from the outputs of the setpoint and C
blocks respectively.

Each analysis point can serve one or more of the following purposes:

• Input — The software injects an additive input signal at an analysis point, for
example, to model a disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the
impact of a disturbance on the plant output.

• Loop Opening — The software interprets a break in the signal flow at a point, for
example, to study the open-loop response at the plant input.

 Mark Signals of Interest for Batch Linearization

3-13

When you use an analysis point for more than one purpose, the software applies the
purposes in this sequence: output measurement, then loop opening, then input.

Using analysis points, you can extract open-loop and closed-loop responses from a
Simulink model. You can also specify requirements for control system tuning using
analysis points. For more information, see “Mark Signals of Interest for Control System
Analysis and Design” on page 2-51.

Specify Analysis Points
You can mark analysis points either explicitly in the Simulink model, or programmatically
using the addPoint command for an slLinearizer interface.

Mark Analysis Points in Simulink Model

To mark an analysis point explicitly in the model, right-click a signal and, under Linear
Analysis Points, select an analysis point type.

3 Batch Linearization

3-14

You can select any of the following closed-loop analysis point types, which are equivalent
within an slLinearizer interface.

• Input Perturbation

 Mark Signals of Interest for Batch Linearization

3-15

• Output Measurement
• Sensitivity
• Complementary Sensitivity

If you want to introduce a permanent loop opening at a signal as well, select one of the
following open-loop analysis point types:

• Open-Loop Input
• Open-Loop Output
• Loop Transfer
• Loop Break

When you define a signal as an open-loop point, analysis functions such as
getIOTransfer always enforce a loop break at that signal during linearization. All open-
loop analysis point types are equivalent within an slLinearizer interface. For more
information on how the software treats loop openings during linearization, see “How the
Software Treats Loop Openings” on page 2-42.

When you create an slLinearizer interface for a model, any analysis points defined in
the model are automatically added to the interface. If you defined an analysis point using:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent

opening.

Mark Analysis Points Programmatically

To mark analysis points programmatically, use the addPoint command. For example,
consider the scdcascade model.

open_system('scdcascade')

3 Batch Linearization

3-16

To mark analysis points, first create an slLinearizer interface.

sllin = slLinearizer('scdcascade');

To add a signal as an analysis point, use the addPoint command, specifying the source
block and port number for the signal.

addPoint(sllin,'scdcascade/C1',1);

If the source block has a single output port, you can omit the port number.

addPoint(sllin,'scdcascade/G2');

For convenience, you can also mark analysis points using the:

• Name of the signal.

addPoint(sllin,'y2');

• Combined source block path and port number.

addPoint(sllin,'scdcascade/C1/1')

• End of the full source block path when unambiguous.

addPoint(sllin,'G1/1')

You can also add permanent openings to an slLinearizer interface using the
addOpening command, and specifying signals in the same way as for addPoint. For

 Mark Signals of Interest for Batch Linearization

3-17

more information on how the software treats loop openings during linearization, see
“How the Software Treats Loop Openings” on page 2-42.

addOpening(sllin,'y1m');

You can also define analysis points by creating linearization I/O objects using the linio
command.

io(1) = linio('scdcascade/C1',1,'input');
io(2) = linio('scdcascade/G1',1,'output');
addPoint(sllin,io);

As when you define analysis points directly in your model, if you specify a linearization I/O
object with:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent

opening.

Refer to Analysis Points
Once you have marked analysis points in an slLinearizer interface, you can analyze
the response at any of these points using the following analysis functions:

• getIOTransfer — Transfer function for specified inputs and outputs
• getLoopTransfer — Open-loop transfer function from an additive input at a
specified point to a measurement at the same point

• getSensitivity — Sensitivity function at a specified point
• getCompSensitivity — Complementary sensitivity function at a specified point

To view the available analysis points in an slLinearizer interface, use the getPoints
command.

getPoints(sllin)

ans =

 3x1 cell array

 {'scdcascade/C1/1[u1]'}
 {'scdcascade/G2/1[y2]'}

3 Batch Linearization

3-18

 {'scdcascade/G1/1[y1]'}

To use an analysis point with an analysis function, you can specify an unambiguous
abbreviation of the analysis point name returned by getPoints. For example, compute
the transfer function from u1 to y1, and find the sensitivity to a disturbance at the output
of block G2.

ioSys = getIOTransfer(sllin,'u1','y1');
sensG2 = getSensitivity(sllin,'G2');

See Also
addOpening | addPoint | getPoints | slLinearizer

More About
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-51

 See Also

3-19

Batch Linearize Model for Parameter Variations at
Single Operating Point

In this example, you vary model parameters and linearize a model at its nominal
operating conditions using the linearize command.

You can batch linearize a model for parameter variations at a single operating point to
study:

• Plant dynamics for varying component tolerances.
• Controller robustness to variations in plant parameters.
• Transient responses for varying controller gains.

The scdcascade model contains two cascaded feedback control loops. Each loop
includes a PI controller. The plant models, G1 and G2, are LTI models.

For this model, the model operating point represents the nominal operating conditions of
the system. Therefore, you do not have to trim the model before linearization. If your
application includes parameter variations that affect the operating point of the model, you
must first batch trim the model for the parameter variations. Then, you can linearize the
model at the trimmed operating points. For more information, see “Batch Linearize Model
at Multiple Operating Points Derived from Parameter Variations” on page 3-25.

To examine the effects of varying the outer-loop controller gains, linearize the model at
the nominal operating point for each combination of gain values.

Open the model.

sys = 'scdcascade';
open_system(sys)

3 Batch Linearization

3-20

Define linearization input and output points for computing the closed-loop input/output
response of the system.

io(1) = linio('scdcascade/setpoint',1,'input');
io(2) = linio('scdcascade/Sum',1,'output');

io(1), the signal originating at the outport of the setpoint block, is the reference
input. io(2), the signal originating at the outport of the Sum block, is the system output.

To extract multiple open-loop and closed-loop transfer functions from the same model,
batch linearize the system using an slLinearizer interface. For more information, see
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32.

Vary the outer-loop controller gains, Kp1 and Ki1, within 20% of their nominal values.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);
[Kp1_grid,Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

Create a parameter structure with fields Name and Value. Name indicates which the
variable to vary in the model workspace, the MATLAB® workspace, or a data dictionary.

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

 Batch Linearize Model for Parameter Variations at Single Operating Point

3-21

params is a 6-by-4 parameter value grid, where each grid point corresponds to a unique
combination of Kp1 and Ki1 values.

Obtain the closed-loop transfer function from the reference input to the plant output for
the specified parameter values. If you do not specify an operating point, linearize uses
the current model operating point.

G = linearize(sys,io,params);

G is a 6-by-4 array of linearized models. Each entry in the array contains a linearization
for the corresponding parameter combination in params. For example, G(:,:,2,3)
corresponds to the linearization obtained by setting the values of the Kp1 and Ki1
parameters to Kp1_grid(2,3) and Ki1_grid(2,3), respectively. The set of parameter
values corresponding to each entry in the model array G is stored in the SamplingGrid
property of G. For example, examine the corresponding parameter values for linearization
G(:,:,2,3):

G(:,:,2,3).SamplingGrid

ans =

 struct with fields:

 Kp1: 0.1386
 Ki1: 0.0448

To study the effects of the varying gain values, analyze the linearized models in G. For
example, examine the step responses for all Kp2 values and the third Ki1 value.

stepplot(G(:,:,:,3))

3 Batch Linearization

3-22

See Also
linearize | linio | ndgrid

More About
• “watertank Simulink Model”
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Specify Parameter Samples for Batch Linearization” on page 3-62
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page

3-48

 See Also

3-23

• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on
page 3-28

• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”
on page 3-75

• “LPV Approximation of a Boost Converter Model” on page 3-117

3 Batch Linearization

3-24

Batch Linearize Model at Multiple Operating Points
Derived from Parameter Variations

If your application includes parameter variations that affect the operating point of the
model, you must batch trim the model for the parameter variations before linearization.
Use this batch linearization approach when computing linear models for linear
parameter-varying systems.

For more information on batch trimming models for parameter variations, see “Batch
Compute Steady-State Operating Points for Parameter Variation” on page 1-65.

Open the Simulink model.

sys = 'watertank';
open_system(sys)

Vary parameters A and b within 10% of their nominal values. Specify three values for A
and four values for b, creating a 3-by-4 value grid for each parameter.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each
parameter.

params(1).Name = 'A';
params(1).Value = A_grid;

 Batch Linearize Model at Multiple Operating Points Derived from Parameter Variations

3-25

params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the mode that specifies that both model
states are unknown and must be at steady state in the trimmed operating point.

opspec = operspec(sys);

Trim the model using the specified operating point specification, parameter grid, and
option set. Suppress the display of the operating point search report.

opt = findopOptions('DisplayReport','off');
[op,opreport] = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination using only one model
compilation. op is a 3-by-4 array of operating point objects that correspond to the
specified parameter grid points.

To compute the closed-loop input/output transfer function for the model, define the
linearization input and output points as the reference input and model output,
respectively.

io(1) = linio('watertank/Desired Water Level',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

To extract multiple open-loop and closed-loop transfer functions from the same model,
batch linearize the system using an slLinearizer interface. For more information, see
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32.

Batch linearize the model at the trimmed operating points using the specified I/O points
and parameter variations.

G = linearize(sys,op,io,params);

G is a 3-by-4 array of linearized models. Each entry in the array contains a linearization
for the corresponding parameter combination in params. For example, G(:,:,2,3)
corresponds to the linearization obtained by setting the values of the A and b parameters
to A_grid(2,3) and b_grid(2,3), respectively. The set of parameter values
corresponding to each entry in the model array G is stored in the SamplingGrid
property of G. For example, examine the corresponding parameter values for linearization
G(:,:,2,3):

G(:,:,2,3).SamplingGrid

3 Batch Linearization

3-26

ans =

 struct with fields:

 A: 20
 b: 5.1667

When batch linearizing for parameter variations, you can obtain the linearization offsets
that correspond to the linearization operating points. To do so, set the StoreOffsets
linearization option.

opt = linearizeOptions('StoreOffsets',true);

Linearize the model using the specified parameter grid, and return the linearization
offsets in the info structure.

[G,~,info] = linearize('watertank',io,params,opt);

You can then use the offsets to configure an LPV System block. To do so, you must first
convert the offsets to the required format. For an example, see “LPV Approximation of a
Boost Converter Model” on page 3-117.

offsets = getOffsetsForLPV(info);

See Also
findop | linearize | linio | ndgrid

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Specify Parameter Samples for Batch Linearization” on page 3-62
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page

3-48
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75
• “LPV Approximation of a Boost Converter Model” on page 3-117

 See Also

3-27

Batch Linearize Model at Multiple Operating Points
Using linearize Command

This example shows how to use the linearize command to batch linearize a model at
varying operating points.

Obtain the plant transfer function, modeled by the Water-Tank System block, for the
watertank model. You can analyze the batch linearization results to study the operating
point effects on the model behavior.

Open the model.

open_system('watertank')

Specify the linearization I/Os.

ios(1) = linio('watertank/PID Controller',1,'input');
ios(2) = linio('watertank/Water-Tank System',1,'openoutput');

ios(2) specifies an open-loop output point; the loop opening eliminates the effects of
feedback.

You can linearize the model using trimmed operating points, the model initial condition,
or simulation snapshot times. For this example, linearize the model at specified simulation
snapshot times.

ops_tsnapshot = [1,20];

3 Batch Linearization

3-28

Obtain the transfer function for the Water-Tank System block, linearizing the model at the
specified operating points.

T = linearize('watertank',ios,ops_tsnapshot);

T is a 2 x 1 array of linearized continuous-time state-space models. The software
computes the T(:,:,1) model by linearizing watertank at ops_tsnapshot(1), and
T(:,:,2) by linearizing watertank at ops_tsnapshot(2).

Use Control System Toolbox analysis commands to examine the properties of the
linearized models in T. For example, examine the step response of the plant at both
snapshot times.

stepplot(T)

 Batch Linearize Model at Multiple Operating Points Using linearize Command

3-29

See Also
findop | linearize | linio | stepplot

More About
• “watertank Simulink Model”
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page

1-61
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page

3-20

3 Batch Linearization

3-30

• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page
3-48

 See Also

3-31

Vary Parameter Values and Obtain Multiple Transfer
Functions

This example shows how to use the slLinearizer interface to batch linearize a
Simulink® model. You vary model parameter values and obtain multiple open-loop and
closed-loop transfer functions from the model.

You can perform the same analysis using the linearize command. However, when you
want to obtain multiple open-loop and closed-loop transfer functions, especially for
models that are expensive to compile repeatedly, slLinearizer can be more efficient.

Since the parameter variations in this example do not affect the operating point of the
model, you batch linearize the model at a single operating point. If your application uses
parameter variations that affect the model operating point, first trim the model for each
parameter value combination. For an example that uses the linearize command, see
“Batch Linearize Model at Multiple Operating Points Derived from Parameter Variations”
on page 3-25.

Create slLinearizer Interface for Model

The scdcascade model used for this example contains a pair of cascaded feedback
control loops. Each loop includes a PI controller. The plant models, G1 (outer loop) and G2
(inner loop), are LTI models.

Use the slLinearizer interface to analyze the inner-loop and outer-loop dynamics.

Open the model.

mdl = 'scdcascade';
open_system(mdl);

3 Batch Linearization

3-32

Use the slLinearizer command to create the interface.

sllin = slLinearizer(mdl)

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The Command Window display shows information about the slLinearizer interface. In
this interface, no parameters to vary are yet specified, so the Paramaeters property is
empty.

Vary Inner-Loop Controller Gains

For inner-loop analysis, vary the gains of the inner-loop PI controller block, C2. Vary the
proportional gain (Kp2) and integral gain (Ki2) in the 15% range.

Kp2_range = linspace(Kp2*0.85,Kp2*1.15,6);
Ki2_range = linspace(Ki2*0.85,Ki2*1.15,4);
[Kp2_grid, Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-33

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;
params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

Kp2_range and Ki2_range specify the sample values for Kp2 and Ki2. To obtain a
transfer function for each combination of Kp2 and Ki2, use ndgrid and create a 6 x 4
parameter grid with grid arrays Kp2_grid and Ki2_grid. Configure the Parameters
property of sllin with the structure params. This structure specifies the parameters to
be varied and their grid arrays.

Analyze Closed-Loop Transfer Function for the Inner Loop

The overall closed-loop transfer function for the inner loop is equal to the transfer
function from u1 to y2. To eliminate the effects of the outer loop, you can break the loop
at e1, y1m, or y1. For this example, break the loop at e1.

Add u1 and y2 as analysis points, and e1 as a permanent opening of sllin.

addPoint(sllin,{'y2','u1'});
addOpening(sllin,'e1');

Obtain the transfer function from u1 to y2.

r2yi = getIOTransfer(sllin,'u1','y2');

r2yi, a 6 x 4 state-space model array, contains the transfer function for each specified
parameter combination. The software uses the model initial conditions as the linearization
operating point.

Because e1 is a permanent opening of sllin, r2yi does not include the effects of the
outer loop.

Plot the step response for r2yi.

stepplot(r2yi);

3 Batch Linearization

3-34

The step response for all models varies in the 10% range and the settling time is less than
1.5 seconds.

Analyze Inner-Loop Transfer Function at the Plant Output

Obtain the inner-loop transfer function at y2, with the outer loop open at e1.

Li = getLoopTransfer(sllin,'y2',-1);

Because the software assumes positive feedback by default and scdcascade uses
negative feedback, specify the feedback sign using the third input argument. Now,

. The getLoopTransfer command returns an array of state-space (ss)
models, one for each entry in the parameter grid. The SamplingGrid property of Li
matches the parameter values with the corresponding ss model.

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-35

Plot the bode response for .

bodeplot(Li);

The magnitude plot for all the models varies in the 3-dB range. The phase plot shows the
most variation, approximately 20°, in the [1 10] rad/s interval.

Vary Outer-Loop Controller Gains

For outer-loop analysis, vary the gains of the outer-loop PI controller block, C1. Vary the
proportional gain (Kp1) and integral gain (Ki1) in the 20% range.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);

3 Batch Linearization

3-36

[Kp1_grid, Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

sllin.Parameters = params;

Similar to the workflow for configuring the parameter grid for inner-loop analysis, create
the structure, params, that specifies a 6 x 4 parameter grid. Reconfigure
sllin.Parameters to use the new parameter grid. sllin now uses the default values
for Kp2 and Ki2.

Analyze Closed-Loop Transfer Function from Reference to Plant Output

Remove e1 from the list of permanent openings for sllin before proceeding with outer-
loop analysis.

removeOpening(sllin,'e1');

To obtain the closed-loop transfer function from the reference signal, r, to the plant
output, y1m, add r and y1m as analysis points to sllin.

addPoint(sllin,{'r','y1m'});

Obtain the transfer function from r to y1m.

r2yo = getIOTransfer(sllin,'r','y1m');

Plot the step response for r2yo.

stepplot(r2yo);

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-37

The step response is underdamped for all the models.

Analyze Outer-Loop Sensitivity at Plant Output

To obtain the outer-loop sensitivity at the plant output, add y1 as an analysis point to
sllin.

addPoint(sllin,'y1');

Obtain the outer-loop sensitivity at y1.

So = getSensitivity(sllin,'y1');

Plot the step response of So.

3 Batch Linearization

3-38

stepplot(So)

The plot indicates that it takes approximately 15 seconds to reject a step disturbance at
the plant output, y1.

Obtain Linearization Offsets

When batch linearizing for parameter variations, you can obtain the linearization offsets
that correspond to the linearization operating points. To do so, set the StoreOffsets
linearization option in the slLinearizer interface.

sllin.Options.StoreOffsets = true;

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-39

When you call a linearization function using sllin, you can return linearization offsets in
the info structure.

[r2yi,info] = getIOTransfer(sllin,'u1','y2');

You can then use the offsets to configure an LPV System block. To do so, you must first
convert the offsets to the required format. For an example that uses the linearize
command, see “LPV Approximation of a Boost Converter Model” on page 3-117.

offsets = getOffsetsForLPV(info);

Close the model.

bdclose(mdl);

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | slLinearizer

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Specify Parameter Samples for Batch Linearization” on page 3-62
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page

3-48
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75

3 Batch Linearization

3-40

Vary Operating Points and Obtain Multiple Transfer
Functions Using slLinearizer Interface

This example shows how to use the slLinearizer interface to batch linearize a
Simulink® model. You linearize a model at multiple operating points and obtain multiple
open-loop and closed-loop transfer functions from the model.

You can perform the same analysis using the linearize command. However, when you
want to obtain multiple open-loop and closed-loop transfer functions, especially for
models that are expensive to compile repeatedly, slLinearizer can be more efficient.

Create slLinearizer Interface for Model

Open the model.

mdl = 'watertank';
open_system(mdl);

Use the slLinearizer command to create the interface.

sllin = slLinearizer(mdl)

slLinearizer linearization interface for "watertank":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:

 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface

3-41

 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The command-window display shows information about the slLinearizer interface. In
this interface, the OperatingPoints property display shows that no operating point is
specified.

Specify Multiple Operating Points for Linearization

You can linearize the model using trimmed operating points, the model initial condition,
or simulation snapshot times. For this example, use trim points that you obtain for varying
water-level reference heights.

opspec = operspec(mdl);
opspec.States(2).Known = 1;
opts = findopOptions('DisplayReport','off');

h = [10 15 20];

for ct = 1:numel(h)
 opspec.States(2).x = h(ct);
 Href = h(ct);
 ops(ct) = findop(mdl,opspec,opts);
end

sllin.OperatingPoints = ops;

Here, h specifies the different water-levels. ops is a 1 x 3 array of operating point objects.
Each entry of ops is the model operating point at the corresponding water level.
Configure the OperatingPoints property of sllin with ops. Now, when you obtain
transfer functions from sllin using the getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity functions, the software returns a
linearization for each specified operating point.

Each trim point is only valid for the corresponding reference height, represented by the
Href parameter of the Desired Water Level block. So, configure sllin to vary this
parameter accordingly.

param.Name = 'Href';
param.Value = h;

sllin.Parameters = param;

3 Batch Linearization

3-42

Analyze Plant Transfer Function

In the watertank model, the Water-Tank System block represents the plant. To obtain
the plant transfer function, add the input and output signals of the Water-Tank System
block as analysis points of sllin.

addPoint(sllin,{'watertank/PID Controller','watertank/Water-Tank System'})
sllin

slLinearizer linearization interface for "watertank":

2 Analysis points:

Point 1:
- Block: watertank/PID Controller
- Port: 1
Point 2:
- Block: watertank/Water-Tank System
- Port: 1

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : [1x1 struct], 1 parameters with sampling grid of size 1x3
 "Href", varying between 10 and 20.
 OperatingPoints : [1x3 opcond.OperatingPoint]
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The first analysis point, which originates at the outport of the PID Controller block, is the
input to the Water-Tank System block. The second analysis point is the output of the
Water-Tank System block.

Obtain the plant transfer function from the input of the Water-Tank System block to the
block output. To eliminate the effects of the feedback loop, specify the block output as a
temporary loop opening.

G = getIOTransfer(sllin,'PID','Tank','Tank');

In the call to getIOTransfer, 'PID', a portion of the block name 'watertank/PID
Controller', specifies the first analysis point as the transfer function input. Similarly,
'Tank', a portion of the block name 'watertank/Water-Tank System', refers to the
second analysis point. This analysis point is specified as the transfer function output
(third input argument) and a temporary loop opening (fourth input argument).

 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface

3-43

The output, G, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for G.

stepplot(G);

The step response of the plant models varies significantly at the different operating
points.

Analyze Closed-Loop Transfer Function

The closed-loop transfer function is equal to the transfer function from the reference
input, originating at the Desired Water Level block, to the plant output.

Add the reference input signal as an analysis point of sllin.

3 Batch Linearization

3-44

addPoint(sllin,'watertank/Desired Water Level');

Obtain the closed-loop transfer function.

T = getIOTransfer(sllin,'Desired','Tank');

The output, T, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for T.

stepplot(T);

Although the step response of the plant transfer function varies significantly at the three
trimmed operating points, the controller brings the closed-loop responses much closer
together at all three operating points.

 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface

3-45

Analyze Sensitivity at Plant Output

S = getSensitivity(sllin,'Tank');

The software injects a disturbance signal and measures the output at the plant output. S
is a 1 x 3 array of continuous-time state-space models.

Plot the step response for S.

stepplot(S);

3 Batch Linearization

3-46

The plot indicates that both models can reject a step disturbance at the plant output
within 40 seconds.

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | slLinearizer

More About
• “watertank Simulink Model”
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page

1-61
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page

3-48

 See Also

3-47

Analyze Command-Line Batch Linearization Results
Using Response Plots

This example shows how to plot and analyze the step response for batch linearization
results obtained at the command line. The term batch linearization results refers to the
ss model array returned by the slLinearizer interface or linearize function. This
array contains linearizations for varying parameter values, operating points, or both, such
as illustrated in “Batch Linearize Model for Parameter Variations at Single Operating
Point” on page 3-20 and “Vary Operating Points and Obtain Multiple Transfer Functions
Using slLinearizer Interface” on page 3-41. You can use the techniques illustrated in this
example to analyze the frequency response, stability, or sensitivity for batch linearization
results.

Obtain Batch Linearization Results

Load the batch linearization results saved in scd_batch_lin_results1.mat.

The following code obtains linearizations of the watertank model for four simulation
snapshot times, t = [0 1 2 3]. At each snapshot time, the model parameters, A and b,
are varied. The sample values for A are [10 20 30], and the sample values for b are [4
6]. The slLinearizer interface includes analysis points at the reference signal and
plant output.
open_system('watertank')
sllin = slLinearizer('watertank',{'watertank/Desired Water Level',...
 'watertank/Water-Tank System'})

[A_grid,b_grid] = ndgrid([10,20,30],[4 6]);
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

sllin.Parameters = params;
sllin.OperatingPoints = [0,1,2,3];

linsys = getIOTransfer(sllin,'Desired Water Level','Water-Tank System');

linsys, a 4-by-3-by-2 ss model array, contains the closed-loop transfer function of the
linearized watertank model from the reference input to the plant output. The operating
point varies along the first array dimension of linsys, and the parameters A and b vary
along the second and third dimensions, respectively.

3 Batch Linearization

3-48

Plot Step Responses of the Linearized Models

stepplot(linsys)

The step plot shows the responses of every model in the array. This plot shows the range
of step responses of the system in the operating ranges covered by the parameter grid
and snapshot times.

View Parameters and Snapshot Time of a Response

To view the parameters associated with a particular response, click the response on the
plot.

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-49

A data tip appears on the plot, providing information about the selected response and the
related model. The last lines of the data tip show the parameter combination and
simulation snapshot time that yielded this response. For example, in this previous plot,
the selected response corresponds to the model obtained by setting A to 30 and b to 4.
The software linearized the model after simulating the model for three time units.

View Step Response of Subset of Results

Suppose you want to view the responses for models linearized at a specific simulation
snapshot time, such as two time units. Right-click the plot and select Array Selector. The
Model Selector for LTI Arrays dialog box opens.

3 Batch Linearization

3-50

The Selection Criterion Setup panel contains three columns, one for each model array
dimension of linsys. The first column corresponds to the simulation snapshot time. The
third entry of this column corresponds to the simulation snapshot time of two time units,
because the snapshot time array was [0,1,2,3]. Select only this entry in the first
column.

Click OK. The plot displays the responses for only the models linearized at two time units.

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-51

Plot Step Response for Specific Parameter Combination and Snapshot Time

Suppose you want to examine only the step response for the model obtained by
linearizing the watertank model at t = 3, for A = 10 and b = 4. To do so, you can use
the SamplingGrid property of linsys, which is specified as a structure. When you
perform batch linearization, the software populates SamplingGrid with information
regarding the variable values used to obtain the model. The variable values include each
parameter that you vary and the simulation snapshot times at which you linearize the
model. For example:

linsys(:,:,1).SamplingGrid

ans =

 A: 10
 b: 4
 Time: 0

Here linsys(:,:,1) refers to the first model in linsys. This model was obtained at
simulation time t = 0, for A = 10 and b = 4.

3 Batch Linearization

3-52

Use array indexing to extract from linsysthe model obtained by linearizing the
watertank model at t = 3, for A = 10 and b = 4.

sg = linsys.SamplingGrid;
sys = linsys(:,:,sg.A == 10 & sg.B == 4 & sg.Time == 3);

The structure, sg, contains the sampling grid for all the models in linsys. The
expression sg.A == 10 & sg.B == 4 & sg.Time == 3 returns a logical array. Each
entry of this array contains the logical evaluation of the expression for corresponding
entries in sg.A, sg.B, and sg.Time. sys, a model array, contains all the linsys models
that satisfy the expression.

View the step response for sys.

stepplot(sys)

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-53

See Also

Related Examples
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page

3-20
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

Interface” on page 3-41
• “Analyze Batch Linearization Results in Linear Analysis Tool” on page 3-55
• “Validate Batch Linearization Results” on page 3-90

3 Batch Linearization

3-54

Analyze Batch Linearization Results in Linear Analysis
Tool

This example shows how to use response plots to analyze batch linearization results in
Linear Analysis Tool. The term batch linearization results refers to linearizations for
varying parameter values, such as illustrated in “Batch Linearize Model for Parameter
Value Variations Using Linear Analysis Tool” on page 3-75. You can use the techniques
illustrated in this example to analyze the frequency response, stability, and other system
characteristics for batch linearization results.

View Parameters of a Response

For this example, suppose that you have batch linearized a model as described in “Batch
Linearize Model for Parameter Value Variations Using Linear Analysis Tool” on page 3-
75. You have generated a step response plot of an array of linear models computed for a
2-D parameter grid, with variations of outer-loop controller gains Ki1 and Kp1.

When you perform batch linearization, Linear Analysis Tool generates a plot showing the
responses of all linear models resulting from the linearization. You choose the response
plot type, such as Step, Bode, or Nyquist, when you linearize. You can create additional
plots at any time as described in “Analyze Results Using Linear Analysis Tool Response
Plots” on page 2-149.

To view the parameters associated with a particular response, click the response on the
plot.

 Analyze Batch Linearization Results in Linear Analysis Tool

3-55

A data tip appears on the plot, providing information about the selected response and the
related model. The last lines of the data tip show the parameter combination that yielded
this response. For example, in this plot, the selected response corresponds to the model
obtained by setting Kp1 to 0.07875 and Ki1 to 0.061.

View Step Response of Subset of Results

Suppose you want to view the responses for only the models linearized at a specific Ki1
value, the middle value Ki1 = 0.0410. Right-click the plot and select Array Selector.
The Model Selector for LTI Arrays dialog box opens.

3 Batch Linearization

3-56

The Selection Criterion Setup panel contains two columns, one for each model array
dimension of linsys1. Linear Analysis Tool flattens the 2-D parameter grid into a one-
dimensional array, so that variations in both Kp1 and Ki1 are represented along the
indices shown in column 1. To determine which entries in this array correspond to Ki1 =
0.0410, examine the Parameter Variations table.

 Analyze Batch Linearization Results in Linear Analysis Tool

3-57

The Ki1 = 0.0410 values are the seventh to twelfth entries in this table. Therefore, you
want to select array indices 7–12.

In the Model Selector for LTI Arrays dialog box, enter [7:12] in the field below column
1. The selection in the column changes to reflect this subset of the array.

3 Batch Linearization

3-58

Click OK. The step plot displays responses only for the models with Ki1 = 0.0410.

 Analyze Batch Linearization Results in Linear Analysis Tool

3-59

Export Array to MATLAB Workspace

You can export the model array to the MATLAB workspace to perform further analysis or
control design. To do so, in the Linear Analysis Tool, in the Data Browser, drag the array
from Linear Analysis Workspace to the MATLAB workspace.

3 Batch Linearization

3-60

You can then use Control System Toolbox control design tools, such as the Linear System
Analyzer (Control System Toolbox) app, to analyze linearization results. Or, use Control
System Toolbox control design tools, such as pidtune or Control System Designer, to
design controllers for the linearized systems.

See Also

More About
• “What Is Batch Linearization?” on page 3-2
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75

 See Also

3-61

Specify Parameter Samples for Batch Linearization
About Parameter Samples
Block parameters configure a Simulink model in several ways. For example, you can use
block parameters to specify various coefficients or controller sample times. You can also
use a discrete parameter, like the control input to a Multiport Switch block, to control the
data path within a model. Varying the value of a parameter helps you understand its
impact on the model behavior.

When using any of the Simulink Control Design linearization tools (or tuning with
slTuner or Control System Tuner) you can specify a set of block parameter values at
which to linearize the model. The full set of values is called a parameter grid or
parameter samples. The tools batch-linearize the model, computing a linearization for
each value in the parameter grid. You can vary multiple parameters, thus extending the
parameter grid dimension. When using the command-line linearization tools, the
linearize command or the slLinearizer or slTuner interfaces, you specify the
parameter samples using a structure with fields Name and Value. In the Linear Analysis
Tool or Control System Tuner, you use the graphical interface to specify parameter
samples.

Which Parameters Can Be Sampled?
You can vary any model parameter whose value is given by a variable in the model
workspace, the MATLAB workspace, or a data dictionary. In cases where the varying
parameters are all tunable (Simulink), the linearization tools require only one model
compilation to compute transfer functions for varying parameter values. This efficiency is
especially advantageous for models that are expensive to compile repeatedly.

For more information, see “Batch Linearization Efficiency When You Vary Parameter
Values” on page 3-10.

Vary Single Parameter at the Command Line
To vary the value of a single parameter for batch linearization with linearize,
slLinearizer, or slTuner, specify the parameter grid as a structure having two fields.
The Name field contains the name of the workspace variable that specifies the parameter.
The Value field contains a vector of values for that parameter to take during
linearization.

3 Batch Linearization

3-62

For example, the Watertank model has three parameters defined as MATLAB workspace
variables, a, b, and A. The following commands specify a parameter grid for the single
parameter for A.

param.Name = 'A';
param.Value = Avals;

Here, Avals is an array specifying the sample values for A.

The following table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples
Linearly varying param.Value =

linspace(A_min,A_max,num_samples)
Logarithmically varying param.Value =

logspace(A_min,A_max,num_samples)
Random param.Value = rand(1,num_samples)
Custom param.Value = custom_vector

If the variable used by the model is not a scalar variable, specify the parameter name as
an expression that resolves to a numeric scalar value. For example, suppose that Kpid is
a vector of PID gains. The first entry in that vector, Kpid, is used as a gain value in a
block in your model. Use the following commands to vary that gain using the values given
in a vector Kpvals:

param.Name = 'Kpid(1)';
param.Value = Kpvals;

After you create the structure param:

• Pass it to linearize as the param input argument.
• Pass it to slLinearizer as the param input argument, when creating an

slLinearizer interface.
• Set the Parameters property of an existing slLinearizer interface to param.

Vary Single Parameter in Graphical Tools
To specify variations of a single parameter for batch linearization in Linear Analysis Tool,
in the Linear Analysis tab, in the Parameter Variations drop-down list, click Select

 Specify Parameter Samples for Batch Linearization

3-63

parameters to vary. (In Control System Tuner, the Parameter Variations drop-
down list is in the Control System tab.)

Click Manage Parameters. In the Select model variables dialog box, check the
parameter to vary. The table lists all variables in the MATLAB workspace and the model
workspace that are used in the model, whether tunable or not.

3 Batch Linearization

3-64

Note If the parameter is not a scalar variable, click Specify expression indexing if
necessary and enter an expression that resolves to a numeric scalar value. For example,
if A is a vector, enter A(3) to specify the third entry in A. If A is a structure and the scalar
parameter you want to vary is the Value field of that structure, enter A.Value. The
indexed variable appears in the variable list.

Click OK. The selected variable appears in the Parameter Variations table. Use the
table to specify parameter values manually, or generate values automatically.

Manually Specify Parameter Values

To specify the values manually, add rows to the table by clicking Insert Row and
selecting either Insert Row Above or Insert Row Below. Then, edit the values in the
table as needed.

 Specify Parameter Samples for Batch Linearization

3-65

When you return to the Linear Analysis tab and linearize the model, Linear Analysis Tool
linearizes at all parameter values listed in the Parameter Variations table.

Note In Control System Tuner, when you are finished specifying your parameter
variations, you must apply the changes before continuing with tuning. To do so, in the

Parameter Variations tab, click Apply. Control System Tuner applies the specified
parameter variations, relinearizes your model, and updates all existing plots.

Automatically Generate Parameter Values

To generate values automatically, click Generate Values. In the Generate Parameter
Values dialog box, in the Values column, enter an expression for the parameter values

3 Batch Linearization

3-66

you want for the variable. For example, enter an expression such as
linspace(A_min,A_max,num_samples), or [10:2:30].

Click Overwrite to replace the values in the Parameter Variations table with the
generated values.

When you return to the Linear Analysis tab and linearize the model, Linear Analysis Tool
computes a linearization for each of these parameter values.

Note In Control System Tuner, when you are finished specifying your parameter
variations, you must apply the changes before continuing with tuning. To do so, in the

 Specify Parameter Samples for Batch Linearization

3-67

Parameter Variations tab, click Apply. Control System Tuner applies the specified
parameter variations, relinearizes your model, and updates all existing plots.

Multi-Dimension Parameter Grids
When you vary more than one parameter at a time, you generate parameter grids of
higher dimension. For example, varying two parameters yields a parameter matrix, and
varying three parameters yields a 3-D parameter grid. Consider the following parameter
grid:

Here, you vary the values of three parameters, a, b, and c. The samples form a 3-by-4-by-5
grid. When batch linearizing your model, the ss model array, sys, is the batch result.
Similarly, when batch trimming your model, you get an array of operating point objects.

3 Batch Linearization

3-68

Vary Multiple Parameters at the Command Line
To vary the value of multiple parameters for batch linearization with linearize,
slLinearizer, or slTuner, specify parameter samples as a structure array. The
structure has an entry for each parameter whose value you vary. The structure for each
parameter is the same as described in “Vary Single Parameter at the Command Line” on
page 3-62. You can specify the Value field for a parameter to be an array of any
dimension. However, the size of the Value field must match for all parameters.
Corresponding array entries for all the parameters, also referred to as a parameter grid
point, must map to a desired parameter combination. When the software linearizes the
model, it computes a linearization—an ss model—for each grid point. The software
populates the SamplingGrid property of each linearized model with information about
the parameter grid point that the model corresponds to.

Specify Full Grid

Suppose that your model has two parameters whose values you want to vary, a and b:

a a a

b b b

=

=

{ , }

{ , }

1 2

1 2

You want to linearize the model for every combination of a and b, also referred to as a full
grid:

(,), (,)

(,), (,)

a b a b

a b a b

1 1 1 2

2 1 2 2

Ï
Ì
Ó

¸
˝
˛

Create a rectangular parameter grid using ndgrid.

a1 = 1;
a2 = 2;
a = [a1 a2];

b1 = 3;
b2 = 4;
b = [b1 b2];

[A,B] = ndgrid(a,b)

>> A

 Specify Parameter Samples for Batch Linearization

3-69

A =

 1 1
 2 2

>> B

B =

 3 4
 3 4

Create the structure array, params, that specifies the parameter grid.

params(1).Name = 'a';
params(1).Value = A;

params(2).Name = 'b';
params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.

[P1,...,PN] = ndgrid(p1,...,pN);

Here, p1,...,pN are the parameter sample vectors.

Create a 1 x N structure array.

params(1).Name = 'p1';
params(1).Value = P1;
...
params(N).Name = 'pN';
params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, linearizing the model
for the full grid can become expensive. In this case, you can specify a subset of the full
grid using a table-like approach. Using the example in “Specify Full Grid” on page 3-69,
suppose you want to linearize the model for the following combinations of a and b:

{(,), (,)}a b a b1 1 21

Create the structure array, params, that specifies this parameter grid.

3 Batch Linearization

3-70

A = [a1 a1];
params(1).Name = 'a';
params(1).Value = A;

B = [b1 b2];
params(2).Name = 'b';
params(2).Value = B;

Vary Multiple Parameters in Graphical Tools
To vary the value of multiple parameters for batch linearization in Linear Analysis Tool or
Control System Tuner, open the Select model variables dialog box, as described in “Vary
Single Parameter in Graphical Tools” on page 3-63. In the dialog box, check all variables
you want to vary.

Note If a parameter you want to vary is not a scalar variable, click Specify expression
indexing if necessary and enter an expression that resolves to a scalar value. For
example, if A is a vector, enter A(3) to specify the third entry in A. If A is a structure and
the scalar parameter you want to vary is the Value field of that structure, enter
A.Value. The indexed variable appears in the variable list.

 Specify Parameter Samples for Batch Linearization

3-71

Click OK. The selected variables appear in the Parameter Variations table. Each
column in the table corresponds to one selected variable. Each row in the table
represents one full set of parameter values at which to linearize the model. When you
linearize, Linear Analysis Tool computes as many linear models as there are rows in the
table. Use the table to specify combinations of parameter values manually, or generate
value combinations automatically.

Manually Specify Parameter Values

To specify the values manually, add rows to the table by clicking Insert Row and
selecting either Insert Row Above or Insert Row Below. Then, edit the values in the
table as needed. For example, the following table specifies linearization at four
parameter-value pairs: (Ki2,Kp2) = (3.5,1), (3.5,2), (5,1), and (5,2).

When you return to the Linear Analysis tab and linearize the model, Linear Analysis Tool
computes a linearization for each of these parameter-value pairs.

Note In Control System Tuner, when you are finished specifying your parameter
variations, you must apply the changes before continuing with tuning. To do so, in the

Parameter Variations tab, click Apply. Control System Tuner applies the specified
parameter variations, relinearizes your model, and updates all existing plots.

3 Batch Linearization

3-72

Automatically Generate Parameter Values

To generate values automatically, click Generate Values. In the Generate Parameter
Values dialog box, in the Values column, enter an expression for the parameter values you
want for each variable, such as linspace(A_min,A_max,num_samples), or
[10:2:30]. For example, the following entry generates parameter-value pairs for all
possible combinations of Kp1 = [0.1,0.15,0.2,0.25,0.3] and Kp2 =
[0.03,0.04,0.05].

Click Overwrite to replace the values in the Parameter Variations table with the
generated values.

 Specify Parameter Samples for Batch Linearization

3-73

When you return to the Linear Analysis tab and linearize the model, Linear Analysis Tool
computes a linearization for each of these parameter-value pairs.

Note In Control System Tuner, when you are finished specifying your parameter
variations, you must apply the changes before continuing with tuning. To do so, in the

Parameter Variations tab, click Apply. Control System Tuner applies the specified
parameter variations, relinearizes your model, and updates all existing plots.

See Also
linearize | linspace | logspace | ndgrid | rand | slLinearizer | slTuner

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page

3-20
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32

3 Batch Linearization

3-74

Batch Linearize Model for Parameter Value Variations
Using Linear Analysis Tool

This example shows how to use the Linear Analysis Tool to batch linearize a Simulink
model. You vary model parameter values and obtain multiple open-loop and closed-loop
transfer functions from the model.

The scdcascade model used for this example contains a pair of cascaded feedback
control loops. Each loop includes a PI controller. The plant models, G1 (outer loop) and G2
(inner loop), are LTI models. In this example, you use Linear Analysis Tool to vary the PI
controller parameters and analyze the inner-loop and outer-loop dynamics.

Open Linear Analysis Tool for the Model

At the MATLAB command line, open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

In the model window, select Analysis > Control Design > Linear Analysis to open the
Linear Analysis Tool for the model.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-75

Vary the Inner-Loop Controller Gains

To analyze the behavior of the inner loop, very the gains of the inner-loop PI controller,
C2. As you can see by inspecting the controller block, the proportional gain is the variable
Kp2, and the integral gain is Ki2. Examine the performance of the inner loop for two
different values of each of these gains.

In the Parameter Variations drop-down list, click Select parameters to vary.

3 Batch Linearization

3-76

The Parameter Variations tab opens. click Manage Parameters.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-77

In the Select model variables dialog box, check the parameters to vary, Ki2 and Kp2.

3 Batch Linearization

3-78

The selected variables appear in the Parameter Variations table. Each column in the
table corresponds to one of the selected variables. Each row in the table represents one
(Ki2,Kp2) pair at which to linearize. These parameter-value combinations are called
parameter samples. When you linearize, Linear Analysis Tool computes as many linear
models as there are parameter samples, or rows in the table.

Specify the parameter samples at which to linearize the model. For this example, specify
four (Ki2,Kp2) pairs, (Ki2,Kp2) = (3.5,1), (3.5,2), (5,1), and (5,2). Enter these values
in the table manually. To do so, select a row in the table. Then, select Insert Row >
Insert Row Below twice.

Edit the values in the table as shown to specify the four (Ki2,Kp2) pairs.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-79

Tip For more details about specifying parameter values, see “Specify Parameter Samples
for Batch Linearization” on page 3-62

Analyze the Inner Loop Closed-Loop Response

To analyze the inner-loop performance, extract a transfer function from the inner-loop
input u1 to the inner-plant output y2, computed with the outer loop open. To specify this
I/O for linearization, in the Linear Analysis tab, in the Analysis I/Os drop-down list,
select Create New Linearization I/Os.

Specify the I/O set by creating:

• An input perturbation point at u1
• An output measurement point at y2

3 Batch Linearization

3-80

• A loop break at e1

Name the I/O set by typing InnerLoop in the Variable name field of the Create
linearization I/O set dialog box. The configuration of the dialog box is as shown.

Tip For more information about specifying linearization I/Os, see “Specify Portion of
Model to Linearize” on page 2-13.

Click OK.

Now that you have specified the parameter variations and the analysis I/O set for the

inner loop, linearize the model and examine a step response plot. Click Step.

Linear Analysis Tool linearizes the model at each of the parameter samples you specified
in the Parameter Variations table. A new variable, linsys1, appears in the Linear
Analysis Workspace section of the Data Browser. This variable is an array of state-space
(ss) models, one for each (Ki2,Kp2) pair. The plot shows the step responses of all the

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-81

entries in linsys1. This plot gives you a sense of the range of step responses of the
system in the operating ranges covered by the parameter grid.

Vary the Outer-Loop Controller Gains

Examine the overall performance of the cascaded control system for varying values of the
outer-loop controller, C1. To do so, vary the coefficients Ki1 and Kp1, while keeping Ki2
and Kp2 fixed at the values specified in the model.

3 Batch Linearization

3-82

In the Parameter Variations tab, click Manage Parameters. Clear the Ki2 and
Kp2 checkboxes, and check Ki1 and Kp1. Click OK.

Use Linear Analysis Tool to generate parameter values automatically. Click Generate
Values. In the Values column of the Generate Parameter Values table, enter an
expression specifying the possible values for each parameter. For example, vary Kp1 and
Ki1 by ± 50% of their nominal values, by entering expressions as shown.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-83

The All Combinations gridding method generates a complete parameter grid of
(Kp1,Ki1) pairs, to compute a linearization at all possible combinations of the specified
values. Click Overwrite to replace all values in the Parameter Variations table with
the generated values.

3 Batch Linearization

3-84

Because you want to examine the overall closed-loop transfer function of the system,
create a new linearization I/O set. In the Linear Analysis tab, in the Analysis I/Os drop-
down list, select Create New Linearization I/Os. Configure r as an input
perturbation point, and the system output y1m as an output measurement. Click OK.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-85

Linearize the model with the parameter variations and examine the step response of the

resulting models. Click Step to linearize and generate a new plot for the new
model array, linsys2.

3 Batch Linearization

3-86

The step plot shows the responses of every model in the array. This plot gives you a sense
of the range of step responses of the system in the operating ranges covered by the
parameter grid.

Note Although the new plot reflects the new set of parameter variations, Step Plot 1
and linsys1 are unchanged. That plot and array still reflect the linearizations obtained
with the inner-loop parameter variations.

 Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool

3-87

Further Analysis of Batch Linearization Results

The results of both batch linearizations, linsys1 and linsys2, are arrays of state-space
(ss) models. Use these arrays for further analysis in any of several ways:

• Create additional analysis plots, such as Bode plots or impulse response plots, as
described in “Analyze Results Using Linear Analysis Tool Response Plots” on page 2-
149.

• Examine individual responses in analysis plots as described in “Analyze Batch
Linearization Results in Linear Analysis Tool” on page 3-55.

• Drag the array from Linear Analysis Workspace to the MATLAB workspace.

You can then use Control System Toolbox control design tools, such as the Linear
System Analyzer (Control System Toolbox) app, to analyze linearization results. Or, use
Control System Toolbox control design tools, such as pidtune or Control System
Designer, to design controllers for the linearized systems.

3 Batch Linearization

3-88

Also see “Validate Batch Linearization Results” on page 3-90 for information about
validating linearization results in the MATLAB workspace.

See Also

More About
• “Validate Batch Linearization Results” on page 3-90
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
• “Specify Parameter Samples for Batch Linearization” on page 3-62
• “Analyze Batch Linearization Results in Linear Analysis Tool” on page 3-55
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page

3-20

 See Also

3-89

Validate Batch Linearization Results
When you batch linearize a model, the software returns a model array containing the
linearized models. There are two ways to validate a linearized model, but both methods
have some computational overhead. This overhead can make validating each model in the
batch linearization results infeasible. Therefore, it can be cost effective to validate either
a single model or a subset of the batch linearization results. You can use linear analysis
plots and commands to determine the validation candidates. For information regarding
the tools that you can use for such analysis, see “Linear Analysis” (Control System
Toolbox).

You can validate a linearization using the following approaches:

• Obtain a frequency response estimation of the nonlinear model, and compare its
response to that of the linearized model. For an example, see “Validate Linearization
In Frequency Domain” on page 2-143.

• Simulate the nonlinear model and compare its time-domain response to that of the
linearized model. For an example, see “Validate Linearization In Time Domain” on
page 2-139.

See Also
linearize | slLinearizer

Related Examples
• “Analyze Batch Linearization Results in Linear Analysis Tool” on page 3-55
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page

3-48

3 Batch Linearization

3-90

Approximating Nonlinear Behavior Using an Array of LTI
Systems

This example shows how to approximate the nonlinear behavior of a system as an array of
interconnected LTI models.

The example describes linear approximation of pitch axis dynamics of an airframe over a
range of operating conditions. The array of linear systems thus obtained is used to create
a Linear Parameter Varying (LPV) representation of the dynamics. The LPV model serves
as an approximation of the nonlinear pitch dynamics.

About Linear Parameter Varying (LPV) Models

In many situations the nonlinear dynamics of a system need to be approximated using
simpler linear systems. A single linear system provides a reasonable model for behavior
limited to a small neighborhood around an operating point of the nonlinear system. When
the nonlinear behavior needs to be approximated over a range of operating conditions, we
can use an array of linear models that are interconnected by suitable interpolation rules.
Such a model is called an LPV model.

To generate an LPV model, the nonlinear model is trimmed and linearized over a grid of
operating points. For this purpose, the operating space is parameterized by a small
number of scheduling parameters. These parameters are often a subset of the inputs,
states, and output variables of the nonlinear system. An important consideration in the
creation of LPV models is the identification of a scheduling parameter set and selection of
a range of parameter values at which to linearize the model.

We illustrate this approach for approximating the pitch dynamics of an airframe.

Pitch Dynamics of an Airframe

Consider a three-degree-of-freedom model of the pitch axis dynamics of an airframe. The
states are the Earth coordinates , the body coordinates , the pitch angle ,
and the pitch rate . Figure 1 summarizes the relationship between the inertial and
body frames, the flight path angle , the incidence angle , and the pitch angle .

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-91

Figure 1: Airframe dynamics.

The airframe dynamics are nonlinear and the aerodynamic forces and moments depend
on speed and incidence . The model scdairframeTRIM describes these dynamics.

open_system('scdairframeTRIM')

3 Batch Linearization

3-92

Batch Linearization Across the Flight Envelope

Use the speed and the incidence angle as scheduling parameters; that is, trim the
airframe model over a grid of and values. Note that these are two of the five outputs
of the scdairframeTRIM model.

Assume that the incidence varies between -20 and 20 degrees and that the speed
varies between 700 and 1400 m/s. Use a 15-by-12 grid of linearly spaced pairs for
scheduling:

nA = 15; % number of alpha values
nV = 12; % number of V values
alphaRange = linspace(-20,20,nA)*pi/180;
VRange = linspace(700,1400,nV);
[alpha,V] = ndgrid(alphaRange, VRange);

For each flight condition , linearize the airframe dynamics at trim (zero normal
acceleration and pitching moment). This requires computing the elevator deflection and
pitch rate that result in steady and .

Use operspec to specify the trim condition, use findop to compute the trim values of
and , and linearize the airframe dynamics for the resulting operating point. See the
"Trimming and Linearizing an Airframe" example for details.

The body coordinates, , are known states for trimming. Therefore, you need to
provide appropriate values for them, which you can specify explicitly. However, in this

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-93

example, let the model derive these known values based on each pair. For each
flight condition , update the values in the model and create an operating point
specification. Repeat these steps for all 180 flight conditions.

clear op report
for ct = 1:nA*nV
 alpha_ini = alpha(ct); % Incidence [rad]
 v_ini = V(ct); % Speed [m/s]

 % Specify trim condition
 opspec(ct) = operspec('scdairframeTRIM');

 % Xe,Ze: known, not steady.
 opspec(ct).States(1).Known = [1;1];
 opspec(ct).States(1).SteadyState = [0;0];

 % u,w: known, w steady
 opspec(ct).States(3).Known = [1 1];
 opspec(ct).States(3).SteadyState = [0 1];

 % theta: known, not steady
 opspec(ct).States(2).Known = 1;
 opspec(ct).States(2).SteadyState = 0;

 % q: unknown, steady
 opspec(ct).States(4).Known = 0;
 opspec(ct).States(4).SteadyState = 1;

end
opspec = reshape(opspec, [nA nV]);

Trim the model for all of the specified ooperating point specifications.

Options = findopOptions('DisplayReport','off', ...
 'OptimizerType','lsqnonlin');
Options.OptimizationOptions.Algorithm = 'trust-region-reflective';
[op, report] = findop('scdairframeTRIM',opspec,Options);

The op array contains the operating points found by findop that will be used for
linearization. The report array contains a record of input, output, and state values at
each point.

Specify linearization inputs and outputs.

3 Batch Linearization

3-94

io = [linio('scdairframeTRIM/delta',1,'in');... % delta
 linio('scdairframeTRIM/Airframe Model',1,'out');... % alpha
 linio('scdairframeTRIM/Airframe Model',2,'out');... % V
 linio('scdairframeTRIM/Airframe Model',3,'out');... % q
 linio('scdairframeTRIM/Airframe Model',4,'out');... % az
 linio('scdairframeTRIM/Airframe Model',5,'out')]; % gamma

Batch-linearize the model at the trim conditions. Store linearization offset information in
the info structure.

[G,~,info] = linearize('scdairframeTRIM',op,io, ...
 linearizeOptions('StoreOffsets',true));
G = reshape(G,[nA nV]);
G.u = 'delta';
G.y = {'alpha','V','q','az','gamma'};
G.SamplingGrid = struct('alpha',alpha,'V',V);

G is a 15-by-12 array of linearized plant models at the 180 flight conditions . The
plant dynamics vary substantially across the flight envelope, including scheduling
locations where the local dynamics are unstable.

bodemag(G(3:5,:,:,:))
title('Variations in airframe dynamics')

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-95

The LPV System Block

The LPV System block in the Control System Toolbox™ block library facilitates simulation
of linear parameter varying systems. The primary data required by the block is the state-
space system array G that was generated by batch linearization. We augment this with
information about the input/output, state, and state derivative offsets from the info
structure.

Extract the offset information.

offsets = getOffsetsForLPV(info);
xOffset = offsets.x;
yOffset = offsets.y;

3 Batch Linearization

3-96

uOffset = offsets.u;
dxOffset = offsets.dx;

LPV Model Simulation

Open the system scdairframeLPV, which contains an LPV System block that has been
configured based on linear system array G and the various offsets.

open_system('scdairframeLPV')

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-97

3 Batch Linearization

3-98

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-99

3 Batch Linearization

3-100

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-101

An input signal was prepared based on a desired trajectory of the airframe. This signal u
and corresponding time vector t are saved in the scdairframeLPVsimdata.mat file.
Specify the initial conditions for simulation.

alpha_ini = 0;
v_ini = 700;
x0 = [0; 700; 0; 0];
sim('scdairframeLPV')

3 Batch Linearization

3-102

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-103

3 Batch Linearization

3-104

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-105

3 Batch Linearization

3-106

The simulation shows good emulation of the airframe response by the LPV system. We
chose a very fine gridding of scheduling space leading to a large number (180) of linear
models. Large array sizes can increase implementation costs. However, the advantage of
LPV representations is that we can adjust the scheduling grid (and hence the number of
linear systems in the array) based on:

• The scheduling subspace spanned by the anticipated trajectory
• The level of accuracy desired in an application

The former information helps reduce the range for the scheduling variables. The latter
helps pick an optimal resolution (spacing) of samples in the scheduling space.

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-107

Let us plot the actual trajectory of scheduling variables in the previous simulation against
the backdrop of gridded scheduling space. The outputs were logged via their
scopes (contained inside the Compare Responses block of scdairframeLPV).

Stable = false(nA,nV);
for ct = 1:nA*nV
 Stable(ct) = isstable(G(:,:,ct));
end
alpha_trajectory = Alpha_V_Data.signals(1).values(:,1);
V_trajectory = Alpha_V_Data.signals(2).values(:,1);

plot(alpha(Stable)*180/pi,V(Stable),'g.',...
 alpha(~Stable)*180/pi,V(~Stable),'k.',...
 alpha_trajectory,V_trajectory,'r.')
title('Trajectory of scheduling variables')
xlabel('\alpha'); ylabel('V')
legend('Stable locations','Unstable locations','Actual trajectory')

3 Batch Linearization

3-108

The trajectory traced during simulation is shown in red. Note that it traverses both the
stable and unstable regions of the scheduling space. Suppose you want to implement this
model on a target hardware for input profiles similar to the one used for simulation
above, while using the least amount of memory. The simulation suggests that the
trajectory mainly stays in the 890 to 1200 m/s range of velocities and -15 to 12 degree
range of incidence angle. Furthermore, you can explore increasing the spacing between
the sampling points. Suppose you use only every third sample along the dimension and
every second sample along the dimension. The reduced system array meeting these
constraints can be extracted from G as follows:

I1 = find(alphaRange>=-15*pi/180 & alphaRange<=12*pi/180);
I2 = find(VRange>=890 & VRange<=1200);
I1 = I1(1:2:end);

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-109

I2 = I2(1:3:end);

Gr = G(:,:,I1,I2);
size(Gr)

5x2 array of state-space models.
Each model has 5 outputs, 1 inputs, and 4 states.

The new sampling grid, Gr, has a more economical size of 5-by-2. Simulate the reduced
model and check its fidelity in reproducing the original behavior.

Change directory to a writable directory since model would need to be recompiled

cwd = pwd;
cd(tempdir)
lpvblk = 'scdairframeLPV/LPV System';
set_param(lpvblk,...
 'sys','Gr',...
 'uOffset','uOffset(:,:,I1,I2)',...
 'yOffset','yOffset(:,:,I1,I2)',...
 'xOffset','xOffset(:,:,I1,I2)',...
 'dxOffset','dxOffset(:,:,I1,I2)')
sim('scdairframeLPV')
cd(cwd)

3 Batch Linearization

3-110

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-111

3 Batch Linearization

3-112

 Approximating Nonlinear Behavior Using an Array of LTI Systems

3-113

3 Batch Linearization

3-114

There is no significant reduction in overlap between the response of the original model
and its LPV proxy.

The LPV model can serve as a proxy for the original system in situations where faster
simulations are required. The linear systems used by the LPV model may also be obtained
by system identification techniques (with additional care required to maintain state
consistency across the array). The LPV model can provide a good surrogate for initializing
simulink design optimization problems and performing fast hardware-in-loop simulations.

See Also
LPV System | linearize

 See Also

3-115

Related Examples
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on

page 3-28
• “LPV Approximation of a Boost Converter Model” on page 3-117

3 Batch Linearization

3-116

LPV Approximation of a Boost Converter Model
This example shows how you can obtain a Linear Parameter Varying (LPV) approximation
of a Simscape Power Systems™ model of a Boost Converter. The LPV representation
allows quick analysis of average behavior at various operating conditions.

Boost Converter Model

A Boost Converter circuit converts a DC voltage to another DC voltage by controlled
chopping or switching of the source voltage. The request for a certain load voltage is
translated into a corresponding requirement for the transistor duty cycle. The duty cycle
modulation is typically several orders of magnitude slower than the switching frequency.
The net effect is attainment of an average voltage with relatively small ripples. See Figure
1 for a zoomed-in view of this dynamics.

Figure 1: Converter output (load) voltage generation

In practice there are also disturbances in the source voltage and the resistive load
affecting the actual load voltage .

Open the Simulink model.

mdl = 'BoostConverterExampleModel';
open_system(mdl);

 LPV Approximation of a Boost Converter Model

3-117

Figure 2: Simscape Power Systems based Boost Converter model

The circuit in the model is characterized by high frequency switching. The model uses a
sample time of 25 ns. The "Boost Converter" block used in the model is a variant
subsystem that implements 3 different versions of the converter dynamics. Double click
on the block to view these variants and their implementations. The model takes the duty
cycle value as its only input and produces three outputs - the inductor current, the load
current and the load voltage.

The model simulates slowly (when looking for changes in say 0 - 10 ms) owing to the high
frequency switching elements and small sample time.

3 Batch Linearization

3-118

Batch Trimming and Linearization

In many applications, the average voltage delivered in response to a certain duty cycle
profile is of interest. Such behavior is studied at time scales several decades larger than
the fundamental sample time of the circuit. These "average models" for the circuit are
derived by analytical considerations based on averaging of power dynamics over certain
time periods. The model BoostConverterExampleModel implements such an average
model of the circuit as its first variant, called "AVG Voltage Model". This variant typically
executes faster than the "Low Level Model" variant.

The average model is not a linear system. It shows nonlinear dependence on the duty
cycle and the load variations. To aid faster simulation and voltage stabilizing controller
design, we can linearize the model at various duty cycle and load values. The inputs and
outputs of the linear system would be the same as those of the original model.

We use the snapshot time based trimming and linearization approach. The scheduling
parameters are the duty cycle value (d) and the resistive load value (R). The model is
trimmed at various values of the scheduling parameters resulting in a grid of linear
models. For this example, we chose a span of 10%-60% for the duty cycle variation and of
4-15 Ohms for the load variation. 5 values in these ranges are picked for each scheduling
variable and linearization obtained at all possible combinations of their values.

Scheduling parameters: d: duty cycle R: resistive load

nD = 5; nR = 5;
dspace = linspace(0.1,0.6,nD); % nD values of "d" in 10%-60% range
Rspace = linspace(4,15,nR); % nR values of "R" in 4-15 Ohms range
[dgrid,Rgrid] = ndgrid(dspace,Rspace); % all possible combinations of "d" and "R" values

Create a parameter structure array.

params(1).Name = 'd';
params(1).Value = dgrid;
params(2).Name = 'R';
params(2).Value = Rgrid;

A simulation of the model under various conditions shows that the model's outputs settle
down to their steady state values before 0.01 s. Hence we use t = 0.01s as the snapshot
time.

Declare number of model inputs, outputs and states.

ny = 3; nu = 1; nx = 2;
ArraySize = size(dgrid);

 LPV Approximation of a Boost Converter Model

3-119

Compute equilibrium operating points using findop. The code takes several minutes to
finish.

op = findop(mdl, 0.01, params);

Get linearization input-output specified in the model.

io = getlinio(mdl);

Linearize the model at the operating point array op and store the offsets.

[linsys, ~, info] = linearize(mdl, op, io, params, ...
 linearizeOptions('StoreOffsets', true));

Extract offsets from the linearization results.

offsets = getOffsetsForLPV(info);
yoff = offsets.y;
xoff = offsets.x;
uoff = offsets.u;

Plot the linear system array.

bodemag(linsys)
grid on

3 Batch Linearization

3-120

Figure 3: Bode plot of linear system array obtained over the scheduling parameter grid.

LPV Simulation

linsys is an array of 25 linear state-space models, each containing 1 input, 3 outputs
and 2 states. The models are discrete-time with sample time of 25 ns. The bode plot
shows significant variation in dynamics over the grid of scheduling parameters. The linear
system array and the accompanying offset data (uoff, yoff and xoff) can be used to
configure the LPV system block. The "LPV model" thus obtained serves as a linear system
array approximation of the average dynamics. The LPV block configuration is available in
the BoostConverterLPVModel model.

lpvmdl = 'BoostConverterLPVModel';
open_system(lpvmdl);

 LPV Approximation of a Boost Converter Model

3-121

Figure 4: LPV model configured using linsys.

For simulating the model, we use an input profile for duty cycle that roughly covers its
scheduling range. We also vary the resistive load to simulate the case of load
disturbances.

Generate simulation data.

3 Batch Linearization

3-122

t = linspace(0,.05,1e3)';
din = 0.25*sin(2*pi*t*100)+0.25;
din(500:end) = din(500:end)+.1; % the duty cycle profile

rin = linspace(4,12,length(t))';
rin(500:end) = rin(500:end)+3;
rin(100:200) = 6.6; % the load profile

yyaxis left
plot(t,din)
xlabel('Time (s)')
ylabel('Duty Cycle')
yyaxis right
plot(t,rin)
ylabel('Resistive Load (Ohm)')
title('Scheduling Parameter Profiles for Simulation')

 LPV Approximation of a Boost Converter Model

3-123

Figure 5: Scheduling parameter profiles chosen for simulation.

Note: the code for generating the above signals has been added to the model's
PreLoadFcn callback for independent loading and execution. If you want to override these
settings and try your own, overwrite this data in base workspace.

Simulate the LPV model.

sim(lpvmdl, 'StopTime', '0.004');

3 Batch Linearization

3-124

Figure 6: LPV simulation results.

The LPV model simulates significantly faster than the original model
BoostConverterExampleModel. But how do the results compare against those
obtained from the original boost converter model? To check this, open model
BoostConverterResponseComparison. This model has Boost Converter block
configured to use the high-fidelity "Low Level Model" variant. It also contains the LPV
block whose outputs are superimposed over the outputs of the boost converter in the
three scopes.

linsysd = c2d(linsys,Ts*1e4);
mdl = 'BoostConverterResponseComparison';
open_system(mdl);
%sim(mdl); % uncomment to run

 LPV Approximation of a Boost Converter Model

3-125

Figure 7: Model used for comparing the response of high fidelity model with the LPV
approximation of its average behavior.

The simulation command has been commented out; uncomment it to run. The results are
shown in the scope snapshots inserted below.

3 Batch Linearization

3-126

Figure 8: Inductor current signals. Blue: original, Magenta: LPV system response

 LPV Approximation of a Boost Converter Model

3-127

Figure 9: Load current signals. Blue: original, Magenta: LPV system response

3 Batch Linearization

3-128

Figure 10: Load voltage signal. Blue: original, Magenta: LPV system response

The simulation runs quite slowly due to the fast switching dynamics in the original boost
converter circuit. The results show that the LPV model is able to capture the average
behavior nicely.

Conclusions

By using the duty cycle input and the resistive load as scheduling parameters, we were
able to obtain linear approximations of average model behavior in the form of a state-
space model array.

The resulting model array together with operating point related offset data was used to
create an LPV approximation of the nonlinear average behavior. Simulation studies show

 LPV Approximation of a Boost Converter Model

3-129

that the LPV model is able to emulate the average behavior of a high-fidelity Simscape
Power Systems model with good accuracy. The LPV model also consumes less memory
and simulates significantly faster than the original system.

See Also
LPV System | linearize

Related Examples
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on

page 3-28
• “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page 3-91

3 Batch Linearization

3-130

Troubleshooting Linearization
Results

• “Linearization Troubleshooting Overview” on page 4-2
• “Check Operating Point” on page 4-6
• “Check Analysis Point Placement” on page 4-7
• “Identify and Fix Common Linearization Issues” on page 4-9
• “Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23
• “Troubleshoot Linearization Results at Command Line” on page 4-42
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
• “Block Linearization Troubleshooting” on page 4-61
• “Speed Up Linearization of Complex Models” on page 4-69

4

Linearization Troubleshooting Overview
If you do not get expected results when you linearize your Simulink model, you can
diagnose and fix potential linearization issues using Simulink Control Design
troubleshooting tools. The definition of an expected linearization result depends on your
specific application.

Troubleshooting Workflow
To determine whether a linearization is successful and find potential linearization issues,
first check the equations and response plots of the linearized model.

Result to Check Signs of Successful
Linearization

Signs of Unsuccessful
Linearization

More Information

Linear analysis
plots

Time-domain and frequency-
domain response plot
characteristics, such as rise
time and bandwidth
respectively, capture the
expected dynamics of your
system.

Response plot
characteristics do not
capture the dynamics of
your system. For example:

• Bode plot gain is too
large or too small.

• Pole-zero plot contains
unexpected poles or
zeros.

“Analyze Results
Using Linear
Analysis Tool
Response Plots” on
page 2-149.

Linear model
equations

• State-space matrices have
expected number of
states, inputs, and
outputs. The linearized
model can have fewer
states than your Simulink
model because, often, the
path between linearization
input and output points
does not reach all the
model states.

• Poles and zeros are in
correct locations.

• Zero linearization (D =
0)

• Infinite linearization (D
= Inf)

“View Linearized
Model Equations
Using Linear
Analysis Tool” on
page 2-147

4 Troubleshooting Linearization Results

4-2

If the response plots or model equations of the linearized system do not capture the
expected dynamics of your system, check the:

• Operating point at which you linearized the model. For more information, see “Check
Operating Point” on page 4-6.

• Analysis point placement in your model. For more information, see “Check Analysis
Point Placement” on page 4-7.

Once you verify that the model operating point and analysis points are correct, if your
model still does not linearize as expected, you can troubleshoot the linearization results
using the Linearization Advisor. The Linearization Advisor is a troubleshooting tool that
allows you to identify blocks in your model that are potentially problematic for
linearization. For more information, see “Identify and Fix Common Linearization Issues”
on page 4-9.

Once you have identified potentially problematic blocks, you can then troubleshoot the
linearizations of the individual blocks using the Linearization Advisor. For more
information, see “Block Linearization Troubleshooting” on page 4-61.

Troubleshoot Linearizations of Models with Special
Characteristics
Some Simulink models and blocks do not linearize well or require special considerations
during linearization.

Model
Characteristic

Linearization Considerations More Information

Large models For some large complex models, you
can systematically linearize specific
model components. You can then check
if these components linearize as
expected.

“Specify Portion of
Model to Linearize” on
page 2-13

 Linearization Troubleshooting Overview

4-3

Model
Characteristic

Linearization Considerations More Information

Models with delays The method with which you represent
time delays in your model can affect
linearization results. For example, if a
Bode plot shows insufficient lag in
phase, the cause can be the Padé
approximation of the model time
delays.

• “Models with Time
Delays” on page 2-
170

• “Linearization of
Models with Delays”
on page 2-102

Multirate models Incorrect sample time and rate
conversion methods can cause poor
linearization results in multirate
models.

“Linearize Multirate
Models” on page 2-172

Models with PWM
signals

Models with pulse width modulation
signals do not linearize well due to
their discontinuities and high-
frequency switching components.
Consider specifying a custom
linearization for such blocks.

“Configure Models with
Pulse Width Modulation
(PWM) Signals” on page
2-194

Models with Model
Reference blocks

Linearization is not fully compatible
with model reference blocks running in
accelerator simulation mode. Configure
these subsystems to run in normal
mode during linearization.

“Linearization of Models
with Model References”
on page 2-109

Simscape networks Simscape networks commonly linearize
to zero when a set of the system
equation Jacobians are zero at a given
operating condition.

“Linearize Simscape
Networks” on page 2-
196

See Also
Apps
Linear Analysis Tool

4 Troubleshooting Linearization Results

4-4

More About
• “Identify and Fix Common Linearization Issues” on page 4-9
• “Block Linearization Troubleshooting” on page 4-61

 See Also

4-5

Check Operating Point
To diagnose whether you used the correct operating point for linearization, simulate the
model at the operating point you used for linearization.

The linearization operating point is incorrect when the critical signals in the model:

• Have unexpected values.
• Are not at steady state.

To fix the problem, compute a steady-state operating point, and repeat the linearization at
this operating point. For more information, see “Compute Steady-State Operating Points”
on page 1-5 and “Simulate Simulink Model at Specific Operating Point” on page 1-83.

See Also

More About
• “About Operating Points” on page 1-2
• “View and Modify Operating Points” on page 1-9

4 Troubleshooting Linearization Results

4-6

Check Analysis Point Placement
Incorrect placement of analysis points, including linearization I/Os and loop openings, can
result in blocks being inappropriately included in or excluded from the linearization result
linearization.

Check Linearization I/O Points Placement
After linearizing the model, check the block linearization values to determine which
blocks are included in the linearization.

Blocks can be missing from the linearization path for different reasons.

Incorrect placement linearization I/O points can result in inappropriately excluded blocks
from linearization. To fix the problem, specify correct linearization I/O points and repeat
the linearization. For more information, see “Specify Portion of Model to Linearize” on
page 2-13.

Blocks that linearize to zero (and other blocks on the same path) are excluded from
linearization. To fix this problem, troubleshoot linearization of individual blocks, as
described in “Block Linearization Troubleshooting” on page 4-61.

Check Loop Opening Placement
Incorrect loop opening placement causes unwanted feedback signals in the linearized
model.

To fix the problem, check the individual block linearization values to identify which blocks
are included in the linearization. If undesired blocks are included, place the loop opening
on a different signal and repeat the linearization.

See Also

More About
• “Block Linearization Troubleshooting” on page 4-61
• “Opening Feedback Loops” on page 2-17

 Check Analysis Point Placement

4-7

• “How the Software Treats Loop Openings” on page 2-42

4 Troubleshooting Linearization Results

4-8

Identify and Fix Common Linearization Issues
If your linearization results are not as expected, you can identify common linearization
issues using the Linearization Advisor. The Linearization Advisor collects diagnostic
information regarding individual block linearizations. Using this information, you can:

• View linearization details and operating points for each linearized block in your model.
• Identify potentially problematic blocks that cause common linearization issues.
• Determine which blocks are on and off the linearization path and which blocks

contribute to the model linearization result.
• Search linearization results for blocks that meet specified criteria.

Enable Linearization Advisor
Since collecting diagnostic information adds linearization overhead, the Linearization
Advisor is disabled by default. To collect diagnostic information, you must enable the
Linearization Advisor before you linearize your model.

To enable the Linearization Advisor, in the Linear Analysis Tool, on the Linear Analysis
tab, select Linearization Advisor.

When you select this option and linearize your model, the software opens an Advisor tab
for troubleshooting your linearization results.

 Identify and Fix Common Linearization Issues

4-9

Tip To make viewing the diagnostic information easier, you can minimize the Data
Browser.

On the Advisor tab, you can gain insight into your model linearization by querying the
diagnostic information. To do so, use the built-in queries in the Queries section, or create
custom queries in the Manage Queries section.

When you run a query, the navigation tree lists the linearized blocks in your model that
match the query search criteria. The tree structure reflects the model hierarchy.

4 Troubleshooting Linearization Results

4-10

To view a table of all blocks that match the search criteria, in the navigation tree, click
the top-level model name. You can also view all blocks in a subsystem that satisfy the
query by clicking the subsystem name. Each entry in the table summarizes the
linearization diagnostics for a single block.

 Identify and Fix Common Linearization Issues

4-11

To view detailed diagnostic information for a block in a table, in the corresponding row,
click Block Info. You can troubleshoot the block linearization using the detailed
diagnostic information. For more information, see “Block Linearization Troubleshooting”
on page 4-61.

For an example of interactive troubleshooting using the Linearization Advisor, see
“Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23.

Tip If you close the Advisor tab for a given linearization, you can reopen it from the
Plots and Results tab.

In the Linear Analysis Workspace, select the linearized model you want to troubleshoot.
Then, click View Diagnostics. This option is only available if you enabled the
Linearization Advisor before linearizing the model.

4 Troubleshooting Linearization Results

4-12

You can also create a LinearizationAdvisor object when you linearize models at the
command line. You can then troubleshoot the linearization results using the advise and
find functions. For an example, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

Blocks That Are Potentially Problematic for Linearization
As a starting point for troubleshooting, the Linearization Advisor searches the
linearization diagnostic information for blocks that can cause common linearization
issues. These potentially problematic blocks are on the linearization path and satisfy at
least one of the following criteria.

Criteria Description
Blocks with linearization diagnostic
messages

Diagnostic messages indicate blocks with
configurations or linearizations that
correspond to common linearization
problems.

Blocks that linearize to zero Blocks with zero linearizations do not
contribute to the linearization result and
can remove other blocks from the
linearization result.

Blocks with substituted linearizations Errors in defining substitute linearizations
can be difficult to diagnose.

For more information on the linearization path, see “Linearization Path” on page 4-16.

In the Linear Analysis Tool, the diagnostic information for these blocks is listed on the
Advisor tab when the tab first opens. Also, to access this diagnostic information at any
time, in the Queries section, click Linearization Advice.

 Identify and Fix Common Linearization Issues

4-13

You can troubleshoot the linearizations of these blocks using the Linearization Advisor.
For more information on troubleshooting block linearizations using diagnostic
information, see “Block Linearization Troubleshooting” on page 4-61.

At the command line, the advise function returns diagnostic information for these
blocks.

Blocks with Linearization Diagnostic Messages

Linearization diagnostic messages indicate blocks with properties or linearizations that
correspond to common linearization problems. Fixing linearization issues identified in
diagnostic messages is a good first step when troubleshooting your linearization.

Some block configurations that can generate diagnostic messages include:

• Blocks with nondouble input or output signals, and no predefined exact linearization.
Such blocks linearize to zero and generate diagnostic messages.

• Discontinuous blocks linearized at an operating point near a discontinuity. If such
blocks are not treated as a gain during linearization, the software can generate
diagnostic messages regarding their linearization.

• Blocks with least one input/output pair that linearizes to zero which causes a zero
input/output pair in the overall model linearization.

• Blocks that do not support linearization because they do not have a predefined exact
linearization and do not support numerical perturbation.

Some diagnostic messages propose solutions to their corresponding linearization issues.
For example, when an input signal is outside the saturation limits of a Saturation block,
the diagnostic message proposes treating the block as a gain during linearization.

4 Troubleshooting Linearization Results

4-14

Blocks That Linearize to Zero

A common cause of linearization issues is a block that unexpectedly linearizes to a gain of
zero. To diagnose the cause of a zero block linearization, you can consider:

• Any corresponding diagnostic messages. These messages can highlight common
causes of zero linearizations and propose potential solutions.

• The block operating point; that is the values of the block states and inputs at the
model operating point used for linearization. For example, if the input to a saturation
block is outside the block saturation limits, and the block is not configured to linearize
as a gain, the block linearizes to zero.

• The block parameters. For example, if a block is configured to use nondouble inputs or
states and is linearized using numerical perturbation, it linearizes to zero.

A zero block linearization does not necessarily indicate a linearization problem; that is,
you may expect a block to linearize to zero under the expected operating conditions of the
model. For example, if a Trigonometric Fcn block is configured as a sin function and the
input value is π/2 at the model operating point, then the block linearizes to zero.

Blocks with Substituted Linearizations

Errors in defining a custom block linearization can be difficult to diagnose. After fixing
issues related to diagnostic messages and zero linearizations, if your model still does not
linearize as expected, verify that any substituted block linearizations in your model are
correct.

For more information on specifying substitute block linearizations, see “When to Specify
Individual Block Linearization” on page 2-159.

Find Specific Blocks in Linearization Results
If your model still does not linearize as you expect after fixing linearization issues related
to potentially problematic blocks, you can query the Linearization Advisor for additional
block diagnostic information. You can gain insight into your model linearization using this
information. For example, you can investigate:

• Blocks that are linearized using numerical perturbation.
• Sampling rates of block linearizations in multirate models by finding blocks with a
specified sample time.

 Identify and Fix Common Linearization Issues

4-15

• Blocks that have delays that can cause linearization issues.
• Blocks that are not on the linearization path.

For more information, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Linearization Path
The linearization path is the graphical connection in the Simulink model from the
linearization inputs to the linearization outputs. A block is on the linearization path if at
least one linearization input is connected to at least one linearization output through that
block. For more information on specifying linearization inputs and outputs, see “Specify
Portion of Model to Linearize” on page 2-13.

When a block is on the linearization path, its linearization can contribute to the overall
model linearization. Blocks that linearize to zero do not contribute to the model
linearization and can prevent branches of the linearization path from contributing to the
model linearization.

Blocks that are not on the linearization path can still affect the linearization of other
blocks, and therefore the model linearization, by modifying the operating points or
parameters of the other blocks. For example, consider the following Product block that is
on the linearization path (highlighted in blue):

The constant block is not on the linearization path. However, the value of the constant
affects the operating point of the Product block, which in turn affects the linearization
from the first input of the Product block to the output.

Highlight Linearization Path

To visualize the linearization path and view blocks that contribute to the model
linearization, you can highlight the linearization path in the Simulink model using the
Linearization Advisor. A block is on the linearization path if there is a signal path from at

4 Troubleshooting Linearization Results

4-16

least one linearization input to at least one linearization output that passes through the
block.

After you linearize your model with the Linearization Advisor enabled, to highlight the
linearization path, in the Linear Analysis Tool, on the Advisor tab, click Highlight
Linearization Path.

The software highlights the linearization path in the model, showing which blocks are on
the path and which blocks contribute to the model linearization. Blocks highlighted in:

• Blue are on the linearization path and numerically influence the model linearization.
• Red are on the linearization path, but have no influence on the model linearization due

to at least one block on the linearization path that is linearized to zero.
• Gray are not on the linearization path and do not contribute to the model linearization.

 Identify and Fix Common Linearization Issues

4-17

To turn off the highlighting, close the Linearization path dialog box.

4 Troubleshooting Linearization Results

4-18

You can also highlight the linearization path from the command line using the highlight
function.

Troubleshoot Batch Linearizations
If you linearize your model at multiple operating points, you can troubleshoot each
resulting linear model using Linearization Advisor.

After batch linearizing the model, on the Advisor tab, in the Select Operating Point
drop-down list, select the operating point for which you want to troubleshoot the
linearization.

If you batch linearized your model using:

• Parameter variation, the linearization summary shows the parameter values that
correspond to the selected operating point.

 Identify and Fix Common Linearization Issues

4-19

• Multiple simulation snapshot times, the linearization summary shows the time at
which the model was linearized.

4 Troubleshooting Linearization Results

4-20

• Multiple trimmed operating points, the linearization summary does not show
additional information about the operating point. To view details about the operating
points, on the Linear Analysis tab, in the Operating Point drop-down list, select the
operating point array used for linearization. In the same drop-down list, select Edit.

Then, in the Edit dialog box, in the Select Operating Point drop-down list, select an
operating point. The location of the operating point in this drop-down list corresponds
to the location in the drop-down list on the Advisor tab.

See Also
Apps
Linear Analysis Tool

Functions
advise

 See Also

4-21

More About
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
• “Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23
• “Troubleshoot Linearization Results at Command Line” on page 4-42

4 Troubleshooting Linearization Results

4-22

Troubleshoot Linearization Results in Linear Analysis
Tool

This example shows how to use the Linearization Advisor to debug the linearization of a
pendulum model in the Linear Analysis Tool.

Setup Model

Open the Simulink model.

mdl = 'scdpendulum';
open_system(mdl)

The initial condition for the pendulum angle is 90 degrees counterclockwise from the
upright unstable equilibrium of 0 degrees. The initial condition for the pendulum angular
velocity is 0 deg/s. The nominal torque to maintain this state is -49.05 N m. This
configuration is saved as the model initial condition.

Open Linear Analysis Tool and Linearize Model

To open the Linear Analysis Tool, in the Simulink model window, select Analysis >
Control Design > Linear Analysis.

To linearize the model at the model initial condition, in the Linear Analysis Tool, on the
Linear Analysis tab, click Bode.

The software linearizes the model and plots its frequency response.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-23

As can be seen from the Bode plot, the system has linearized to zero such that the torque
has no effect on the angle or angular velocity. You can explore why this is the case using
the Linearization Advisor.

Linearize Model with Advisor Enabled

To relinearize the model and generate an advisor, select Linearization Advisor, and click
Bode Plot 1.

4 Troubleshooting Linearization Results

4-24

The software linearizes the model, creates the linsys2_advisor document, and opens the
Advisor tab.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-25

Highlight Linearization Path

To show the linearization path for the current linearization, on the Advisor tab, click
Highlight Linearization Path. In the Linearization path dialog box, the blocks
highlighted in:

• Blue numerically influence the model linearization.
• Red are on the linearization path but do not influence the model linearization for the

current operating point and block parameters.

For convenience, only the blocks underneath the pendulum subsystem are shown.

4 Troubleshooting Linearization Results

4-26

 Troubleshoot Linearization Results in Linear Analysis Tool

4-27

In this case, since the model linearized to zero, there are no blocks that contribute to the
linearization.

Investigate Potentially Problematic Blocks Using Advisor

The linsys2_advisor document shows a table listing blocks that may be problematic for
the linearization.

To view more information about a specific block linearization, in the corresponding row of
the table, click Block Info.

In this case, three blocks are reported by the advisor, a Saturation block and two
Trigonometric Function blocks. Investigate the Saturation block first since it has
diagnostics. To do so, in the first row of the table, click Block Info.

4 Troubleshooting Linearization Results

4-28

There are two diagnostic messages for the Saturation block. The first message indicates
that the block is linearized outside of its lower saturation limit of -49, since the input
operating point is -49.05. The message also states the block can be linearized as a gain,
which will linearize the block as 1 regardless of the input operating point. To do so, first
click linearizing the block as a gain, which highlights the corresponding parameter in
the block dialog box. Then, select the Treat as gain when linearizing parameter.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-29

The second message states that the linearization of this block causes the model to
linearize to zero. As shown in the Linearization section, the block is linearized to zero.
Therefore, modifying the block linearization is a good first step toward obtaining a
nonzero model linearization.

Relinearize Model

After setting the Saturation block to be treated as a gain, relinearize the model. For now,
ignore the diagnostics for the two Trigonometric Function blocks.

To relinearize the model, on the Linear Analysis tab, click Bode Plot 1. The Bode Plot
1 document updates, showing the nonzero response of linsys3.

4 Troubleshooting Linearization Results

4-30

In the corresponding linsys_advisor3 document, the Saturation block is no longer listed.
However, the two Trigonometric Function blocks are still shown.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-31

Highlight the linearization path.

4 Troubleshooting Linearization Results

4-32

 Troubleshoot Linearization Results in Linear Analysis Tool

4-33

Most of the blocks are now contributing to the model linearization, except for the paths
going through the listed Trigonometric Function blocks.

To understand why these blocks are not contributing to the linearization, navigate to the
blocks from the linsys3_advisor document. For example, click Block Info in the second
row of the table.

For this Trigonometric Function block, the linearization is zero and the input operating
point is .

You can find the linearization of the block analytically by taking the first derivative of the
sin function with respect to the inputs:

4 Troubleshooting Linearization Results

4-34

Therefore, when evaluated at the linearization of the block is zero. The source of
the input is the first output of the second-order integrator, which is dependent upon the
state theta. Therefore, this block will linearize to zero if , where is an
integer. The same condition applies for the other Trigonometric Function in the
angle_wrap subsystem.

If these blocks are not expected to linearize to zero, you can modify the operating point
state theta, and relinearize the model.

Run Prebuilt Advisor Queries

The Linearization Advisor provides a set of prebuilt queries for filtering block diagnostics.
For example, the Linearization Advice query is the default query run when the advisor
is first created and includes blocks on the path that:

• Have diagnostic messages regarding the block linearization.
• Linearized to zero.
• Have substituted linearizations.

To run a different prebuilt query, on the Advisor tab, in the Queries gallery, click the
query. For example, click Zero I/O Pair on Path.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-35

This query returns blocks with linearizations that have output channels that cannot be
reached by any input channel, or input channels that have no influence on any output
channels. For example, the second block in the table is a Trigonometric Function block
configured as atan2. The first input of this block cannot reach the only output.

Create and Run Custom Queries

The Linearization Advisor also provides a Query Builder for creating custom queries. You
can use these queries to find blocks in your model that match specific criteria. For
example, to find all SISO blocks that are numerically perturbed, first open the Query
Builder. To do so, on the Advisor tab, click New Query.

4 Troubleshooting Linearization Results

4-36

In the Query Builder dialog box:

1 Specify the Query Name as sisopert.
2 In the drop-down list, select Has 'Ny' Outputs', and specify 1 in the Outputs

box.
3 To add another component to the query, click Add to Query.
4 In the second drop-down list, select Has 'Nu' Inputs', and specify 1 in the Inputs

box.
5 Click Add to Query.
6 In the third drop-down list, select Perturbation.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-37

Click Run Query.

The linsys3_advisor document shows the blocks that match the specified query criteria,
and the sisopert query is added to the Queries gallery.

4 Troubleshooting Linearization Results

4-38

To remove the sisopert query, on the Advisor tab, click Remove Query, and select
sisopert.

 Troubleshoot Linearization Results in Linear Analysis Tool

4-39

Export Advisor and Generate MATLAB Script

You can also debug model linearizations using the Linearization Advisor command-line
functions. To export the advisor object to the MATLAB workspace, click Export. Then, in
the Export Advisors dialog box, select one or more advisors to export. For example, select
linsys3_advisor.

Click Export.

Alternatively, you can generate a MATLAB script that automates the linearization,
extraction of the advisor, generation of custom queries, and running of queries. To
generate this script, click the Export split button, then select Generate Script.

4 Troubleshooting Linearization Results

4-40

bdclose(mdl)

See Also
Apps
Linear Analysis Tool

More About
• “Identify and Fix Common Linearization Issues” on page 4-9
• “Troubleshoot Linearization Results at Command Line” on page 4-42
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54

 See Also

4-41

Troubleshoot Linearization Results at Command Line
This example shows how to debug the linearization of a Simulink model at the command
line using a LinearizationAdvisor object. You can also troubleshoot linearization
results interactively. For more information, see “Troubleshoot Linearization Results in
Linear Analysis Tool” on page 4-23.

For this example, troubleshoot the linearization of a pendulum model.

Open the model.

mdl = 'scdpendulum';
open_system(mdl)

The initial condition for the pendulum angle is 90 degrees counterclockwise from the
upright unstable equilibrium of 0 degrees. The initial condition for the pendulum angular
velocity is 0 deg/s. The nominal torque to maintain this state is -49.05 N m. This
configuration is saved as the model initial condition.

Linearize Model

Linearize the model using the analysis points defined in the model and the model
operating point.

io = getlinio(mdl);
linsys = linearize(mdl,io);

To check the linearization result, plot its Bode response.

4 Troubleshooting Linearization Results

4-42

bode(linsys)

The model linearized to zero such that the torque, tau, has no effect on the angle or
angular velocity. To find the source of the zero linearization, you can use a
LinearizationAdvisor object.

Linearize Model with Advisor Enabled

To collect diagnostic information during linearization and create an advisor for
troubleshooting, first create a linearizeOptions option set, specifying the
StoreAdvisor option as true.

opt = linearizeOptions('StoreAdvisor',true);

 Troubleshoot Linearization Results at Command Line

4-43

Linearize the Simulink model using this option set. Return the info output argument,
which contains linearization diagnostic information in a LinearizationAdvisor object.

[linsys1,~,info] = linearize(mdl,io,opt);

Extract the LinearizationAdvisor object.

advisor = info.Advisor;

Highlight Linearization Path

To show the linearization path for the current linearization, use highlight. Also, open
the pendulum subsystem.

highlight(advisor)

4 Troubleshooting Linearization Results

4-44

As shown in the Linearization path dialog box, the blocks highlighted in:

• Blue numerically influence the model linearization.
• Red are on the linearization path but do not influence the model linearization for the

current operating point and block parameters.

Since the model linearized to zero, there are no blocks that contribute to the
linearization.

Investigate Potentially Problematic Blocks

To obtain diagnostic information for blocks that may be problematic for linearization, use
advise. This function returns a new LinearizationAdvisor object that contains
information on blocks on the linearization path that satisfy at least one of the following
criteria:

• Have diagnostic messages regarding their linearization
• Linearize to zero
• Have substituted linearizations

adv1 = advise(advisor);

 Troubleshoot Linearization Results at Command Line

4-45

View a summary of the diagnostic information for these blocks, use getBlockInfo.

getBlockInfo(adv1)

ans =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

In this case, the advisor reports three potentially problematic blocks, a Saturation
block and two Trignonometric Function blocks. When you run this example in
MATLAB, the block paths display as hyperlinks. To go to one of these blocks in the model,
click the corresponding block path hyperlink.

To view more information about a specific block linearization, use getBlockInfo. For
information on the available diagnostics, see BlockDiagnostic.

For example, obtain the diagnostic information for the Saturation block.

diag = getBlockInfo(adv1,1)

diag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

This block has two diagnostic messages regarding its linearization result. The first
message indicates that the block is linearized outside of its lower saturation limit of -49,
since the input operating point is -49.05.

The message also indicates that the block can be linearized as a gain, which linearizes the
block as 1 regardless of the input operating point.

4 Troubleshooting Linearization Results

4-46

When you run this example in MATLAB, the text linearizing the block as a gain
displays as a hyperlink. To open the Block Parameters dialog box for the Saturation
block, and highlight the option for linearizing the block as a gain, click this hyperlink.

Select Treat as gain when linearizing, and click OK.

Alternatively, you can set this parameter from the command line.

set_param('scdpendulum/pendulum/Saturation','LinearizeAsGain','on')

The second diagnostic message states that the linearization of this block causes the
overall model to linearize to zero. View the linearization of this block.

diag.Linearization

ans =

 D =
 u1
 y1 0

 Troubleshoot Linearization Results at Command Line

4-47

Name: Saturation
Static gain.

Since this block linearized to zero, modifying the block linearization by treating it as a
gain is a good first step toward obtaining a nonzero model linearization.

Relinearize Model

To see the effect of treating the Saturation block as a gain, relinearize the model, and
plot its Bode response.

[linsys2,~,info] = linearize(mdl,io,opt);
bode(linsys2)

4 Troubleshooting Linearization Results

4-48

The model linearization is now nonzero.

To check if any blocks are still potentially problematic for linearization, extract the
advisor object, and use the advise function.

advisor2 = info.Advisor;
adv2 = advise(advisor2);

View the block diagnostic information.

getBlockInfo(adv2)

ans =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

The two Trigonometric Function blocks are still listed.

Highlight the linearization path for the updated linearization.

highlight(advisor2)

 Troubleshoot Linearization Results at Command Line

4-49

Most of the blocks are now contributing to the model linearization, except for the paths
going through the listed Trigonometric Function blocks.

To understand why these blocks are not contributing to the linearization, view their
corresponding block diagnostic information. For example, obtain the diagnostic
information for the second Trignonometric Function block.

diag = getBlockInfo(adv2,2)

diag =
Linearization Diagnostics for scdpendulum/pendulum/Trigonometric Function with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Perturbation'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

View the linearization of this block.

diag.Linearization

4 Troubleshooting Linearization Results

4-50

ans =

 D =
 u1
 y1 0

Name: Trigonometric Function
Static gain.

The block linearized to zero. To see if this result is expected for the current operating
condition of the block, check its operating point.

diag.OperatingPoint

ans =
Block Operating Point for scdpendulum/pendulum/Trigonometric Function

Inputs:

Port u
1 1.5708

The input operating point of the block is .

You can find the linearization of the block analytically by taking the first derivative of the
sin function with respect to the input:

Therefore, when evaluated at the linearization of the block is zero. The source of
the input is the first output of the second-order integrator, which is dependent upon the

state theta. Therefore, this block linearizes to zero if , where is an
integer. The same condition applies for the other Trigonometric Function in the
angle_wrap subsystem. If these blocks are not expected to linearize to zero, you can
modify the operating point state theta, and relinearize the model.

 Troubleshoot Linearization Results at Command Line

4-51

Create and Run Custom Queries

The Linearization Advisor also provides objects and functions for creating custom queries.
Using these queries, you can find blocks in your model that match specific criteria. For
example, to find all SISO blocks that are linearized using numerical perturbation, first
create query objects for each search criterion:

• Has one input
• Has one output
• Is numerically perturbed

qIn = linqueryHasInputs(1);
qOut = linqueryHasOutputs(1);
qPerturb = linqueryIsNumericallyPerturbed;

Create a CompoundQuery object by combining these query objects using logical
operators.

sisopert = qIn & qOut & qPerturb;

Search the block diagnostics in advisor2 for blocks matching these criteria.

sisopertBlocks = find(advisor2,sisopert)

sisopertBlocks =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: '((Has 1 Inputs & Has 1 Outputs) & Perturbation)'

There are three SISO blocks in the model that are linearized using numerical
perturbation.

4 Troubleshooting Linearization Results

4-52

For more information on using custom queries, see “Find Blocks in Linearization Results
Matching Specific Criteria” on page 4-54.

See Also
Functions
advise | find

More About
• “Identify and Fix Common Linearization Issues” on page 4-9
• “Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54

 See Also

4-53

Find Blocks in Linearization Results Matching Specific
Criteria

When you linearize a Simulink model, you can find blocks in your linearization result that
match specific criteria using the Linearization Advisor. You can specify search criteria to
find blocks that can:

• Potentially cause linearization issues in your model, if your model does not linearize as
expected. For more information on identifying and fixing linearization issues using the
Linearization Advisor, see “Identify and Fix Common Linearization Issues” on page 4-
9.

• Help you gain insight into your model linearization, even if the model has linearized as
expected.

You can also query the Linearization Advisor at the command line using the find
function. For an example, see “Troubleshoot Linearization Results at Command Line” on
page 4-42.

Searching the linearization results requires linearization diagnostic information. To
collect this information, you must enable the Linearization Advisor before linearizing your
model.

To enable the Linearization Advisor, in the Linear Analysis Tool, on the Linear Analysis
tab, select Linearization Advisor.

4 Troubleshooting Linearization Results

4-54

When you select this option and linearize your model, the software opens an Advisor tab
for troubleshooting your linearization results. You can then find blocks of interest in the
linearization results by running queries with the Linearization Advisor.

After finding blocks of interest, you can examine the individual block linearizations using
the linearization diagnostic information. For more information, see “Block Linearization
Troubleshooting” on page 4-61.

Run Built-In Queries
The Linearization Advisor provides a set of built-in queries for searching your
linearization results. These queries are useful for finding blocks that are potentially
causing linearization issues. To run one of these queries, on the Advisor tab, in the
Queries section, click the query.

Built-In Query Find Blocks That...
Linearization Advice Are potentially problematic for

linearization. This query is performed by
default when the Advisor tab opens.

Diagnostics on Path Are on the linearization path and that have
diagnostic messages regarding their
linearization. This query is a subset of the
Linearization Advice query.

Substitutions on Path Are on the linearization path and have a
custom block linearization specified. This
query is a subset of the Linearization
Advice query.

Zero I/O Pair on Path Are on the linearization path and have at
least one input/output pair that linearizes to
zero.

All Blocks on Path Are on the linearization path; that is, blocks
where at least one linearization input is
connected to at least one linearization
output through the block.

 Find Blocks in Linearization Results Matching Specific Criteria

4-55

Create and Run Queries
The linearization advisor also provides a set of simple queries for searching your model.
You can run these queries on their own or use them to create compound queries.

Simple Query Find Blocks That...
All Blocks Are in the linearized model.
Linearized to Zero Linearize to zero.
Block Substituted Have a custom block linearization specified.
On Linearization Path Are on the linearization path.
Contributes to Linearization Numerically contribute to the model

linearization result.
Exact Are linearized using their defined exact

linearization.
Perturbation Are linearized using numerical

perturbation.
Has Diagnostics Have diagnostic messages regarding their

linearization.
'BlockType' Blocks Are of a specified type.
Has 'Nu' Inputs Have a specified number of inputs.
Has 'Nx' States Have a specified number of states.
Has 'Ny' Outputs Have a specified number of outputs.
Has 'Ts' Sample Time Have a specified sample time.
Has Zero I/O Pair Have at least one input/output pair that

linearizes to zero.

To run a simple query, in the Linear Analysis Tool, on the Advisor tab, click New Query.

4 Troubleshooting Linearization Results

4-56

In the Query Builder dialog box, configure the query. For example, create a query for
finding all blocks that numerically contribute to the linearization result.

1 In the Query Name field, specify the name for the query as Contributes.
2 In the drop-down list, select Contributes to Linearization.

3 If you select any of the following queries, specify the corresponding search
parameter.

Query Search Parameter
'BlockType' Blocks Block Type — This parameter corresponds to the

blocktype property of the block. For more
information, see linqueryIsBlockType.

Has 'Nu' Inputs Inputs — Specify a positive integer.

 Find Blocks in Linearization Results Matching Specific Criteria

4-57

Query Search Parameter
Has 'Nx' States States — Specify a positive integer.
Has 'Ny' Outputs Outputs — Specify a positive integer.
Has 'Ts' Sample Time Sample Time — Specify a nonzero scalar. To find

continuous-time blocks, specify 0.
4 To create and run the query, click Run Query. The software runs the query and, on

the Advisor tab, displays the list of blocks that contribute to the model linearization.

The query is added to the Queries section.

You can also create compound queries by logically combining existing queries using And,
Or, and Not logical operations. You can create a compound query using simple queries,
built-in queries, or other compound queries.

To create a compound query, in the Query Builder dialog box, configure the query using
multiple search criteria. For example, create a query to find all discrete-time blocks that
are on the linearization path.

1 In the Query Name field, specify the name for the query as Discrete on Path.

4 Troubleshooting Linearization Results

4-58

2 To find blocks on the linearization path, in the drop-down list, select On
Linearization Path.

3 To add another search criteria, click Add to Query. The software adds a second row
to the search criteria. By default, the search criteria are combined using an And
operation.

4 To find discrete-time blocks, first add a search criteria to find continuous-time blocks.
In the second row, in the drop-down list, select Has 'Ts' Sample Time. Keep the
default Sample Time of 0.

5 To find discrete-time blocks, in the second row, select Not.

6 Click Run Query.

Each time you create a custom query, the software adds it to the drop-down list of search
criteria in the Query Builder dialog box. You can then use your custom queries to create
more complex queries. For example, to find discrete-time blocks on the linearization path
that are linearized using numerical perturbation, create a query that combines the
Discrete on Path custom query with the Perturbed simple query using an And
operation.

See Also
Apps
Linear Analysis Tool

Functions
find

 See Also

4-59

More About
• “Identify and Fix Common Linearization Issues” on page 4-9
• “Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23
• “Troubleshoot Linearization Results at Command Line” on page 4-42

4 Troubleshooting Linearization Results

4-60

Block Linearization Troubleshooting
Once you identify blocks of interest in the linearization results for your Simulink model by
querying the Linearization Advisor, you can troubleshoot the individual block
linearizations. For more information on querying the Linearization Advisor and viewing
block diagnostic information, see “Identify and Fix Common Linearization Issues” on page
4-9.

You can also troubleshoot individual block linearizations at the command line using a
BlockDiagnostic object. For an example, see “Troubleshoot Linearization Results at
Command Line” on page 4-42.

In the Linear Analysis Tool, on the Advisor tab, the detailed diagnostic information for a
block linearization shows:

• A diagnostic summary, showing any corresponding diagnostic messages and a
linearization summary table.

• The block linearization value.

 Block Linearization Troubleshooting

4-61

• The block operating point; the state and input values for which the block is linearized.

4 Troubleshooting Linearization Results

4-62

You can diagnose potential linearization issues using this information.

Diagnostic Messages
Linearization diagnostic messages indicate blocks with properties or linearizations that
correspond to common linearization problems. Fixing linearization issues identified in
diagnostic messages is a good first step when troubleshooting your linearization.

Some block configurations that can generate diagnostic messages include:

• Blocks with nondouble input or output signals and no predefined exact linearization.
Such blocks linearize to zero and generate diagnostic messages.

• Discontinuous blocks linearized at an operating point near a discontinuity. If such
blocks are not treated as a gain during linearization, the software generates diagnostic
messages regarding their linearization.

• Blocks with least one input/output pair that linearizes to zero and that causes a zero
input/output pair in the overall model linearization. A linearization has a zero input/
output pair when a change in an input signal value does not produce a corresponding
change in an output value.

• Blocks that do not support linearization because they do not have a predefined exact
linearization and do not support numerical perturbation.

Some diagnostic messages propose solutions to their corresponding linearization issues.
For example, when an input signal is outside the saturation limits of a Saturation block,
the diagnostic message proposes treating the block as a gain during linearization.

 Block Linearization Troubleshooting

4-63

Linearization Summary
The linearization summary table displays the following properties of the block
linearization:

• Block Path — Location of the block in the Simulink model. To highlight the block in
the model, click the block path.

• Is On Path — Flag indicating whether the block is on the linearization path; that is, at
least one linearization input is connected to at least one linearization output through
the block. If you expect a block to be on the linearization path and it is not on the path,
check the analysis point configuration in your model. Incorrectly placed linearization
I/Os or loop openings can exclude blocks from the linearization path. Similarly, placing
incorrect analysis points can unexpectedly add blocks to the linearization path.

• Contributes to Linearization — Flag indicating whether the block numerically
contributes to the overall model linearization. If a block unexpectedly does not
contribute to the linearization result, investigate the linearization of the block and
other blocks in the same branch of the linearization path. For example, if an adjacent
block on the linearization path linearizes to zero, an otherwise correctly linearized
block can be excluded from the linearization result.

• Linearization method — The method used to linearize the model, specified as one of
the following:

• Exact — The block linearization is computed using the defined analytic Jacobian of
the block.

• Perturbation — The block does not have an analytic Jacobian. Instead, the block is
linearized using numerical perturbation of its inputs and states. Some numerically
perturbed blocks, such as those with discontinuities or nondouble input signals can
linearize to zero.

• Block Substituted — The block linearization is specified using a custom block
linearization. Consider checking that the specified block linearization is correct for
your application. For more information, see “Specify Linear System for Block
Linearization Using MATLAB Expression” on page 2-160 and “Specify D-Matrix
System for Block Linearization Using Function” on page 2-161.

• Simscape Network — The block diagnostics correspond to a Simscape network in
your model. For more information on linearizing and troubleshooting Simscape
networks, see “Linearize Simscape Networks” on page 2-196.

• Not Supported — The block does not have an analytic Jacobian and does not
support numerical perturbation. Specify the linearization for this block using a

4 Troubleshooting Linearization Results

4-64

custom linearization. For more information, see “Specify Linear System for Block
Linearization Using MATLAB Expression” on page 2-160 and “Specify D-Matrix
System for Block Linearization Using Function” on page 2-161.

Block Linearization
To verify whether a block linearized as expected, check the block linearization equations.
By default the software displays the linearization in state-space format. In the Show
linearization as drop-down list, you can select a different display format.

To diagnose the cause of an unexpected block linearization, such as a block that linearizes
to zero, consider:

• Any corresponding diagnostic messages. These messages can highlight common
causes of incorrect linearizations and propose potential solutions.

• The block operating point. For example, if the input to a saturation block is outside the
saturation limits of the block, the block linearizes to zero.

• The block parameters. For example, if a block is configured to use nondouble inputs or
states and has no predefined exact linearization, it linearizes to zero.

Block Operating Point
If the block does not linearize as expected, check the operating point. The operating point
at which the block is linearized consists of input and state values. If the operating point
for the block is incorrect, check whether the overall model operating point is correct. For
more information, see “Check Operating Point” on page 4-6.

If an input signal value in the block operating point is incorrect, investigate the
linearization of upstream blocks from that signal. For example, consider a Product block
with two inputs. The operating point of this block consists of the two input signal values.
If either input value is zero, the path from the other input to the output linearizes to zero.

If you expect the Product block to contribute to the linearization result for the operating
point at which you linearized the model, check the linearization for the block that
generates the zero input signal. For complex models, the cause of the incorrect input
signal can be more than one block upstream.

 Block Linearization Troubleshooting

4-65

Common Problematic Blocks
Some Simulink blocks have properties that cause them to linearize poorly. Often, such
blocks either linearize to zero or have linearization diagnostic messages associated with
them. Therefore, the Linearization Advisor identifies them as potentially problematic
blocks when the Advisor tab first opens.

The following table shows some blocks that commonly cause linearization issues and
proposes potential fixes for each block. All these blocks have corresponding diagnostic
messages.

Block Type Linearization Issue Possible Fix
Blocks that do not
support linearization

Some blocks are implemented without
defined analytic Jacobians and do not
support numerical perturbation.

Specify a custom block
linearization. For
examples, see “Specify
Linear System for Block
Linearization Using
MATLAB Expression” on
page 2-160 and “Specify
D-Matrix System for
Block Linearization
Using Function” on page
2-161.

4 Troubleshooting Linearization Results

4-66

Block Type Linearization Issue Possible Fix
Blocks with
discontinuities

Blocks with discontinuities typically
have poor linearization results when
the operating point is near the
discontinuity.

• Treat the block as a
gain of 1 during
linearization. To do
so, select the Treat
as gain when
linearizing block
parameter.

• Specify a custom
block linearization.
For examples, see
“Specify Linear
System for Block
Linearization Using
MATLAB Expression”
on page 2-160 and
“Specify D-Matrix
System for Block
Linearization Using
Function” on page 2-
161.

Event-Based
Subsystems
(triggered
subsystems)

Blocks within event-based subsystems
linearize to zero because such
subsystems do not trigger during
linearization.

When possible, specify a
custom event-based
subsystem linearization
as a lumped average
model or periodic
function call subsystem.
For more information,
see “Linearize Event-
Based Subsystems
(Externally Scheduled
Subsystems)” on page 2-
187.

 Block Linearization Troubleshooting

4-67

Block Type Linearization Issue Possible Fix
Blocks with
nondouble-precision
signals

Blocks that have nondouble-precision
inputs signals or states and do not have
defined analytic Jacobians linearize to
zero.

Convert the nondouble-
precision data types to
double-precision. For
more information, see
“Linearize Blocks with
Nondouble Precision
Data Type Signals” on
page 2-185.

Blocks that linearize
using numerical
perturbation rather
than defined analytic
Jacobians

Blocks that are located near
discontinuous regions, such as S-
Functions, MATLAB function blocks, or
lookup tables, are sensitive to
numerical perturbation levels. If the
perturbation level is too small, the
block linearizes to zero.

Change the numerical
perturbation level of the
block. For more
information, see
“Change Perturbation
Level of Blocks
Perturbed During
Linearization” on page
2-183.

See Also

More About
• “Linearization Troubleshooting Overview” on page 4-2
• “Identify and Fix Common Linearization Issues” on page 4-9

4 Troubleshooting Linearization Results

4-68

Speed Up Linearization of Complex Models

Factors That Impact Linearization Performance
Large Simulink models and blocks with complex initialization functions can slow
linearization.

Usually, the time it takes to linearize a model is directly related to the time it takes to
update the block diagram (Simulink).

Blocks with Complex Initialization Functions
Use the MATLAB Profiler to identify complex bottlenecks in block initialization functions.

In the MATLAB Profiler, run the command:

set_param(modelname,'SimulationCommand','update')

Disabling the Linearization Advisor in the Linear Analysis Tool
You can speed up the linearization of large models by disabling the Linearization Advisor
in the Linear Analysis Tool.

The Linearization Advisor stores diagnostic information, including linearization values of
individual blocks, which can impact linearization performance.

To disable the Linearization Advisor, in the Linear Analysis Tool, on the Linear Analysis
tab, clear Linearization Advisor.

Tip Alternatively, you can disable the Linearization Advisor globally in the Simulink
Control Design tab of the MATLAB preferences dialog box. Clear the Launch
Linearization for exact linearizations in the linear analysis tool check box. This
global preference persists from session to session until you change this preference.

Batch Linearization of Large Simulink Models
When batch linearizing a large model that contains only a few varying parameters, you
can use linlftfold to reduce the computational load.

 Speed Up Linearization of Complex Models

4-69

See “More Efficient Batch Linearization Varying Parameters”.

See Also

4 Troubleshooting Linearization Results

4-70

Frequency Response Estimation

• “What Is a Frequency Response Model?” on page 5-2
• “Model Requirements” on page 5-4
• “Estimation Requires Input and Output Signals” on page 5-5
• “Estimation Input Signals” on page 5-7
• “Create Sinestream Input Signals” on page 5-13
• “Create Chirp Input Signals” on page 5-18
• “Modify Estimation Input Signals” on page 5-22
• “Estimate Frequency Response Using Linear Analysis Tool” on page 5-25
• “Estimate Frequency Response with Linearization-Based Input Using Linear Analysis

Tool” on page 5-28
• “Estimate Frequency Response at the Command Line” on page 5-32
• “Analyze Estimated Frequency Response” on page 5-37
• “Troubleshooting Frequency Response Estimation” on page 5-45
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation”

on page 5-56
• “Disable Noise Sources During Frequency Response Estimation” on page 5-65
• “Estimate Frequency Response Models with Noise Using Signal Processing Toolbox”

on page 5-71
• “Estimate Frequency Response Models with Noise Using System Identification

Toolbox” on page 5-73
• “Generate MATLAB Code for Repeated or Batch Frequency Response Estimation”

on page 5-75
• “Managing Estimation Speed and Memory” on page 5-77

5

What Is a Frequency Response Model?
Frequency response describes the steady-state response of a system to sinusoidal inputs.

For a linear system, a sinusoidal input of frequency ω:

u t A tu() sin= w

results in an output that is also a sinusoid with the same frequency, but with a different
amplitude and phase θ:

y t A ty() sin()= +w q

q

A

A

u

y

u(t)

y(t)

G(s)

u(t) y(t)

Linear System

Frequency response G(s) for a stable system describes the amplitude change and phase
shift as a function of frequency:

5 Frequency Response Estimation

5-2

G s
Y s

U s

G s G j
A

A

Y j

X j

y

u

()
()

()

() ()

()

()
tan

=

= =

= – = -

w

q
w
w

1 imaginary paart of

real part of

G j

G j

()

()

w
w

Ê

Ë
Á

ˆ

¯
˜

where Y(s) and U(s) are the Laplace transforms of y(t) and u(t), respectively.

Frequency Response Model Applications
You can estimate the frequency response of a Simulink model as a frequency response
model (frd object), without modifying your Simulink model.

Applications of frequency response models include:

• Validating exact linearization results.

Frequency response estimation uses a different algorithm to compute a linear model
approximation and serves as an independent test of exact linearization. See “Validate
Linearization In Frequency Domain” on page 2-143.

• Analyzing linear model dynamics.

Designing controller for the plant represented by the estimated frequency response
using Control System Toolbox software.

• Estimating parametric models.

See “Estimate Frequency Response Models with Noise Using System Identification
Toolbox” on page 5-73.

 What Is a Frequency Response Model?

5-3

Model Requirements
You can estimate the frequency response of one or more blocks in a stable Simulink model
at steady state.

Your model can contain any Simulink blocks, including blocks with event-based dynamics.
Examples of blocks with event-based dynamics include Stateflow charts, triggered
subsystems, pulse width modulation (PWM) signals.

u(t) y(t)

Estimate frequency response
for these blocks

Frequency
response

model

You should disable the following types of blocks before estimation:

• Blocks that simulate random disturbances (noise).

For alternatives ways to model systems with noise, see “Estimate Frequency Response
Models with Noise Using Signal Processing Toolbox” on page 5-71.

• Source blocks that generate time-varying outputs that interfere with the estimation.
See “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on
page 5-56.

5 Frequency Response Estimation

5-4

Estimation Requires Input and Output Signals
Frequency response estimation requires an input signal at the linearization input point to
excite the model at frequencies of interest, such as a chirp or sinestream signal. A
sinestream input signal is a series of sinusoids, where each sine wave excites the system
for a period of time. You can inject the input signal anywhere in your model and log the
simulated output, without having to modify your model.

Frequency response estimation adds the input signal you design to the existing Simulink
signals at the linearization input point, and simulates the model to obtain the output at
the linearization output point. For more information about supported input signals and
their impact on the estimation algorithm, see “Estimation Input Signals” on page 5-7.

u(t)

Linearization
input

y(t)

Linearization
outputEstimate frequency response

for these blocks

For multiple-input multiple-output (MIMO) systems, frequency response estimation
injects the signal at each input channel separately to simulate the corresponding output
signals. The estimation algorithm uses the inputs and the simulated outputs to compute
the MIMO frequency response. If you want to inject different input signal at the
linearization input points of a multiple-input system, treat your system as separate single-
input systems. Perform independent frequency response estimations for each
linearization input point using frestimate, and concatenate your frequency response
results.

Frequency response estimation correctly handles open-loop linearization input and output
points. For example, if the input linearization point is open, the input signal you design
adds to the constant operating point value. The operating point is the initial output of the
block with a loop opening.

The estimated frequency response is related to the input and output signals as:

 Estimation Requires Input and Output Signals

5-5

G s
y test

()
()

ª

fast Fourier transform of

fast Fourier transforrm u test()

where uest(t) is the injected input signal and yest(t) is the corresponding simulated output
signal.

See Also

More About
• “Estimation Input Signals” on page 5-7

5 Frequency Response Estimation

5-6

Estimation Input Signals
Frequency response estimation uses either sinestream or chirp input signals.

Sinusoidal Signal When to Use
Sinestream Recommended for most situations. Especially useful when:

• Your system contains strong nonlinearities.
• You require highly accurate frequency response models.

Chirp Useful when:

• Your system is nearly linear in the simulation range.
• You want to quickly obtain a response for a lot of

frequency points.

What Is a Sinestream Signal?
A sinestream signal consists of several adjacent sine waves of varying frequencies. Each
frequency excites the system for a period of time.

 Estimation Input Signals

5-7

A
m

p
lit
u
d
e

Time

f f f1 2 3

How Frequency Response Estimation Treats Sinestream Inputs

Frequency response estimation using frestimate performs the following operations on
a sinestream input signal:

1 Injects the sinestream input signal you design, uest(t), at the linearization input point.
2 Simulates the output at the linearization output point.

frestimate adds the signal you design to existing Simulink signals at the
linearization input point.

5 Frequency Response Estimation

5-8

u(t)

u (t)

y(t)

est

3 Discards the SettlingPeriods portion of the output (and the corresponding input)
at each frequency.

The simulated output at each frequency has a transient portion and steady state
portion. SettlingPeriods corresponds to the transient components of the output
and input signals. The periods following SettlingPeriods are considered to be at
steady state.

 Estimation Input Signals

5-9

SettlingPeriods

Input

Output

4 Filters the remaining portion of the output and the corresponding input signals at
each input frequency using a bandpass filter.

When a model is not at steady state, the response contains low-frequency transient
behavior. Filtering typically improves the accuracy of your model by removing the
effects of frequencies other than the input frequencies. These frequencies are
problematic when your sampled data has finite length. These effects are called
spectral leakage.

frestimate uses a finite impulse response (FIR) filter. The software sets the filter
order to match the number of samples in a period such that any transients associated
with filtering appear only in the first period of the filtered steady-state output. After
filtering, frestimate discards the first period of the input and output signals.

5 Frequency Response Estimation

5-10

SettlingPeriods
Filtered
portion

Used for
estimation

Input

Output

You can specify to disable filtering during estimation using the signal
ApplyFilteringInFRESTIMATE property.

5 Estimates the frequency response of the processed signal by computing the ratio of
the fast Fourier transform of the filtered steady-state portion of the output signal
yest(t) and the fast Fourier transform of the filtered input signal uest(t):

G s
y test

()
()

ª

fast Fourier transform of

fast Fourier transforrm u test()

To compute the response at each frequency, frestimate uses only the simulation
output at that frequency.

 Estimation Input Signals

5-11

What Is a Chirp Signal?
The swept-frequency cosine (chirp) input signal excites your system at a range of
frequencies, such that the input frequency changes instantaneously.

Alternatively, you can use the sinestream signal on page 5-13, which excites the system
at each frequency for several periods.

See Also

More About
• “Create Sinestream Input Signals” on page 5-13
• “Create Chirp Input Signals” on page 5-18

5 Frequency Response Estimation

5-12

Create Sinestream Input Signals

Create Sinestream Signals Using Linear Analysis Tool
This example shows how to create a sinestream input signal based upon a linearized
model using the Linear Analysis Tool. If you do not have a linearized model in your
workspace, you can manually construct a sinestream as shown in “Estimate Frequency
Response Using Linear Analysis Tool” on page 5-25.

1 Obtain a linearized model, linsys1.

For example, see “Linearize Simulink Model at Model Operating Point” on page 2-72,
which shows how to linearize a model.

2 In the Linear Analysis Tool, in the Estimation tab, in the Input Signal drop-down
list, select Sinestream.

The Create sinestream input dialog box opens.

 Create Sinestream Input Signals

5-13

Note Selecting Sinestream creates a continuous-time signal. To generate a
discrete-time signal, in the Input Signal drop-down list, select Fixed Sample Time
Sinestream.

3 In the System list, select linsys1. Click Initialize frequencies and parameters.

This action adds frequency points to the Frequency content viewer.

The software automatically selects frequency points based on the dynamics of
linsys1. The software also automatically determines other parameters of the
sinestream signal, including:

• Amplitude
• Number of periods
• Settling periods
• Ramp periods
• Number of samples at each period

5 Frequency Response Estimation

5-14

SettlingPeriods

NumPeriods

4 Click OK to create the sinestream input signal. A new input signal, in_sine1,
appears in the Linear Analysis Workspace.

Create Sinestream Signals Using MATLAB Code
You can create a sinestream signal from both continuous-time and discrete-time signals in
Simulink models using the following commands:

Signal at Input Linearization
Point

Command

Continuous frest.Sinestream
Discrete frest.createFixedTsSinestream

 Create Sinestream Input Signals

5-15

Create a sinestream signal in the most efficient way using a linear model that accurately
represents your system dynamics:

input = frest.Sinestream(sys)

sys is the linear model you obtained using exact linearization.

You can also define a linear system based on your insight about the system using the tf,
zpk, and ss commands.

For example, create a sinestream signal from a linearized model:

magball
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',...
 1,'output');
sys = linearize('magball',io);
input = frest.Sinestream(sys)

The resulting input signal stores the frequency values as Frequency.
frest.Sinestream automatically specifies NumPeriods and SettlingPeriods for
each frequency:

 Frequency : [0.05786;0.092031;0.14638 ...] (rad/s)
 Amplitude : 1e-005
 SamplesPerPeriod : 40
 NumPeriods : [4;4;4;4 ...]
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : [1;1;1;1 ...]
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

You can plot your input signal using plot(input).

For more information about sinestream options, see the frest.Sinestream reference
page.

The mapping between the parameters of the Create sinestream input dialog box in the
Linear Analysis Tool and the options of frest.Sinestream is as follows:

Create sinestream input dialog box frest.Sinestream option
Amplitude 'Amplitude'

5 Frequency Response Estimation

5-16

Create sinestream input dialog box frest.Sinestream option
Number of periods 'NumPeriods'
Settling periods 'SettlingPeriods'
Ramp periods 'RampPeriods'
Number of samples at each period 'SamplesPerPeriod'

See Also
frest.Sinestream | frest.createFixedTsSinestream

More About
• “Estimation Input Signals” on page 5-7
• “Create Chirp Input Signals” on page 5-18
• “Modify Estimation Input Signals” on page 5-22

 See Also

5-17

Create Chirp Input Signals

Create Chirp Signals Using Linear Analysis Tool
This example shows how to create a chirp input signal based upon a linearized model
using the Linear Analysis Tool.

1 Obtain a linearized model, linsys1.

For example, see “Linearize Simulink Model at Model Operating Point” on page 2-72,
which shows how to linearize a model.

2 In the Linear Analysis Tool, in the Estimation tab, in the Input Signal drop-down
list, select Chirp.

The Create chirp input dialog box opens.

3 In the System list, select linsys1. Click Compute parameters.

5 Frequency Response Estimation

5-18

The software automatically selects frequency points based on the dynamics of
linsys1. The software also automatically determines other parameters of the chirp
signal, including:

• frequency range at which the linear system has interesting dynamics (see the
From and To boxes of Frequency Range).

• amplitude.
• sample time. To avoid aliasing, the Nyquist frequency of the signal is five times

the upper end of the frequency range, 2

5

p

* max()FreqRange
.

• number of samples.
• initial phase.
• sweep method
• sweep shape.

4 Click OK to create the chirp input signal. A new input signal in_chirp1 appears in
the Linear Analysis Workspace.

 Create Chirp Input Signals

5-19

Create Chirp Signals Using MATLAB Code
Create a chirp signal in the most efficient way using a linear model that accurately
represents your system dynamics:

input = frest.Chirp(sys)

sys can be the linear model you obtained using exact linearization techniques. You can
also define a linear system based on your insight about the system using the tf, zpk, and
ss commands.

For example, create a chirp signal from a linearized model:

magball
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',...
 1,'output');
sys = linearize('magball',io);
input = frest.Chirp(sys)

The input signal is:

 FreqRange : [0.0578598408615998 10065.3895573969] (rad/s)
 Amplitude : 1e-005
 Ts : 0.00012484733494616 (sec)
 NumSamples : 1739616
 InitialPhase : 270 (deg)
 FreqUnits (rad/s or Hz): rad/s
 SweepMethod(linear/ : linear
 quadratic/
 logarithmic)

You can plot your input signal using plot(input).

For more information about chirp signal properties, see the frest.Chirp reference
page.

The mapping between the parameters of the Create chirp input dialog box in the Linear
Analysis Tool and the options of frest.Chirp is as follows:

Create chirp input dialog box frest.Chirp option
Frequency range > From First element associated with the

'FreqRange' option

5 Frequency Response Estimation

5-20

Create chirp input dialog box frest.Chirp option
Frequency range > To Second element associated with the

'FreqRange' option
Amplitude 'Amplitude'
Sample time (sec) 'Ts'
Number of samples 'NumSamples'
Initial phase (deg) 'InitialPhase'
Sweep method 'SweepMethod'
Sweep shape 'Shape'

See Also

More About
• “Estimation Input Signals” on page 5-7
• “Create Sinestream Input Signals” on page 5-13

 See Also

5-21

Modify Estimation Input Signals
When the frequency response estimation produces unexpected results, you can try
modifying the input signal properties in the ways described in “Troubleshooting
Frequency Response Estimation” on page 5-45.

Modify Sinestream Signal Using Linear Analysis Tool
Add Frequency Points to Sinestream Input Signal

This example shows how to add frequency points to an existing sinestream input signal
using the Linear Analysis Tool.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals
Using Linear Analysis Tool” on page 5-13.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear Analysis
Tool.

The Edit sinestream dialog box opens.
3

In the Frequency content viewer, click in the Frequency content toolbar.

The Add frequencies dialog box opens.

4 Enter the frequency range of the points to be added.
5 Click OK to add the specified frequency points to in_sine1.

Delete Frequency Point from Sinestream Input Signal

This example shows how to delete frequency points from an existing sinestream input
signal using the Linear Analysis Tool.

5 Frequency Response Estimation

5-22

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals
Using Linear Analysis Tool” on page 5-13.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear Analysis
Tool.

The Edit sinestream dialog box opens.
3 In the Frequency content viewer, select the frequency point to delete.

The selected point appears blue.

Tip To select multiple frequency points, click and drag across the frequency points of
interest.

4
Click in the Frequency content toolbar to delete the selected frequency point(s)
from the Frequency content viewer.

5 Click OK to save the modified input signal.

Modify Parameters for a Frequency Point in Sinestream Input Signal

This example shows how to modify signal parameters of an existing sinestream input
signal using the Linear Analysis Tool.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals
Using Linear Analysis Tool” on page 5-13.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear Analysis
Tool.

The Edit sinestream dialog box opens.
3 In the Frequency content viewer, select the frequency point(s) to delete.

 Modify Estimation Input Signals

5-23

The selected point(s) appears blue.

Tip To select multiple frequency points, click and drag across the frequency points of
interest.

4 Enter the new values for the signal parameters.

If the parameter value is <mixedvalue>, the parameter has different values for
some of the frequency points selected.

5 Click OK to save the modified input signal.

Modify Sinestream Signal Using MATLAB Code
For example, suppose that you used a sinestream input signal, and the output at a specific
frequency did not reach steady state. In this case, you can modify the characteristics of
the sinestream input at the corresponding frequency.

input.NumPeriods(index) = NewNumPeriods;
input.SettlingPeriods(index) = NewSettlingPeriods;

where index is the frequency value index of the sine wave you want to modify.
NewNumPeriods and NewSettlingPeriods are the new values of NumPeriods and
SettlingPeriods, respectively.

To modify several signal properties at a time, you can use the set command. For
example:

input = set(input,'NumPeriods',NewNumPeriods,...
 'SettlingPeriods',NewSettlingPeriods)

After modifying the input signal, repeat the estimation.

5 Frequency Response Estimation

5-24

Estimate Frequency Response Using Linear Analysis Tool
This example shows how to estimate the frequency response of a Simulink model using
the Linear Analysis Tool.

Open Simulink model and Linear Analysis Tool.
1 Open Simulink model.

sys = 'scdDCMotor';
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis. This
action opens the Linear Analysis Tool for the model.

Create an input signal for estimation.
1 In the Linear Analysis Tool, click the Estimation tab.
2 In the Input Signal drop-down list, select Sinestream to open the Create

sinestream input dialog box.

 Estimate Frequency Response Using Linear Analysis Tool

5-25

3
Click to open the Add frequencies dialog box. You can use this dialog box to add
frequency points to the input signal.

4 Specify the frequency range for the input.

Enter .1 in the From box and 100 in the To box. Enter 100 in the box for the number
of frequency points.

Click OK. This action adds logarithmically spaced frequency points between 0.1 rad/s
and 100 rad/s to the input signal. The added points are visible in the Frequency
content viewer of the Create sinestream input dialog box.

5 In the Frequency content viewer of the Create sinestream input dialog box, select all
the frequency points.

6 Specify the amplitude of the input signal.

5 Frequency Response Estimation

5-26

Enter 1 in the Amplitude box.
7 Click OK to create the sinestream input signal.

The new input signal, in_sine1, appears in the Linear Analysis Workspace.

Estimate frequency response.

Click Bode to estimate the frequency response. The frequency response
estimation result, estsys1, appears in the Linear Analysis Workspace.

 Estimate Frequency Response Using Linear Analysis Tool

5-27

Estimate Frequency Response with Linearization-Based
Input Using Linear Analysis Tool

This example shows how to perform frequency response estimation for a model using the
Linear Analysis Tool. The input signal used for estimation is based on the linearization of
the model.

Linearize Simulink model.

1 Open Simulink model.

sys = 'scdDCMotor';
open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 Linearize the model using the model initial conditions as the operating point.

In the Linear Analysis tab, click Bode.

5 Frequency Response Estimation

5-28

A new linearized model, linsys1, appears in the Linear Analysis Workspace.

Create sinestream input signal.

1 In the Estimation tab, in the Input Signal drop-down list, select Sinestream.
2 Initialize the input signal frequencies and parameters based on linsys1.

In the Create sinestream input dialog box, click Initialize frequencies and
parameters.

 Estimate Frequency Response with Linearization-Based Input Using Linear Analysis Tool

5-29

The Frequency content viewer is populated with frequency points. The software
chooses the frequencies and input signal parameters automatically based on the
dynamics of linsys1.

3 In the Frequency content viewer, select all the frequency points.

4 Specify the amplitude of the input signal.

Enter 1 in the Amplitude box.
5 Create the input sinestream signal.

Click OK. The input signal in_sine1 appears in the Linear Analysis Workspace.

Estimate the frequency response.

Click Bode Plot 1 to estimate the frequency response.

5 Frequency Response Estimation

5-30

The estimated system, estsys1, appears in the Linear Analysis Workspace and the its
frequency response is added to Bode Plot 1.

The frequency response for the estimated model matches that of the linearized model.

 Estimate Frequency Response with Linearization-Based Input Using Linear Analysis Tool

5-31

Estimate Frequency Response at the Command Line
This example shows how to estimate the frequency response of a Simulink® model at the
MATLAB® command line.

Open the Simulink model.

mdl = 'scdplane';
open_system(mdl)

For more information on the general model requirements for frequency response
estimation, see “Model Requirements” on page 5-4.

Specify input and output points for frequency response estimation using analysis points.
Avoid placing analysis points on bus signals.

5 Frequency Response Estimation

5-32

io(1) = linio('scdplane/Sum1',1);
io(2) = linio('scdplane/Gain5',1,'output');

For more information about linear analysis points, see “Specify Portion of Model to
Linearize” on page 2-13 and linio.

Linearize the model and create a sinestream signal based on the dynamics of the
resulting linear system. For more information, see “Estimation Input Signals” on page 5-7
and frest.Sinestream.

sys = linearize('scdplane',io);
input = frest.Sinestream(sys);

If your model has not reached steady state, initialize the model using a steady-state
operating point before estimating the frequency response. You can check whether your
model is at steady state by simulating the model. For more information on finding steady-
state operating points, see “Compute Steady-State Operating Points” on page 1-5.

Find all source blocks in the signal paths of the linearization outputs that generate time-
varying signals. Such time-varying signals can interfere with the signal at the
linearization output points and produce inaccurate estimation results.

srcblks = frest.findSources('scdplane',io);

To disable the time-varying source blocks, create an frestimateOptions option set and
specify the BlocksToHoldConstant option.

opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

Estimate the frequency response.

[sysest,simout] = frestimate('scdplane',io,input,opts);

sysest is the estimated frequency response. simout is a Simulink.Timeseries object
representing the simulated output.

To speed up your estimation or decrease its memory requirements, see “Managing
Estimation Speed and Memory” on page 5-77.

Open the Simulation Results Viewer to analyze the estimated frequency response.

frest.simView(simout,input,sysest)

 Estimate Frequency Response at the Command Line

5-33

You can also compare the estimated frequency response, sysest, to an exact
linearization of your system, sys.

frest.simView(simout,input,sysest,sys)

5 Frequency Response Estimation

5-34

 Estimate Frequency Response at the Command Line

5-35

The Bode Diagram plot shows the response sys as a blue line.

See Also
findop | frest.findSources | frestimate | frestimateOptions | linio |
operspec

More About
• “Estimation Input Signals” on page 5-7
• “Analyze Estimated Frequency Response” on page 5-37

5 Frequency Response Estimation

5-36

Analyze Estimated Frequency Response

View Simulation Results
View Simulation Results Using Linear Analysis Tool

Use the Diagnostic Viewer to analyze the results of your frequency response estimation,
obtained by performing the steps in “Estimate Frequency Response Using Linear Analysis
Tool” on page 5-25.

To open the Diagnostic Viewer when estimating a model in the Linear Analysis Tool:

1 Before performing the estimation task, in the Estimation tab, select the Diagnostic
Viewer check box.

This action sets the Diagnostic Viewer to open when the frequency response
estimation is performed.

2 In the Estimate section, select your desired plot option to estimate the frequency
response of the model. The Diagnostic Viewer appears in the plot pane.

 Analyze Estimated Frequency Response

5-37

To open the Diagnostic Viewer to view a previously estimated model in the Linear
Analysis Tool:

1 In the Linear Analysis Workspace, select the estimated model.
2

In the Plots and Results tab, select the Diagnostic Viewer.

Note This option is only available for models that have been previously estimated
with the Diagnostic Viewer check box selected.

View Simulation Results (MATLAB Code)

Use the Simulation Results Viewer to analyze the results of your frequency response
estimation, obtained by performing the steps in “Estimate Frequency Response at the
Command Line” on page 5-32.

Open the Simulation Results Viewer using the frest.simView command:

frest.simView(simout,input,sysest)

5 Frequency Response Estimation

5-38

where simout is the simulated output, input is the input signal you created, and
sysest is the estimated frequency response.

Interpret Frequency Response Estimation Results
Select Plots Displayed in Diagnostic Viewer

By default, the Diagnostic Viewer shows these plots:

• Frequency Response
• Time Response (Simulated Output)
• FFT of Time Response

To select the plots displayed in the Diagnostic Viewer using the Linear Analysis Tool:

1 If the Diagnostic Viewer tab is not visible, in the Plots and Results tab, select the
Diagnostic Viewer plot.

2 In the Diagnostic Viewer tab, in the Plot Visibilities section, select the check
boxes for the plots that you want to view.

 Analyze Estimated Frequency Response

5-39

To modify plot settings, such as axis frequency units, right-click on a plot, and select the
corresponding option.

Select Plots Displayed in Simulation Results Viewer

By default, the Simulation Results Viewer shows these plots:

• Frequency Response
• Time Response (Simulated Output)
• FFT of Time Response

To select the plots displayed in the Simulation Results Viewer, choose the corresponding
plot from the Edit > Plots menu. To modify plot settings, such as axis frequency units,
right-click a plot, and select the corresponding option.

Frequency Response

Use the Bode plot to analyze the frequency response. If the frequency response does not
match the dynamics of your system, see “Troubleshooting Frequency Response
Estimation” on page 5-45 for information about possible causes and solutions. While
troubleshooting, you can use the Bode plot controls to view the time response at the
problematic frequencies on page 5-41.

You can usually improve estimation results by either modifying your input signal on page
5-22 or disabling the model blocks that drive your system away from the operating point,
and repeating the estimation.

Time Response (Simulated Output)

Use this plot to check whether the simulated output is at steady state at specific
frequencies. If the response has not reached steady state, see “Time Response Not at
Steady State” on page 5-45 for possible causes and solutions.

5 Frequency Response Estimation

5-40

If you used the sinestream input for estimation, check both the filtered and the unfiltered
time response. You can toggle the display of filtered and unfiltered output by right-
clicking the plot and selecting Show filtered steady state output only. If both the
filtered and unfiltered response appear at steady state, then your model must be at steady
state. You can explore other possible causes in “Troubleshooting Frequency Response
Estimation” on page 5-45.

Note If you used the sinestream input for estimation, toggling the filtered and unfiltered
display only updates the Time Response and FFT plots. This selection does not change the
estimation results. For more information about filtering during estimation, see “How
Frequency Response Estimation Treats Sinestream Inputs” on page 5-8.

FFT of Time Response

Use this plot to analyze the spectrum of the simulated output.

For example, you can use the spectrum to identify strong nonlinearities. When the FFT
plot shows large amplitudes at frequencies other than the input signal, your model is
operating outside of linear range. If you are interested in analyzing the linear response of
your system for small perturbations, explore possible solutions in “FFT Contains Large
Harmonics at Frequencies Other than the Input Signal Frequency” on page 5-48.

Analyze Simulated Output and FFT at Specific Frequencies
Using the Diagnostic Viewer in Linear Analysis Tool

Use the controls in the Diagnostic Viewer tab of the Linear Analysis Tool to analyze the
estimation results at specific frequencies.

1 If the Diagnostic Viewer tab is not visible, in the Plots and Results tab, select the
Diagnostic Viewer plot.

2 In the Diagnostic Viewer tab, in the Frequency Selector section, specify the
frequency range that you want to inspect. Use the frequency units used in the Bode
plot in the Diagnostic Viewer.

 Analyze Estimated Frequency Response

5-41

Using the Simulation Results Viewer

In the Simulation Results Viewer, use the Bode controls to display the simulated output
and its spectrum at specific frequencies.

• Drag the arrows individually to display the time response and FFT at specific
frequencies.

• Drag the shaded region to shift the time response and FFT to a different frequency
range.

5 Frequency Response Estimation

5-42

Annotate Frequency Response Estimation Plots
You can display a data tip on the Time Response, FFT, and Bode plots in the Simulation
Results Viewer by clicking the corresponding curve. Dragging the data tip updates the
information.

Data tips are useful for correcting poor estimation results at a specific sinestream
frequency, which requires you to modify the input at a specific frequency. You can use the
data tip to identify the frequency index where the response does not match your system.

In the previous figure, the Time Response data tip shows that the frequency index is 11.
You can use this frequency index to modify the corresponding portion of the input signal.
For example, to modify the NumPeriods and SettlingPeriods properties of the
sinestream signal, using MATLAB code:

input.NumPeriods(11) = 80;
input.SettlingPeriods(11) = 75;

To modify the sinestream in the Linear Analysis Tool, see “Modify Sinestream Signal
Using Linear Analysis Tool” on page 5-22

 Analyze Estimated Frequency Response

5-43

Displaying Estimation Results for Multiple-Input Multiple-
Output (MIMO) Systems
For MIMO systems, view frequency response information for specific input and output
channels:

1 In both the Diagnostic Viewer and Simulation Results Viewer, right-click any plot, and
select I/O Selector.

2 Choose the input channel in the From list and the output channel in the To list.

5 Frequency Response Estimation

5-44

Troubleshooting Frequency Response Estimation

When to Troubleshoot
If, after analyzing your frequency response estimation, the frequency response plot does
not match the expected behavior of your system, you can use the time response and FFT
plots to help you improve the results.

If your estimation is slow or you run out of memory during estimation, see “Managing
Estimation Speed and Memory” on page 5-77.

Time Response Not at Steady State
What Does This Mean?

This time response has not reached steady state.

 Troubleshooting Frequency Response Estimation

5-45

This plot shows a steady-state time response.

Because frequency response estimation requires steady-state input and output signals,
transients produce inaccurate estimation results.

For sinestream input signals, transients sometimes interfere with the estimation either
directly or indirectly through spectral leakage. For chirp input signals, transients
interfere with estimation.

5 Frequency Response Estimation

5-46

How Do I Fix It?

Possible Cause Action
Model cannot initialize to steady
state.

• Increase the number of periods for frequencies
that do not reach steady state by changing the
NumPeriods and SettlingPeriods properties.
See “Modify Estimation Input Signals” on page 5-
22.

• Disable all time-varying source blocks in your
model and repeat the estimation. See “Effects of
Time-Varying Source Blocks on Frequency
Response Estimation” on page 5-56.

(Sinestream input) Not enough
periods for the output to reach
steady state.

• Increase the number of periods for frequencies
that do not reach steady state by changing the
NumPeriods and SettlingPeriods. See
“Modify Estimation Input Signals” on page 5-22.

• Check that filtering is enabled during estimation.
You enable filtering by setting the
ApplyFilteringInFRESTIMATE option to on.
For information about how estimation uses
filtering, see the frestimate reference page.

(Chirp input) Signal sweeps
through the frequency range too
quickly.

Increase the simulation time by increasing
NumSamples. See “Modify Estimation Input Signals”
on page 5-22.

After you try the suggested actions, recompute the estimation either:

• At all frequencies
• In a particular frequency range (only for sinestream input signals)

To recompute the estimation in a particular frequency range:

1 Determine the frequencies for which you want to recompute the estimation results.
Then, extract a portion of the sinestream input signal at these frequencies using
fselect.

For example, these commands extract a sinestream input signal between 10 and 20
rad/s from the input signal input:

input2 = fselect(input,10,20);

 Troubleshooting Frequency Response Estimation

5-47

2 Modify the properties of the extracted sinestream input signal input2, as described
in “Modify Estimation Input Signals” on page 5-22.

3 Estimate the frequency response sysest2 with the modified input signal using
frestimate.

4 Merge the original estimated frequency response sysest and the recomputed
estimated frequency response sysest2:

a Remove data from sysest at the frequencies in sysest2 using fdel.

sysest = fdel(sysest,input2.Frequency)
b Concatenate the original and recomputed responses using fcat.

sys_combined = fcat(sysest2,sysest)

Analyze the recomputed frequency response, as described in “Analyze Estimated
Frequency Response” on page 5-37.

For an example of frequency response estimation with time-varying source blocks, see
“Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-
56

FFT Contains Large Harmonics at Frequencies Other than the
Input Signal Frequency
What Does This Mean?

When the FFT plot shows large amplitudes at frequencies other than the input signal,
your model is operating outside the linear range. This condition can cause problems when
you want to analyze the response of your linear system to small perturbations.

5 Frequency Response Estimation

5-48

For models operating in the linear range, the input amplitude A1 in y(t) must be larger
than the amplitudes of other harmonics, A2 and A3.

model
u(t) y(t)

u t A

y t A A A

() sin()

() sin() sin() sin(

= +

= + + + + +

1 1 1

1 1 1 2 2 2 3 3

w f

w f w f w f33) ...+

How Do I Fix It?

Adjust the amplitude of your input signal to decrease the impact of other harmonics, and
repeat the estimation. Typically, you should decrease the input amplitude level to keep
the model operating in the linear range.

For more information about modifying signal amplitudes, see one of the following:

 Troubleshooting Frequency Response Estimation

5-49

• frest.Sinestream
• frest.Chirp
• “Modify Estimation Input Signals” on page 5-22

Time Response Grows Without Bound
What Does This Mean?

When the time response grows without bound, frequency response estimation results are
inaccurate. Frequency response estimation is only accurate close to the operating point.

How Do I Fix It?

Try the suggested actions listed the table and repeat the estimation.

5 Frequency Response Estimation

5-50

Possible Cause Action
Model is unstable. You cannot estimate the frequency response using

frestimate. Instead, use exact linearization to get a
linear representation of your model. See “Linearize
Simulink Model at Model Operating Point” on page 2-
72 or the linearize reference page.

Stable model is not at steady
state.

Disable all source blocks in your model, and repeat the
estimation using a steady-state operating point. See
“Compute Steady-State Operating Points” on page 1-5.

Stable model captures a
growing transient.

If the model captures a growing transient, increase the
number of periods in the input signal by changing
NumPeriods. Repeat the estimation using a steady-
state operating point.

Time Response Is Discontinuous or Zero
What Does This Mean?

Discontinuities or noise in the time response indicate that the amplitude of your input
signal is too small to overcome the effects of the discontinuous blocks in your model.
Examples of discontinuous blocks include Quantizer, Backlash, and Dead Zones.

If you used a sinestream input signal and estimated with filtering, turn filtering off in the
Simulation Results Viewer to see the unfiltered time response.

The following model with a Quantizer block shows an example of the impact of an input
signal that is too small. When you estimate this model, the unfiltered simulation output
includes discontinuities.

 Troubleshooting Frequency Response Estimation

5-51

How Do I Fix It?

Increase the amplitude of your input signal, and repeat the estimation.

With a larger amplitude, the unfiltered simulated output of the model with a Quantizer
block is smooth.

5 Frequency Response Estimation

5-52

For more information about modifying signal amplitudes, see one of the following:

• frest.Sinestream
• frest.Chirp
• “Modify Estimation Input Signals” on page 5-22

Time Response Is Noisy
What Does This Mean?

When the time response is noisy, frequency response estimation results may be biased.

 Troubleshooting Frequency Response Estimation

5-53

How Do I Fix It?

frestimate does not support estimating frequency response estimation of Simulink
models with blocks that model noise. Locate such blocks with frest.findSources and
disable them using the BlocksToHoldConstant option of frestimate.

If you need to estimate a model with noise, use frestimate to simulate an output signal
from your Simulink model for estimation—without modifying your model. Then, use the
Signal Processing Toolbox™ or System Identification Toolbox software to estimate a
model.

To simulate the output of your model in response to a specified input signal:

1 Create a random input signal. For example:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

You can also specify your own custom signal as a timeseries object. For example:

t = 0:0.001:10;
y = sin(2*pi*t);
in_ts = timeseries(y,t);

5 Frequency Response Estimation

5-54

2 Simulate the model to obtain the output signal. For example:

[sysest,simout] = frestimate(model,op,io,in_ts)

The second output argument of frestimate, simout, is a Simulink.Timeseries
object that stores the simulated output. in_ts is the corresponding input data.

3 Generate timeseries objects before using with other MathWorks® products:

input = generateTimeseries(in_ts);
output = simout{1}.Data;

You can use data from timeseries objects directly in Signal Processing Toolbox
software, or convert these objects to System Identification Toolbox data format. For
examples, see “Estimate Frequency Response Models with Noise Using Signal
Processing Toolbox” on page 5-71 and “Estimate Frequency Response Models with
Noise Using System Identification Toolbox” on page 5-73.

For a related example, see “Disable Noise Sources During Frequency Response
Estimation” on page 5-65.

 Troubleshooting Frequency Response Estimation

5-55

Effects of Time-Varying Source Blocks on Frequency
Response Estimation

Setting Time-Varying Sources to Constant for Estimation
Using Linear Analysis Tool
This example illustrates the effects of time-varying sources on estimation. The example
also shows how to set time-varying sources to be constant during estimation to improve
estimation results.

1 Open the Simulink model.

sys = 'scdspeed_ctrlloop';
open_system(sys)

2 Linearize the model.

a Set the Engine Model block to normal mode for accurate linearization.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')
b Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
c

Click Bode to linearize the model and generate a Bode plot of the
result.

The linearized model, linsys1, appears in the Linear Analysis Workspace.
3 Create an input sinestream signal for the estimation.

a Open the Create sinestream input dialog box.

In the Estimation tab, in the Input Signal drop-down list, select Sinestream.
b Open the Add frequencies dialog box.

Click .
c Specify the input sinestream frequency range and number of frequency points.

5 Frequency Response Estimation

5-56

Enter 10 in the From box.

Enter 100 in the To box.

Enter 10 in the box for the number of frequency points.

Click OK.

The added points are visible in the Frequency content viewer of the Create
sinestream input dialog box.

d In the Frequency content viewer of the Create sinestream input dialog box,
select all the frequency points.

e Specify input sinestream parameters.

Change the Number of periods and Settling periods to ensure that the model
reaches steady-state for each frequency point in the input sinestream.

Enter 30 in the Number of periods box.

Enter 25 in the Settling periods box.
f Create the input sinestream.

Click OK. The new input signal, in_sine1, appears in the Linear Analysis
Workspace.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-57

4 Set the Diagnostic Viewer to open when estimation is performed.

Select the Launch Diagnostic Viewer check box.
5 Estimate the frequency response for the model.

Click Bode Plot 1 to estimate the frequency response. The Diagnostic
Viewer appears in the plot plane and the estimated system estsys1, appears in the
Linear Analysis Workspace.

6 Compare the estimated model and the linearized model.

a Click on the Diagnostic Viewer - estsys1 tab in the plot area of the Linear
Analysis Tool.

b Click and drag linsys1 onto the Diagnostic Viewer to add linsys1 to the Bode
Diagram.

c Click the Diagnostic Viewer tab.

5 Frequency Response Estimation

5-58

d Configure the Diagnostic Viewer to show only the frequency point where the
estimation and linearization results do not match.

In the Frequency Selector section, enter 9 in the From box and 11 in the To
box to set the frequency range that is analyzed in the Diagnostic Viewer.

The Filtered Steady State Time Response plot shows a signal that is not
sinusoidal.

e View the unfiltered time response.

Right-click the Filtered Steady State Time Response plot and clear the Show
filtered steady state output only option.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-59

The step input and external disturbances drive the model away from the
operating point that the linearized model uses. This prevents the response from
reaching steady-state. To correct this problem, find and disable the time-varying
source blocks that interfere with the estimation. Then estimate the frequency
response of the model again.

7 Find and disable the time-varying sources within the model.

a Open the Options for frequency response estimation dialog box.

In the Estimation tab, in the Options section, click More Options.

5 Frequency Response Estimation

5-60

b In the Time Varying Sources tab, click Find and add time varying source
blocks automatically.

This action populates the time varying sources list with the block paths of the
time varying sources in the model. These sources will be held constant during
estimation.

8 Estimate the frequency response for the model.

Click Bode Plot 1 to estimate the frequency response. The estimated
system estsys2, appears in the Linear Analysis Workspace.

9 Compare the newly estimated model and the linearized model.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-61

Click on the Diagnostic Viewer - estsys2 tab in the plot area of the Linear Analysis
Tool.

Click and drag linsys1 onto the Diagnostic Viewer.

The frequency response obtained by holding the time-varying sources constant
matches the exact linearization results.

Setting Time-Varying Sources to Constant for Estimation
(MATLAB Code)
Compare the linear model obtained using exact linearization techniques with the
estimated frequency response:
% Open the model
mdl = 'scdspeed_ctrlloop';
open_system(mdl)
io = getlinio(mdl);

5 Frequency Response Estimation

5-62

% Set the model reference to normal mode for accurate linearization
set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')

% Linearize the model
sys = linearize(mdl,io);

% Estimate the frequency response between 10 and 100 rad/s
in = frest.Sinestream('Frequency',logspace(1,2,10),'NumPeriods',30,'SettlingPeriods',25);
[sysest,simout] = frestimate(mdl,io,in);

% Compare the results
frest.simView(simout,in,sysest,sys)

The linearization results do not match the estimated frequency response for the first two
frequencies. To view the unfiltered time response, right-click the time response plot, and
uncheck Show filtered steady state output only.

The step input and external disturbances drive the model away from the operating point,
preventing the response from reaching steady-state. To correct this problem, find and
disable these time-varying source blocks that interfere with the estimation.

Identify the time-varying source blocks using frest.findSources.

srcblks = frest.findSources(mdl,io);

Create a frestimate options set to disable the blocks.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-63

opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

Repeat the frequency response estimation using the optional input argument opts.

[sysest2,simout2] = frestimate(mdl,io,in,opts);
frest.simView(simout2,in,sysest2,sys)

Now the resulting frequency response matches the exact linearization results. To view the
unfiltered time response, right-click the time response plot, and uncheck Show filtered
steady state output only.

5 Frequency Response Estimation

5-64

Disable Noise Sources During Frequency Response
Estimation

This example shows how to disable noise sources in your Simulink® model during
frequency response estimation. Such noise sources can interfere with the signal at the
linearization output points and produce inaccurate estimation results.

Open the model.

mdl = 'scdplane';
open_system(mdl)

Specify linearization input and output points.

 Disable Noise Sources During Frequency Response Estimation

5-65

io(1) = linio('scdplane/Sum1',1);
io(2) = linio('scdplane/Gain5',1,'output');

Linearize the model and create a sinestream estimation input signal based on the
dynamics of the resulting linear system.

sys = linearize(mdl,io);
in = frest.Sinestream(sys);

Estimate frequency response.

[sysest,simout] = frestimate(mdl,io,in);

Compare the estimated frequency response to the exact linearization result.

frest.simView(simout,in,sysest,sys)

5 Frequency Response Estimation

5-66

In the Bode Diagram, the estimated frequency response does not match the response of
the exact linearization. This result is due to the effects of the Pilot and Wind Gust
Disturbance blocks in the model. To view the effects of the noise on the time response at a

 Disable Noise Sources During Frequency Response Estimation

5-67

given frequency, right-click the time response plot and make sure Show filtered steady
state output only is selected.

Locate the source blocks in the model.

srcblks = frest.findSources(mdl,io);

Repeat the frequency response estimation with the source blocks disabled.

opts = frestimateOptions('BlocksToHoldConstant',srcblks);
[sysest,simout] = frestimate(mdl,io,in,opts);
frest.simView(simout,in,sysest,sys)

5 Frequency Response Estimation

5-68

 Disable Noise Sources During Frequency Response Estimation

5-69

The resulting frequency response matches the exact linearization results.

See Also
frest.findSources | frest.simView | frestimate | frestimateOptions

More About
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page

5-56

5 Frequency Response Estimation

5-70

Estimate Frequency Response Models with Noise Using
Signal Processing Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball')
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Create a random input signal for simulation:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

Linearize the model at a steady-state operating point:

op = findop('magball',operspec('magball'),...
 findopOptions('DisplayReport','off'));
sys = linearize('magball',io,op);

Simulate the model to obtain the output at the linearization output point:

[sysest,simout] = frestimate('magball',io,in,op);

Estimate a frequency response model using Signal Processing Toolbox software, which
includes windowing and averaging:

input = generateTimeseries(in);
output = detrend(simout{1}.Data,'constant');
[Txy,F] = tfestimate(input.Data(:),...
 output,hanning(4000),[],4000,1/in.Ts);
systfest = frd(Txy,2*pi*F);

Compare the results of analytical linearization and tfestimate:
ax = axes;
h = bodeplot(ax,sys,'b',systfest,'g',systfest.Frequency);
setoptions(h,'Xlim',[10,1000],'PhaseVisible','off')
legend(ax,'Linear model using LINEARIZE','Frequency response using Signal Processing Toolbox',...
 'Location','SouthWest')

 Estimate Frequency Response Models with Noise Using Signal Processing Toolbox

5-71

In this case, the Signal Processing Toolbox command tfestimate gives a more accurate
estimation than frestimate due to windowing and averaging.

5 Frequency Response Estimation

5-72

Estimate Frequency Response Models with Noise Using
System Identification Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball');
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Compute the steady-state operating point, and linearize the model:

op = findop('magball',operspec('magball'),...
 findopOptions('DisplayReport','off'));
sys = linearize('magball',io,op);

Create a chirp signal, and use it to estimate the frequency response:

in = frest.Chirp('FreqRange',[1 1000],...
 'Ts',0.001,...
 'NumSamples',1e4);
[~,simout] = frestimate('magball',io,op,in);

Use System Identification Toolbox software to estimate a fifth-order, state-space model.
Compare the results of analytical linearization and the state-space model:

input = generateTimeseries(in);
output = simout{1}.Data;
data = iddata(output,input.Data(:),in.Ts);
sys_id = n4sid(detrend(data),5,'cov','none');
bodemag(sys,ss(sys_id('measured')),'r')
legend('Linear model obtained using LINEARIZE',...
 'State-space model using System Identification Toolbox',...
 'Location','SouthWest')

 Estimate Frequency Response Models with Noise Using System Identification Toolbox

5-73

5 Frequency Response Estimation

5-74

Generate MATLAB Code for Repeated or Batch
Frequency Response Estimation

This topic shows how to generate MATLAB code for frequency response estimation from
the Linear Analysis Tool. You can generate either a MATLAB script or a MATLAB function.
Generated MATLAB scripts are useful when you want to programmatically reproduce a
result you obtained interactively. A generated MATLAB function allows you to perform
multiple estimations with systematic variations in estimation parameters such as
operating point (batch estimation).

To generate MATLAB code for estimation:

1 In Linear Analysis Tool, in the Estimation tab, interactively configure the input
signal, analysis I/Os, operating point, and other parameters for frequency response
estimation.

2 Click to expand the gallery.

3 Select the type of code you want to generate:

•
 Script — Generate a MATLAB script that uses your configured parameter

values. Select this option when you want to repeat the same frequency response
estimation at the MATLAB command line.

•
 Function — Generate a MATLAB function that takes analysis I/Os, operating

points, and input signals as input arguments. Select this option when you want to
perform multiple frequency response estimations using different parameter values
(batch estimation).

 Generate MATLAB Code for Repeated or Batch Frequency Response Estimation

5-75

To use a generated MATLAB function for batch estimation, you can create a MATLAB
script with a for loop that cycles through values of the parameter you want to vary. Call
the generated MATLAB function in each iteration of the loop.

5 Frequency Response Estimation

5-76

Managing Estimation Speed and Memory

Ways to Speed up Frequency Response Estimation
The most time consuming operation during frequency response estimation is the
simulation of your Simulink model. You can try to speed up the estimation using any of
the following ways:

• Reducing simulation stop time
• Specifying accelerator mode
• Using parallel computing

Reducing Simulation Stop Time

The time it takes to perform frequency response estimation depends on the simulation
stop time.

To obtain the simulation stop time, in the Linear Analysis tool, in the Linear Analysis
Workspace, select the input signal. The simulation time will be displayed in the Variable
Preview.

To obtain the simulation stop time from the input signal using MATLAB Code:

 Managing Estimation Speed and Memory

5-77

tfinal = getSimulationTime(input)

where input is the input signal. The simulation stop time, tfinal, serves as an indicator
of the frequency response estimation duration.

You can reduce the simulation time by modifying your signal properties.

Input Signal Action Caution
Sinestream Decrease the number of periods

per frequency, NumPeriods,
especially at lower frequencies.

You model must be at steady state
to achieve accurate frequency
response estimation. Reducing the
number of periods might not excite
your model long enough to reach
steady state.

Chirp Decrease the signal sample time,
Ts, or the number of samples,
NumSamples.

The frequency resolution of the
estimated response depends on the
number of samples NumSamples.
Decreasing the number of samples
decreases the frequency resolution
of the estimated frequency
response.

For information about modifying input signals, see “Modify Estimation Input Signals” on
page 5-22.

Specifying Accelerator Mode

You can try to speed up frequency response estimation by specifying the Rapid
Accelerator or Accelerator mode in Simulink.

For more information, see “What Is Acceleration?” (Simulink).

Using Parallel Computing

You can try to speed up frequency response estimation using parallel computing in the
following situations:

• Your model has multiple inputs.
• Your single-input model uses a sinestream input signal, where the sinestream

SimulationOrder property has the value 'OneAtATime'.

5 Frequency Response Estimation

5-78

For information on setting this option, see the frest.Sinestream reference page.

In these situations, frequency response estimation performs multiple simulations. If you
have installed the Parallel Computing Toolbox™ software, you can run these multiple
simulations in parallel on multiple MATLAB sessions (pool of MATLAB workers).

For more information about using parallel computing, see “Speeding Up Estimation Using
Parallel Computing” on page 5-79.

Speeding Up Estimation Using Parallel Computing
Configuring MATLAB for Parallel Computing

You can use parallel computing to speed up a frequency response estimation that
performs multiple simulations. You can use parallel computing with the Linear Analysis
Tool and frestimate. When you perform frequency response estimation using parallel
computing, the software uses the available parallel pool. If no parallel pool is available
and Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in those
preferences.

You can configure the software to automatically detect model dependencies and
temporarily add them to the parallel pool workers. However, to ensure that workers are
able to access the undetected file and path dependencies, create a cluster profile that
specifies the same. The parallel pool used to optimize the model must be associated with
this cluster profile. For information on creating a cluster profile, see “Create and Modify
Cluster Profiles” (Parallel Computing Toolbox).

To manually open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile)

MyProfile is the name of a cluster profile.

Estimating Frequency Response Using Parallel Computing Using Linear Analysis
Tool

After you configure your parallel computing settings, as described in “Configuring
MATLAB for Parallel Computing” on page 5-79, you can estimate the frequency response
of a Simulink model using the Linear Analysis Tool.

 Managing Estimation Speed and Memory

5-79

1 In the Linear Analysis Tool, in the Estimation tab, click More Options.

This action opens the Options for frequency response estimation dialog box.
2 In the Parallel Options tab, select the Use the parallel pool during estimation

check box.

3 (Optional) Click Add path dependency.

The Browse For Folder dialog box opens. Navigate and select the directory to add to
the model path dependencies.

Click OK.

Tip Alternatively, manually specify the paths in the Model path dependencies list.
You can specify the paths separated with a new line.

4 (Optional) Click Sync path dependencies from model.

This action finds the model path dependencies in your Simulink model and adds them
to the Model path dependencies list box.

Estimating Frequency Response Using Parallel Computing (MATLAB Code)

After you configure your parallel computing settings, as described in “Configuring
MATLAB for Parallel Computing” on page 5-79, you can estimate the frequency response
of a Simulink model.

5 Frequency Response Estimation

5-80

1 Find the paths to files that your Simulink model requires to run, called path
dependencies.

dirs = frest.findDepend(model)

dirs is a cell array of character vectors containing path dependencies, such as
referenced models, data files, and S-functions.

For more information about this command, see the frest.findDepend reference
page.

To learn more about model dependencies, see “What Are Model Dependencies?”
(Simulink) and “Scope of Dependency Analysis” (Simulink).

2 (Optional) Check that dirs includes all path dependencies. Append any missing
paths to dirs:

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')
3 (Optional) Check that all workers have access to the paths in dirs.

If any of the paths resides on your local drive, specify that all workers can access
your local drive. For example, this command converts all references to the C drive to
an equivalent network address that is accessible to all workers:

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')
4 Enable parallel computing and specify model path dependencies by creating an

options object using the frestimateOptions command:
options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

Tip To enable parallel computing for all estimations, select the global preference
Use the parallel pool when you use the "frestimate" command check box in the
MATLAB preferences. If your model has path dependencies, you must create your
own frequency response options object that specifies the path dependencies before
beginning estimation.

5 Estimate the frequency response:

[sysest,simout] = frestimate('model',io,input,options)

For an example of using parallel computing to speed up estimation, see “Speeding Up
Frequency Response Estimation Using Parallel Computing”.

 Managing Estimation Speed and Memory

5-81

Managing Memory During Frequency Response Estimation
Frequency response estimation terminates when the simulation data exceed available
memory. Insufficient memory occurs in the following situations:

• Your model performs data logging during a long simulation. A sinestream input signal
with four periods at a frequency of 1e-3 rad/s runs a Simulink simulation for 25,000 s.
If you are logging signals using To Workspace blocks, this length of simulation time
might cause memory problems.

• A model with an output point discrete sample time of 1e-8 s that simulates at 5-Hz

frequency (0.2 s of simulation per period), results in 0 2

1 8
2

.

e -

= million samples of data
per period. Typically, this amount of data requires over 300 MB of storage.

To avoid memory issues while estimating frequency response:

1 Disable any signal logging in your Simulink model.

To learn how you can identify which model components log signals and disable signal
logging, see “Signal Logging” (Simulink).

2 Try one or more of the actions listed in the following sections:

• “Model-Specific Ways to Avoid Memory Issues” on page 5-82
• “Input-Signal-Specific Ways to Avoid Memory Issues” on page 5-84

3 Repeat the estimation.

Model-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as
appropriate for your model type.

5 Frequency Response Estimation

5-82

Model Type Action
Models with fast discrete sample time
specified at output point

Insert a Rate Transition block at the output
point to lower the sample rate, which
decreases the amount of logged data. Move
the linearization output point to the output
of the Rate Transition block before you
estimate. Ensure that the location of the
original output point does not have aliasing
as a result of rate conversion.

Original location
of output point

New location
of output point

For information on determining sample rate,
see “View Sample Time Information”
(Simulink). If your estimation is slow, see
“Ways to Speed up Frequency Response
Estimation” on page 5-77.

Models with multiple input and output
points (MIMO models)

• Estimate the response for all input/
output combinations separately. Then,
combine the results into one MIMO
model using the data format described in
“Create Frequency-Response Model from
Data” (Control System Toolbox).

• Use parallel computing to run the
independent simulations in parallel on
different computers. See “Speeding Up
Estimation Using Parallel Computing” on
page 5-79.

 Managing Estimation Speed and Memory

5-83

Input-Signal-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as
appropriate for your input signal type.

Input Signal Type Action
Sinestream • Remove low frequencies from your input

signal for which you do not need the
frequency response.

• Modify the sinestream signal to estimate
each frequency separately by setting the
SimulationOrder option to
OneAtATime. Then estimate using a
frestimate syntax that does not
request the simulated time-response
output data, for example sysest =
frestimate(model,io,input).

• Use parallel computing to run
independent simulations in parallel on
different computers. See “Speeding Up
Estimation Using Parallel Computing”
on page 5-79.

• Divide the input signal into multiple
signals using fselect. Estimate the
frequency response for each signal
separately using frestimate. Then,
combine results using fcat.

Chirp Create separate input signals that divide up
the swept frequency range of the original
signal into smaller sections using
frest.Chirp. Estimate the frequency
response for each signal separately using
frestimate. Then, combine results using
fcat.

Random Decrease the number of samples in the
random input signal by changing
NumSamples before estimating. See “Time
Response Is Noisy” on page 5-53.

5 Frequency Response Estimation

5-84

PID Controller Tuning

• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3
• “Open PID Tuner” on page 6-6
• “Analyze Design in PID Tuner” on page 6-9
• “Verify the PID Design in Your Simulink Model” on page 6-18
• “Tune at a Different Operating Point” on page 6-19
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection”

on page 6-23
• “Design Two-Degree-of-Freedom PID Controllers” on page 6-36
• “Tune PID Controller Within Model Reference” on page 6-41
• “Specify PI-D and I-PD Controllers” on page 6-44
• “Design PID Controller from Plant Frequency-Response Data” on page 6-49
• “Frequency-Response Based Tuning” on page 6-51
• “Design PID Controller Using Plant Frequency Response Near Bandwidth”

on page 6-58
• “Import Measured Response Data for Plant Estimation” on page 6-67
• “Interactively Estimate Plant from Measured or Simulated Response Data”

on page 6-73
• “System Identification for PID Control” on page 6-81
• “Preprocess Data” on page 6-85
• “Input/Output Data for Identification” on page 6-89
• “Choosing Identified Plant Structure” on page 6-90
• “Design PID Controller Using FRD Model Obtained From "frestimate" Command”

on page 6-100
• “Designing a Family of PID Controllers for Multiple Operating Points” on page 6-110
• “Implement Gain-Scheduled PID Controllers” on page 6-119
• “Plant Cannot Be Linearized or Linearizes to Zero” on page 6-126
• “Cannot Find a Good Design in PID Tuner” on page 6-128

6

• “Simulated Response Does Not Match the PID Tuner Response” on page 6-129
• “Cannot Find an Acceptable PID Design in the Simulated Model” on page 6-131
• “Controller Performance Deteriorates When Switching Time Domains” on page 6-133
• “When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain”

on page 6-134

6 PID Controller Tuning

6-2

Introduction to Model-Based PID Tuning in Simulink
You can use PID Tuner to for interactive tuning of PID gains in a Simulink model
containing a PID Controller or PID Controller (2DOF) block. PID Tuner allows you to
achieve a good balance between performance and robustness for either one- or two-
degree-of-freedom PID controllers. When you use PID Tuner, it:

• Automatically computes a linear model of the plant in your model. PID Tuner
considers the plant to be the combination of all blocks between the PID controller
output and input. Thus, the plant includes all blocks in the control loop, other than the
controller itself. See “What Plant Does PID Tuner See?” on page 6-4.

• Automatically computes an initial PID design with a balance between performance and
robustness. PID Tuner bases the initial design upon the open-loop frequency response
of the linearized plant. See “PID Tuning Algorithm” on page 6-4.

• Provides tools and response plots to help you interactively refine the performance of
the PID controller to meet your design requirements. See “Open PID Tuner” on page
6-6.

For plants that do not linearize or that linearize to zero, there are several alternatives for
obtaining a plant model for tuning. These alternatives include:

• “Design PID Controller from Plant Frequency-Response Data” on page 6-49 — Use
the frequency-response estimation command frestimate or the Frequency Response
Based PID Tuner to obtain estimated frequency responses of the plant by simulation.

• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 6-
73 — If you have System Identification Toolbox, you can use PID Tuner to estimate
the parameters of a linear plant model based on time-domain response data. PID
Tuner then tunes a PID controller for the resulting estimated model. The response
data can be either measured from your real-world system, or obtained by simulating
your Simulink® model.

You can use PID Tuner to design one- or two-degree-of-freedom PID controllers. You can
often achieve both good setpoint tracking and good disturbance rejection using a one-
degree-of-freedom PID controller. However, depending upon the dynamics in your model,
using a one-degree-of-freedom PID controller can require a tradeoff between setpoint
tracking and disturbance rejection. In such cases, if you need both good setpoint tracking
and good disturbance rejection, use a two-degree-of-freedom PID Controller.

For examples of tuning one- and two-degree-of-freedom PID compensators, see:

 Introduction to Model-Based PID Tuning in Simulink

6-3

• “PID Controller Tuning in Simulink”
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on page

6-23

What Plant Does PID Tuner See?
PID Tuner considers as the plant all blocks in the loop between the PID Controller block
output and input. The blocks in your plant can include nonlinearities. Because automatic
tuning requires a linear model, PID Tuner computes a linearized approximation of the
plant in your model. This linearized model is an approximation to a nonlinear system,
which is generally valid in a small region around a given operating point of the system.

By default, PID Tuner linearizes your plant using the initial conditions specified in your
Simulink model as the operating point. The linearized plant can be of any order and can
include any time delays. The PID tuner designs a controller for the linearized plant.

In some circumstances, however, you want to design a PID controller for a different
operating point from the one defined by the model initial conditions. For example:

• The Simulink model has not yet reached steady-state at the operating point specified
by the model initial conditions, and you want to design a controller for steady-state
operation.

• You are designing multiple controllers for a gain-scheduling application and must
design each controller for a different operating point.

In such cases, change the operating point used by PID Tuner. See “Opening PID Tuner”
on page 6-6.

For more information about linearization, see “Linearize Nonlinear Models” on page 2-3.

PID Tuning Algorithm
Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded
input.

• Adequate performance — The closed-loop system tracks reference changes and
suppresses disturbances as rapidly as possible. The larger the loop bandwidth (the
frequency of unity open-loop gain), the faster the controller responds to changes in the
reference or disturbances in the loop.

6 PID Controller Tuning

6-4

• Adequate robustness — The loop design has enough gain margin and phase margin to
allow for modeling errors or variations in system dynamics.

MathWorks algorithm for tuning PID controllers meets these objectives by tuning the PID
gains to achieve a good balance between performance and robustness. By default, the
algorithm chooses a crossover frequency (loop bandwidth) based on the plant dynamics,
and designs for a target phase margin of 60°. When you interactively change the response
time, bandwidth, transient response, or phase margin using the PID Tuner interface, the
algorithm computes new PID gains.

For a given robustness (minimum phase margin), the tuning algorithm chooses a
controller design that balances the two measures of performance, reference tracking and
disturbance rejection. You can change the design focus to favor one of these performance
measures. To do so, use the Options dialog box in PID Tuner.

When you change the design focus, the algorithm attempts to adjust the gains to favor
either reference tracking or disturbance rejection, while achieving the same minimum
phase margin. The more tunable parameters there are in the system, the more likely it is
that the PID algorithm can achieve the desired design focus without sacrificing
robustness. For example, setting the design focus is more likely to be effective for PID
controllers than for P or PI controllers. In all cases, fine-tuning the performance of the
system depends strongly on the properties of your plant. For some plants, changing the
design focus has little or no effect.

 Introduction to Model-Based PID Tuning in Simulink

6-5

Open PID Tuner

Prerequisites for PID Tuning
Before you can use PID Tuner, you must:

• Create a Simulink model containing a PID Controller or PID Controller (2DOF) block.
Your model can have one or more PID blocks, but you can only tune one PID block at a
time.

• If you are tuning a multi-loop control system with coupling between the loops,
consider using other Simulink Control Design tools instead of PID Tuner. See
Control System Designer and “Cascaded Multi-Loop/Multi-Compensator
Feedback Design” on page 8-64 for more information.

• The PID Controller blocks support vector signals. However, using PID Tuner
requires scalar signals at the block inputs. That is, the PID block must represent a
single PID controller.

Your plant (all blocks in the control loop other than the controller) can be linear or
nonlinear. The plant can also be of any order, and have any time delays.

• Configure the PID block settings, such as controller type, controller form, time
domain, sample time. See the PID Controller or PID Controller (2DOF) block reference
pages for more information about configuring these settings.

Opening PID Tuner
To open PID Tuner and view the initial compensator design:

1 Open the Simulink model by typing the model name at the MATLAB command
prompt.

2 Double-click the PID Controller block to open the block dialog box.
3 In the block dialog box, in the Select Tuning Method drop-down list, select

Transfer Function Based (PID Tuner App). Click Tune to open PID Tuner.

When you open PID Tuner, the following actions occur:

• PID Tuner automatically linearizes the plant at the operating point specified by the
model initial conditions, as described in “What Plant Does PID Tuner See?” on page 6-

6 PID Controller Tuning

6-6

4. If you want to design a controller for a different operating point, see “Tune at a
Different Operating Point” on page 6-19.

Note If the plant model in the PID loop linearizes to zero, PID Tuner provides the
Obtain plant model dialog box. This dialog box allows you to obtain a new plant
model by either:

• Linearizing at a different operating point (see “Tune at a Different Operating Point”
on page 6-19).

• Importing an LTI model object representing the plant. For example, you can import
frequency response data (an frd model) obtained by frequency response
estimation. For more information, see “Design PID Controller Using FRD Model
Obtained From "frestimate" Command” on page 6-100.

• Identifying a linear plant model from simulated or measured response data
(requires System Identification Toolbox software). PID Tuner uses system
identification to estimate a linear plant model from the time-domain response of
your plant to an applied input. For an example, see “Interactively Estimate Plant
from Measured or Simulated Response Data” on page 6-73.

As an alternative, you can exit PID Tuner and use the Frequency Response Based
PID Tuner, which runs simulations to perturb the plant and estimate frequency
responses at frequencies near the control bandwidth. See “Frequency-Response Based
Tuning” on page 6-51.

• PID Tuner computes an initial compensator design for the linearized plant model
using the algorithm described in “PID Tuning Algorithm” on page 6-4.

• PID Tuner displays the closed-loop step reference tracking response for the initial
compensator design. For comparison, the display also includes the closed-loop
response for the gains specified in the PID Controller block, if that closed loop is
stable, as shown in the following figure.

 Open PID Tuner

6-7

Tip After the tuner opens, you can close the PID Controller block dialog box.

6 PID Controller Tuning

6-8

Analyze Design in PID Tuner

Plot System Responses
To determine whether the compensator design meets your requirements, you can analyze
the system response using the response plots. On the PID Tuner tab, select a response
plot from the Add Plot menu. The Add Plot menu also lets you choose from several step
plots (time-domain response) or Bode plots (frequency-domain response).

For 1-DOF PID controller types such as PI, PIDF, and PDF, PID Tuner computes system
responses based upon the following single-loop control architecture:

 Analyze Design in PID Tuner

6-9

PID

G y
+
-

r
C

Plant

d1

+

+

d2

+

+

u

For 2-DOF PID controller types such as PI2, PIDF2, and I-PD, PID Tuner computes
responses based upon the following architecture:

The system responses are based on the decomposition of the 2-DOF PID controller, C2,
into a setpoint component Cr and a feedback component Cy, as described in “Two-
Degree-of-Freedom PID Controllers” (Control System Toolbox).

The following table summarizes the available responses for analysis plots in PID Tuner.

Response Plotted System (1-
DOF)

Plotted System (2-
DOF)

Description

Plant G G Shows the plant
response. Use to
examine plant
dynamics.

6 PID Controller Tuning

6-10

Response Plotted System (1-
DOF)

Plotted System (2-
DOF)

Description

Open-loop GC –GCy Shows response of the
open-loop controller-
plant system. Use for
frequency-domain
design.
Use when your design
specifications include
robustness criteria such
as open-loop gain
margin and phase
margin.

Reference tracking
GC

GC1 +

 (from r to y) GC

GC

r

y1 -

 (from r to y)

Shows the closed-loop
system response to a
step change in setpoint.
Use when your design
specifications include
setpoint tracking.

Controller effort
C

GC1 +

 (from r to u) C

GC

r

y1 -

 (from r to u)

Shows the closed-loop
controller output
response to a step
change in setpoint. Use
when your design is
limited by practical
constraints, such as
controller saturation.

Input disturbance
rejection G

GC1 +

 (from d1 to y) G

GCy1 -

 (from d1 to y)

Shows the closed-loop
system response to load
disturbance (a step
disturbance at the plant
input). Use when your
design specifications
include input
disturbance rejection.

 Analyze Design in PID Tuner

6-11

Response Plotted System (1-
DOF)

Plotted System (2-
DOF)

Description

Output disturbance
rejection 1

1 + GC
 (from d2 to y) 1

1 - GCy

 (from d2 to y)

Shows the closed-loop
system response to a
step disturbance at
plant output. Use when
you want to analyze
sensitivity to
measurement noise.

Compare Tuned Response to Block Response

By default, PID Tuner plots system responses using both:

• The PID coefficient values in the PID Controller block in the Simulink model (Block
response).

• The PID coefficient values of the current PID Tuner design (Tuned response).

As you adjust the current PID Tuner design, such as by moving the sliders, the Tuned
response plots change, while the Block response plots do not.

6 PID Controller Tuning

6-12

To write the current PID Tuner design to the Simulink model, click . When you do so,
the current Tuned response becomes the Block response. Further adjustment of the
current design creates a new Tuned response line.

To hide the Block response, click Options, and uncheck Show Block Response.

View Numeric Values of System Characteristics
You can view the values for system characteristics, such as peak response and gain
margin, either:

• Directly on the response plot — Use the right-click menu to add characteristics, which
appear as blue markers. Then, left-click the marker to display the corresponding data
panel.

 Analyze Design in PID Tuner

6-13

• In the Performance and robustness table — To display this table, click Show
Parameters.

Export Plant or Controller to MATLAB Workspace
You can export the linearized plant model computed by PID Tuner to the MATLAB
workspace for further analysis. To do so, click Update Block and select Export.

6 PID Controller Tuning

6-14

In the Export dialog box, check the models that you want to export. Click OK to export
the plant or controller to the MATLAB workspace as state-space (ss) model object or pid
object, respectively.

Alternatively, you can export a model using the context menu in the Data Browser. To do
so, click the Data Browser tab.

Then, right-click the model and select Export.

 Analyze Design in PID Tuner

6-15

Refine the Design
If the response of the initial controller design does not meet your requirements, you can
interactively adjust the design. PID Tuner gives you two Domain options for refining the
controller design:

• Time domain (default) — Use the Response Time slider to make the closed-loop
response of the control system faster or slower. Use the Transient Behavior slider to
make the controller more aggressive at disturbance rejection or more robust against
plant uncertainty.

• Frequency — Use the Bandwidth slider to make the closed-loop response of the
control system faster or slower (the response time is 2/wc, where wc is the bandwidth).
Use the Phase Margin slider to make the controller more aggressive at disturbance
rejection or more robust against plant uncertainty.

In both modes, there is a tradeoff between reference tracking and disturbance rejection
performance. For an example that shows how to use the sliders to adjust this tradeoff, see

6 PID Controller Tuning

6-16

“Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on page 6-
23.

Once you find a compensator design that meets your requirements, verify that it behaves
in a similar way in the nonlinear Simulink model. For instructions, see “Verify the PID
Design in Your Simulink Model” on page 6-18.

Tip To revert to the initial controller design after moving the sliders, click Reset
Design.

 Analyze Design in PID Tuner

6-17

Verify the PID Design in Your Simulink Model
In PID Tuner, you tune the compensator using a linear model of your plant. First, you
find a good compensator design in PID Tuner. Then, verify that the tuned controller
meets your design requirements when applied to the nonlinear plant in your Simulink
model.

To verify the compensator design in the nonlinear Simulink model:

1
In the PID Tuner tab, click to update the Simulink PID Controller block with the
tuned PID parameters.

Tip To update PID block parameters automatically as you tune the controller in PID
Tuner, click Update Block and check Auto-update block.

2 Simulate the Simulink model, and evaluate whether the simulation output meets your
design requirements.

Because PID Tuner works with a linear model of your plant, the simulated response
sometimes does not match the response in PID Tuner. See “Simulated Response Does
Not Match the PID Tuner Response” on page 6-129 for more information.

If the simulated response does not meet your design requirements, see “Cannot Find an
Acceptable PID Design in the Simulated Model” on page 6-131.

6 PID Controller Tuning

6-18

Tune at a Different Operating Point
By default, PID Tuner linearizes your plant and designs a controller at the operating
point specified by the initial conditions in your Simulink model. Sometimes, this operating
point differs from the operating point for which you want to design a controller. For
example, you want to design a controller for your system at steady-state. However, the
Simulink model is not generally at steady-state at the initial condition. In this case,
change the operating point that PID Tuner uses for linearizing your plant and designing
a controller.

To set a new operating point for PID Tuner, use one of the following methods. The
method you choose depends upon the information you have about your desired operating
point.

Known State Values Yield the Desired Operating Conditions
In this case, set the state values in the model directly.

1 Close PID Tuner.
2 Set the initial conditions of the components of your model to the values that yield the

desired operating conditions.
3 Click Tune in the PID Controller dialog box to open PID Tuner. PID Tuner

linearizes the plant using the new default operating point and designs a new initial
controller for the new linear plant model.

After PID Tuner generates a new initial controller design, continue from “Analyze Design
in PID Tuner” on page 6-9.

Model Reaches Desired Operating Conditions at a Finite Time
In this case, use PID Tuner to relinearize the model at a particular simulation time.

1 In the PID Tuner tab, in the Plant menu, select Re-linearize Closed Loop.
2

In the Closed Loop Re-Linearization tab, click Run Simulation to simulate
the model for the time specified in the Simulation Time text box.

PID Tuner plots the error signal as a function of time. You can use this plot to
identify a time at which the model is in steady-state. Slide the vertical bar to a
snapshot time at which you want to linearize the model.

 Tune at a Different Operating Point

6-19

3
Click Linearize to linearize the model at the selected snapshot time. PID Tuner
computes a new linearized plant and saves it to the PID Tuner workspace. PID
Tuner automatically designs a controller for the new plant, and displays a response
plot for the new closed-loop system. PID Tuner returns you PID Tuner tab, where
the Plant menu reflects that the new plant is selected for the current controller
design.

Note For models with Trigger-Based Operating Point Snapshot blocks, the software
captures an operating point at events that trigger before the simulation reaches the
snapshot time.

After PID Tuner generates a new initial controller design, continue from “Analyze Design
in PID Tuner” on page 6-9.

You Computed an Operating Point in the Linear Analysis Tool
1 In the Linear Analysis tool, drag the saved operating point object from the Linear

Analysis Workspace to the MATLAB Workspace.

6 PID Controller Tuning

6-20

2 In PID Tuner, in the PID Tuner tab, in the Plant menu, select Import.

 Tune at a Different Operating Point

6-21

3 Select Importing an LTI system or linearizing at an operating point defined in
MATLAB workspace. Select your exported operating point in the table.

4 Click OK. PID Tuner computes a new linearized plant and saves it to the PID Tuner
workspace. PID Tuner automatically designs a controller for the new plant, and
displays a response plot for the new closed-loop system. PID Tuner returns you PID
Tuner tab, where the Plant menu reflects that the new plant is selected for the
current controller design.

After PID Tuner generates a new initial controller design, continue from “Analyze Design
in PID Tuner” on page 6-9.

See Also

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5

6 PID Controller Tuning

6-22

Tune PID Controller to Favor Reference Tracking or
Disturbance Rejection

This example shows how to tune a PID controller to reduce overshoot in reference
tracking or to improve rejection of a disturbance at the plant input. Using the PID Tuner
app, the example illustrates the tradeoff between reference tracking and disturbance-
rejection performance in PI and PID control systems.

Design Initial PI Controller

Load a Simulink model that contains a PID Controller block.

open_system('singlePIloop')

The plant in this example is:

Plant =

+

0 3

0 1
2

.

.

.

s s

The model also includes a reference signal and a step disturbance at the plant input.
Reference tracking is the response at y to the reference signal, r. Disturbance rejection is
a measure of the suppression at y of the injected disturbance, d. When you use PID
Tuner to tune the controller, you can adjust the design to favor reference tracking or
disturbance rejection as your application requires.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-23

Design an initial controller for the plant. To do so, double-click the PID Controller block to
open the Block Parameters dialog box, and click Tune. PID Tuner opens and
automatically computes an initial controller design.

The PID Controller in the Simulink model is configured as a PI-type controller. Therefore,
the initial controller designed by PID Tuner is also of PI-type.

Add a step response plot of the input disturbance rejection. Select Add Plot > Input
Disturbance Rejection.

6 PID Controller Tuning

6-24

PID Tuner tiles the disturbance-rejection plot side by side with the reference-tracking
plot.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-25

Tip Use the options in the View tab to change how PID Tuner displays multiple plots.

By default, for a given bandwidth and phase margin, PID Tuner tunes the controller to
achieve a balance between reference tracking and disturbance rejection. In this case, the
controller yields some overshoot in the reference-tracking response. The controller also
suppresses the input disturbance with a longer settling time than the reference tracking,
after an initial peak.

Click to update the Simulink model with this initial controller design. Doing so also
updates the Block Response plots in PID Tuner, so that as you change the controller
design, you can compare the results with the initial design.

Adjust Transient Behavior

Depending on your application, you might want to alter the balance between reference
tracking and disturbance rejection to favor one or the other. For a PI controller, you can

6 PID Controller Tuning

6-26

alter this balance using the Transient Behavior slider. Move the Transient behavior
slider to the left to improve the disturbance rejection. The responses with the initial
controller design are now displayed as the Block response (dotted line).

Lowering the transient-behavior coefficient to 0.45 speeds up disturbance rejection, but
also increases overshoot in the reference-tracking response.

Tip Right-click the reference-tracking plot and select Characteristics > Peak Response
to obtain a numerical value for the overshoot.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-27

Move the Transient behavior to the right until the overshoot in the reference-tracking
response is minimized.

Increasing the transient-behavior coefficient to 0.70 nearly eliminates the overshoot, but
results in sluggish disturbance rejection. You can try moving the Transient behavior
slider until you find a suitable balance between reference tracking and disturbance
rejection for your application. How much the slider affects the balance depends on the
plant model. For some plant models, the effect is not as large as shown in this example.

6 PID Controller Tuning

6-28

Change PID Tuning Design Focus

So far, the response time of the control system has remained fixed while you have
changed the transient-behavior coefficient. These operations are equivalent to fixing the
bandwidth and varying the target minimum phase margin of the system. If you want to fix
both the bandwidth and target phase margin, you can still change the balance between
reference tracking and disturbance rejection. To tune a controller that favors either
disturbance rejection or reference tracking, you change the design focus of the PID
tuning algorithm.

Changing the PID Tuner design focus is more effective the more tunable parameters
there are in the control system. Therefore, it does not have much effect when used with a
PI controller. To see its effect, change the controller type to PID. In the Simulink model,
double-click the PID controller block. In the block parameters dialog box, in the
Controller drop-down menu, select PID.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-29

Click Apply. Then, click Tune. This action updates PID Tuner with a new controller

design, this time for a PID controller. Click to the Simulink model with this initial PID
controller design, so that you can compare the results when you change design focus.

6 PID Controller Tuning

6-30

As in the PI case, the initial PID design balances reference tracking and disturbance
rejection. In this case as well, the controller yields some overshoot in the reference-
tracking response, and suppresses the input disturbance with a longer settling time.

Change the PID Tuner design focus to favor reference tracking without changing the

response time or the transient-behavior coefficient. To do so, click Options, and in
the Focus menu, select Reference tracking.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-31

PID Tuner automatically retunes the controller coefficients with a focus on reference-
tracking performance.

6 PID Controller Tuning

6-32

The responses with the balanced controller are now displayed as the Block response,
and the controller tuned with a focus reference-tracking is the Tuned response. The
plots show that the resulting controller tracks the reference input with considerably less
overshoot and a faster settling time than the balanced controller design. However, the
design yields much poorer disturbance rejection.

Finally, change the design focus to favor disturbance rejection. In the Options dialog
box, in the Focus menu, select Input disturbance rejection.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

6-33

This controller design yields improved disturbance rejection, but results in some
increased overshoot in the reference-tracking response.

When you use design focus option, you can still adjust the Transient Behavior slider for
further fine-tuning of the balance between these two measures of performance. Use the
design focus and the sliders together to achieve the performance balance that best meets
your design requirements. The effect of this fine-tuning on system performance depends
strongly on the properties of your plant. For some plants, moving the Transient
Behavior slider or changing the Focus option has little or no effect.

6 PID Controller Tuning

6-34

To obtain independent control over reference tracking and disturbance rejection, you can
use a two-degree-of-freedom controller block, PID Controller (2DOF), instead of a single
degree-of-freedom controller.

See Also

More About
• “PID Tuning Algorithm” on page 6-4
• “Analyze Design in PID Tuner” on page 6-9
• “Verify the PID Design in Your Simulink Model” on page 6-18
• “Design Two-Degree-of-Freedom PID Controllers” on page 6-36

 See Also

6-35

Design Two-Degree-of-Freedom PID Controllers
Use PID Tuner to tune two-degree-of-freedom PID Controller (2DOF) blocks to achieve
both good setpoint tracking and good disturbance rejection.

About Two-Degree-of-Freedom PID Controllers
A two-degree-of-freedom PID compensator, commonly known as an ISA-PID compensator,
is equivalent to a feedforward compensator and a feedback compensator, as shown in the
following figure.

The feedforward compensator is PD and the feedback compensator is PID. In the PID
Controller (2DOF) block, the setpoint weights b and c determine the strength of the
proportional and derivative action in the feedforward compensator. See the PID
Controller (2DOF) block reference page for more information.

Tuning Two-Degree-of-Freedom PID Controllers
PID Tuner tunes the PID gains P, I, D, and N. For the PID Controller (2DOF) block, the
tuner also automatically tunes the setpoint weights b and c. You can use the same
techniques to refine and analyze the design that you use for tuning one-degree-of-freedom
PID controllers.

To tune a PID Controller (2DOF) block in a Simulink model:

1 Double-click the block. In the block parameters dialog box, click Tune.

PID Tuner opens, linearizes the model at the model initial conditions, and
automatically computes an initial controller design that balances performance and

6 PID Controller Tuning

6-36

robustness. In this design, PID Tuner adjusts the setpoint weights b and c if
necessary, as well as the PID gains. To see the tuned values of all coefficients, click

 Show Parameters.

2 Analyze and refine the initial design, described in “Analyze Design in PID Tuner” on
page 6-9. All the same response plots, design adjustments, and options are available
for tuning 2DOF PID controllers as in the single-degree-of-freedom case.

3 Verify the controller design, as described in “Verify the PID Design in Your Simulink
Model” on page 6-18.

Fixed-Weight Controller Types
When you tune a PID Controller (2DOF) block in PID Tuner, additional options for
specifying the controller type become available in the Type menu. These options include

 Design Two-Degree-of-Freedom PID Controllers

6-37

controllers with fixed setpoint weights, such as the controllers described in “Specify PI-D
and I-PD Controllers” on page 6-44.

The availability of some type options depends on the Controller setting in the PID
Controller (2DOF) block dialog box.

Type Description Controller setting in
block

PIDF2 2-DOF PID controller with
filter on derivative term.
PID Tuner tunes all
controller parameters,
including setpoint weights.

PID

6 PID Controller Tuning

6-38

Type Description Controller setting in
block

PIDF2-fixbc 2-DOF PID controller with
filter on derivative term.
PID Tuner fixes setpoint
weights at the values in the
PID Controller (2DOF)
block.

PID

PIDF 2-DOF controller with action
equivalent to a 1-DOF PIDF
controller, with fixed b = 1
and c = 1.

PID

I-PDF 2-DOF PID controller with
filter on derivative term,
with fixed b = 0 and c =
0.

PID

IDF-P 2-DOF PID controller with
filter on derivative term,
with fixed b = 0 and c =
1.

PID

PI-DF 2-DOF PID controller with
filter on derivative term,
with fixed b = 1 and c =
0.

PID

PI2 2-DOF PI controller. PID
Tuner tunes all controller
parameters, including
setpoint weight on
proportional term, b.

PI

PI2-fixbc 2-DOF PI controller with
filter on derivative term.
PID Tuner fixes setpoint
weight b at the value in the
PID Controller (2DOF)
block.

PI

 Design Two-Degree-of-Freedom PID Controllers

6-39

Type Description Controller setting in
block

PI 2-DOF controller with action
equivalent to a 1-DOF PI
controller, with fixed b = 1.

PI

PDF2 2-DOF PD controller with
filter on derivative term (no
integrator). PID Tuner
tunes all controller
parameters, including
setpoint weights.

PD

PDF2-fixbc 2-DOF PD controller with
filter on derivative term.
PID Tuner fixes setpoint
weights at the values in the
PID Controller (2DOF)
block.

PD

PD 2-DOF controller with action
equivalent to a 1-DOF PD
controller, with fixed b = 1
and c= 1.

PD

See Also

More About
• “Analyze Design in PID Tuner” on page 6-9
• “Verify the PID Design in Your Simulink Model” on page 6-18
• “Specify PI-D and I-PD Controllers” on page 6-44

6 PID Controller Tuning

6-40

Tune PID Controller Within Model Reference
In Simulink, you can include one model inside another using model referencing (see
“Overview of Model Referencing” (Simulink)). When using PID Tuner or Frequency
Response Based PID Tuner to tune a PID Controller block in a referenced model, there
are some constraints to be aware of.

In general, you can tune a PID Controller block in a referenced model using either PID
Tuner or Frequency Response Based PID Tuner. When you open either tuner, the
software prompts you to specify which model to use as the top-level model for
linearization and tuning (PID Tuner) or estimation and tuning (Frequency Response
Based PID Tuner). For example, consider the model model_ref_pid.

open('model_ref_pid');

The block Inner Loop is a referenced model that contains the PID Controller block to
tune. Open the referenced model.

Inner Loop contains a PID controller block, PID. Open that block. In the Select Tuning
Method drop-down list, select Transfer Function Based (PID Tuner App), and
click Tune to open PID Tuner. The software prompts you to select which open model is
the top-level model for linearization and tuning. (Selecting Frequency Response
Based to open Frequency Response Based PID Tuner results in a similar prompt.)

 Tune PID Controller Within Model Reference

6-41

The available choices for top-level model include the referenced model itself, plus any
open model in which the referenced model:

• Appears exactly once, and
• Is configured for normal simulation mode.

The tuning tools do not detect models that contain the model reference but are not open.

Selecting innerloop causes the tuner to disregard model_ref_pid. Instead, the tuner
tunes the PID Controller block for the plant G_Inner alone, as if there were no outer
loop.

Alternatively, you can select model_ref_pid as the top-level model. When you do so, the
tuner considers the dynamics of both the inner and outer loops, and tunes with both loops
closed. In this case, PID controller sees the effective plant
(1+G_Outer*Gain)*G_Inner.

Select the desired top-level model, and click OK. The tuner you selected with the Select
Tuning Method opens for tuning the specified top-level model.

6 PID Controller Tuning

6-42

Models with Multiple Instances of the Referenced Model
Sometimes, tuning can proceed when the referenced model appears multiple times in an
open model. If the following conditions are met, you can tune the PID Controller block,
using the referenced model as the top-level model:

• The only open models that contain the model reference have multiple instances of it,
and

• At least one of these instances is in normal mode.

When this condition occurs, the software issues a warning. In this case, because the tuner
can only tune with respect to the referenced model, you cannot specify a top-level model.

Referenced Model in Accelerated or Other Simulation Modes
If there is no normal mode instance of the referenced model in any open model, tuning
cannot proceed. In this case, the software issues an error. To tune the PID Controller
block, convert some instance of the referenced model in an open model to normal
simulation mode.

See Also

More About
• “Overview of Model Referencing” (Simulink)
• “Choosing a Simulation Mode” (Simulink)
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

 See Also

6-43

Specify PI-D and I-PD Controllers

About PI-D and I-PD Controllers
PI-D and I-PD controllers are used to mitigate the influence of changes in the reference
signal on the control signal. These controllers are variants of the 2DOF PID controller.

The general formula of a parallel-form 2DOF PID controller is:

u P br y I
s

r y D
N

N
s

cr y= - + - +

+

-() () ().
1

1
1

Here, r and y are the reference input and measured output, respectively. u is the
controller output, also called the control signal. P, I, and D specify the proportional,
integral, and derivative gains, respectively. N specifies the derivative filter coefficient. b
and c specify setpoint weights for the proportional and derivative components,
respectively. For a 1DOF PID, b and c are equal to 1.

If r is nonsmooth or discontinuous, the derivative and proportional components can
contribute large spikes or offsets in u, which can be infeasible. For example, a step input
can lead to a large spike in u because of the derivative component. For a motor actuator,
such an aggressive control signal could damage the motor.

To mitigate the influence of r on u, set b or c, or both, to 0. Use one of the following
setpoint-weight-based forms:

• PI-D (b = 1 and c = 0) — Derivative component does not directly propagate changes in
r to u, whereas the proportional component does. However, the derivative component,
which has a greater impact, is suppressed. Also referred to as the derivative of output
controller.

The general formula for this controller form is:

u P r y I
s

r y D
N

N
s

y= - + - -

+

() () .
1

1
1

• I-PD (b = 0 and c = 0) — Proportional and derivative components do not directly
propagate changes in r to u.

6 PID Controller Tuning

6-44

The general formula for this controller form is:

u Py I
s

r y D
N

N
s

y= - + - -

+

1

1
1

() .

The following plot shows u for different PID forms for a step reference. The 1DOF PID
controller results in a large spike when the reference changes from 0 to 1. The PI-D form
results in a smaller jump. In contrast, the I-PD form does not react as much to the change
in r.

You can tune the P, I, D, and N coefficients of a PI-D or I-PD controller to achieve the
desired disturbance rejection and reference tracking.

 Specify PI-D and I-PD Controllers

6-45

Specify PI-D and I-PD Controllers Using PID Controller (2DOF)
Block
To specify a PI-D or I-PD Controller using the PID Controller (2DOF) block, open the block
dialog. In the Controller menu, select PID.

• For a PI-D controller, enter 1 in the Setpoint weight (b) box, and 0 in the Setpoint
weight (c) box.

• For an I-PD controller, enter 0 in the Setpoint weight (b) box, and 0 in the Setpoint
weight (c) box.

For an example that demonstrates the PI-D and I-PD controller forms, type
ex_scd_pid2dof_setpoint_based_controllers. This opens a model that compares
the performance of a 1DOF PID, a PI-D, and an I-PD controller.

Automatic Tuning of PI-D and I-PD Controllers
You can use PID Tuner to automatically tune PI-D and I-PD controllers while preserving
the fixed b and c values. To do so:

1 In the model, double-click the PID Controller (2DOF) block. In the block dialog box, in
the Controller menu, select PID.

2 Click Tune. PID Tuner opens.
3 In PID Tuner, in the Type menu, select PI-DF or I-PDF. PID Tuner retunes the

controller gains, fixing b = 1 and c = 0 for PI-D, and b = 0 and c for I-PD.

6 PID Controller Tuning

6-46

You can now analyze system responses as described in “Analyze Design in PID Tuner” on
page 6-9.

 Specify PI-D and I-PD Controllers

6-47

See Also
PID Controller | PID Controller (2 DOF)

More About
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on

page 6-23
• “Design Two-Degree-of-Freedom PID Controllers” on page 6-36

6 PID Controller Tuning

6-48

Design PID Controller from Plant Frequency-Response
Data

Most Simulink Control Design PID tuning tools design PID gains based on a linearized
plant model. When your plant model does not linearize or linearizes to zero, one option is
to design a PID controller based on simulated frequency-response data. Simulink Control
Design gives you several ways to do so.

Use Frequency Response Based PID Tuner
Use Frequency Response Based PID Tuner to design a PID controller using estimated
plant frequency responses near the target open-loop bandwidth. Advantages of this
approach include:

• Frequency Response Based PID Tuner works even if disturbances are present in
the plant model.

• You can configure the estimation and tuning in one dialog box, making tuning less
complex than using frestimate or Linear Analysis Tool to estimate the frequency
response.

For more information about using Frequency Response Based PID Tuner, see
“Frequency-Response Based Tuning” on page 6-51.

Use frestimate or Linear Analysis Tool
Use the frestimate command or the frequency-response estimation workflow in Linear
Analysis Tool to estimate the plant frequency response over a range of frequencies that
you specify. This approach results in a frequency-response data (frd) model object that
you then import into PID Tuner. Advantages of this approach include:

• You do not have to specify a control bandwidth ahead of time. PID Tuner chooses an
initial control bandwidth, which you can adjust to achieve the desired balance between
performance and robustness.

• You can use the interactive tuning and analysis tools of PID Tuner to examine the
estimated linear response of the tuned system in the frequency domain. Also, you can
use the frd model of the plant for other analysis tasks.

• Depending on the particulars of your model, this approach can be faster, because
Frequency Response Based PID Tuner simulates your model twice.

 Design PID Controller from Plant Frequency-Response Data

6-49

For more information, see:

• “Design PID Controller Using FRD Model Obtained From "frestimate" Command” on
page 6-100

• “Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

See Also

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3
• “Frequency-Response Based Tuning” on page 6-51
• “Design PID Controller Using FRD Model Obtained From "frestimate" Command” on

page 6-100

6 PID Controller Tuning

6-50

Frequency-Response Based Tuning
Frequency Response Based PID Tuner simulates the model to estimate the plant
frequency responses at a few frequencies near the control bandwidth. It then uses the
estimated frequency response to tune the gains in your PID Controller block. This tuner is
a useful alternative when PID Tuner cannot linearize the plant at the operating point you
want to use for tuning.

How Frequency Response Based PID Tuner Works
Like the interactive PID Tuner, the Frequency Response Based PID Tuner considers
the plant to be all blocks in the loop between the PID Controller block output and input.
The Frequency Response Based PID Tuner performs a perturbation experiment to
estimate the open-loop frequency response of the plant. To do so, the tuner performs the
following steps:

1 Breaks the feedback loop at the controller output and simulates the model, applying
perturbation signals to the plant. The perturbations include sinusoidal signals at
frequencies [1/3,1,3,10]ωc , where ωc is the target bandwidth you specify for tuning.
If the plant is asymptotically stable, the applied signal also includes a step
perturbation.

2 Measures the response to the perturbation at the controller input.
3 Uses the resulting data to estimate the plant frequency response at the four

frequencies. For asymptotically stable plants, the tuner also uses the response to the
step perturbation to estimate the plant DC gain.

4 Uses the estimated frequency response to compute PID gains that balance
performance and robustness.

If your model includes disturbances, the tuner can run two simulations: a simulation
without perturbation to get a baseline response, and a simulation with the perturbations
applied to the plant. The tuner then uses the difference between the two responses to
remove the effects of disturbances in the model. In this case, the estimated frequency
response used for tuning is based on this disturbance-free response.

Open Frequency Response Based PID Tuner
To open the Frequency Response Based PID Tuner, in the PID Controller block dialog
box, in the Select Tuning Method drop-down list, select Frequency Response Based.

 Frequency-Response Based Tuning

6-51

Click Tune. The Frequency Response Based PID Tuner opens. The tuner reads some
parameters from the PID Controller block. These parameters include:

• Controller type (such as PI, PD, or PID)
• Controller form (parallel or ideal)
• Controller time domain (continuous-time or discrete-time)
• Controller sample time

In the Frequency Response Based PID Tuner, You configure the settings for the
estimation experiment and the tuning goals.

6 PID Controller Tuning

6-52

 Frequency-Response Based Tuning

6-53

Configure Experiment Settings
In the Experiment Settings section, you specify parameters that control the frequency-
response estimation experiment. For more details about these settings, click Help.

1 Specify whether to run two simulations (default) or one. If your model includes
disturbances that can affect the result of the frequency-response estimation
experiment, select 2 simulations (remove disturbances). With this option
selected, the tuner runs a baseline simulation and substracts the resulting frequency
response from the perturbed simulation to remove the effects of disturbances. If your
model does not include any such disturbances, skip the baseline simulation by
selecting 1 simulation.

2 Specify whether the plant is asymptotically stable or has a single integrator. If the
plant is asymptotically stable, the estimation experiment includes an estimation of
the plant DC gain. The Frequency Response Based PID Tuner performs this
estimation by injecting a step signal into the plant.

Caution Do not use the Frequency Response Based PID Tuner with an unstable
plant or a plant containing multiple integrators.

3 Specify the start time of the experiment in the Start time (t0) field. Start the
experiment when the plant is at the desired equilibrium operating point. For
instance, if you know that your simulation must run to 10 s for the plant to reach
such an operating point, specify a start time of 10.

4 Specify the experiment duration in the Duration (tspan) field. Let the experiment
run long enough for the frequency-response estimation algorithm to collect sufficient
data for a good estimate at all frequencies it probes. A conservative estimate for the
experiment duration is 100/ωc, where ωc is the target bandwidth for tuning that you
specify.

5 Specify the perturbation amplitudes. During the tuning experiment, the Frequency
Response Based PID Tuner injects a sinusoidal signal into the plant at four
frequencies, [1/3,1,3,10]ωc . Use the Sine amplitudes (Asin) field to specify the
amplitudes of these injected signals. You can provide a scalar value to inject the same
amplitude at each frequency, or a vector of length 4 to specify different amplitudes
for each.

In a typical plant with typical target bandwidth, the magnitudes of the plant
responses at the experiment frequencies do not vary widely. In such cases, you can
use a scalar value to apply the same magnitude perturbation at all frequencies.

6 PID Controller Tuning

6-54

However, if you know that the response decays sharply over the frequency range,
consider decreasing the amplitude of the lower-frequency inputs and increasing the
amplitude of the higher-frequency inputs. It is numerically better for the estimation
experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator
and generates a response above the noise level

• Small enough to keep the plant running within the approximately linear region
near the nominal operating point, and to avoid saturating the plant input or
output

In the experiment, the sinusoidal signals are superimposed (with the step
perturbation, if any, in the case of open-loop tuning). Thus, the perturbation can be at
least as large as the sum of all amplitudes. Therefore, to obtain appropriate values for
the amplitudes, consider:

• Actuator limits. Make sure that the largest possible perturbation is within the
range of your plant actuator. Saturating the actuator can introduce errors into the
estimated frequency response.

• How much the plant response changes in response to a given actuator input at the
nominal operating point for tuning. For instance, suppose that you are tuning a
PID controller used in engine-speed control. You have determined that at
frequencies around the target bandwidth, a 1° change in throttle angle causes a
change of about 200 rpm in the engine speed. Suppose further that to preserve
linear performance the speed must not deviate by more than 100 rpm from the
nominal operating point. In this case, choose amplitudes to ensure that the
perturbation signal is no greater than 0.5 (assuming that value is within actuator
limits).

If your plant is asymptotically stable, specify amplitude of the step perturbation in
the Step amplitudes (Astep) field. The considerations for choosing a step amplitude
are the same as the considerations for specifying the step amplitudes.

Configure Design Goals
In the Design Specifications section of the dialog box, you specify your goals for PID
tuning.

 Frequency-Response Based Tuning

6-55

Specify the target bandwidth in the Target bandwidth (rad/sec) field. The target
bandwidth is the target value for the 0-dB gain crossover frequency of the tuned open-
loop response CP, where P is the plant response, and C is the controller response. This
crossover frequency roughly sets the control bandwidth. For a desired rise-time τ, a good
guess for the target bandwidth is 2/τ.

In the Target phase margin (degrees) field, specify a target minimum phase margin for
the tuned open-loop response at the crossover frequency. The target phase margin
reflects desired robustness of the tuned system. Typically, choose a value in the range of
about 45°– 60°. In general, higher phase margin improves overshoot, but can limit
response speed. The default value, 60°, tends to balance performance and robustness,
yielding about 5-10% overshoot, depending on the characteristics of your plant.

For more details about these settings, click Help.

Tune and Validate Controller Gains
Click Tune to initiate the frequency-response estimation experiment. While the estimation
experiment is running, the tuner:

• Closes the open PID Controller block.
• Clears any previous tuning results displayed in the tuner dialog box.
• Replaces the PID Controller block in your model with an unnamed subsystem.

Note When the estimation experiment is completed or canceled, the tuner restores the
PID Controller block. This process might result in some displacement of signal wires on
the model canvas, and puts your Simulink model in a state with unsaved changes.

When the estimation experiment ends, the tuner computes new PID gains and displays
them in the Tuning Results section of the dialog box. (For more information about the
tuning results, click Help.)

6 PID Controller Tuning

6-56

If Automatically update block is selected, the Frequency Response Based PID
Tuner writes the new PID gains to the PID Controller block when tuning is completed.
Otherwise, click Update PID Block to write the tuned gains to the block. Simulate the
model to validate the tuned gains against your full nonlinear system.

For an example illustrating the use of the Frequency Response Based PID Tuner to
tune a PID Controller block in a Simulink model that does not linearize, see “Design PID
Controller Using Plant Frequency Response Near Bandwidth” on page 6-58.

See Also

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3
• “Design PID Controller Using Plant Frequency Response Near Bandwidth” on page

6-58
• “Design PID Controller Using FRD Model Obtained From "frestimate" Command” on

page 6-100

 See Also

6-57

Design PID Controller Using Plant Frequency Response
Near Bandwidth

This example shows one of several ways to tune a PID controller for plants that cannot be
linearized. In this example, you use the Frequency Response Based PID Tuner to
automatically characterize the frequency response of a buck converter around the control
bandwidth, and then tune the PID controller.

Buck Converter Model

Buck converters convert DC to DC. The model in this example uses a switching power
supply to convert a 30V DC supply into a regulated DC supply. The converter is modeled
using MOSFETs rather than ideal switches to ensure that device on-resistances are
correctly represented. The converter response from reference voltage to measured
voltage includes the MOSFET switches. Traditional PID design requires a linear model of
the system from "the reference voltage" (controller output) to measured voltage. Here,
however, because of the switches, automated linearization results in a zero system. When
a model linearizes to zero, several alternatives are available:

• Re-linearize the system. Linearize the model at a different operating point or
simulation snapshot time.

• Identify a new plant. Use measured or simulated data to identify a plant model
(requires System Identification Toolbox).

• Frequency response based tuning. Use simulated data to obtain the frequency
response for the plant.

For this example, use the Frequency Response Based PID Tuner to estimate the
frequency responses of the system and tune the PID controller. For an example that uses
system identification to identify a plant model, see “Design a PID Controller Using
Simulated I/O Data”.

The buck converter model is described in more detail in the Simscape Electronics
example elec_switching_power_supply.

open_system('scdbuckconverter')

6 PID Controller Tuning

6-58

The model is configured with a reference voltage that switches from 15 to 25 Volts at
0.004 seconds and a load current that is active from 0.0025 to 0.005 seconds. The
controller is initialized with default gains and results in overshoot and slow settling time.
Simulating the model shows the underdamped and slow response nature of the system.

sim('scdbuckconverter')
open_system('scdbuckconverter/Scope 1')
open_system('scdbuckconverter/Scope 2')

 Design PID Controller Using Plant Frequency Response Near Bandwidth

6-59

6 PID Controller Tuning

6-60

For this example, improve the bandwidth and phase margin of the system to achieve
better performance by characterizing the system using frequency response estimation
and tuning the PID gains. When tuning the PID controller note the following
characteristics of the buck converter system:

• No system process or sensor noise
• Controller input is the PWM signal
• PWM signal is limited (saturated) to be between 0 and 1
• Nominal output of controller at steady-state is 0.5

For buck converter systems, it is desired to have a system with a low rise time and low
overshoot. For this example, tune the controller to achieve a desired rise time of 250e-6
seconds and an overshoot of less than 10%.

 Design PID Controller Using Plant Frequency Response Near Bandwidth

6-61

Open Frequency Response Based PID Tuner

Open the Feedback controller subsystem and then open the PID Controller block
dialog. In Select Tuning Method, select Frequency Response Based and click Tune.
The Frequency Response Based PID Tuner opens for the buck converter controller.

The Frequency Response Based PID Tuner automatically tunes a PID controller for the
plant using two simulations. The first simulation generates a baseline response. The

6 PID Controller Tuning

6-62

second simulation breaks the loop at the plant input, and perturbs the plant with sine and
step signals. The tuner takes the difference between the two simulated responses, which
removes the effect of any disturbances in the model. The tuner then uses the resulting
data to estimate the plant frequency response. Finally, it uses the estimated frequency
response to compute PID gains.

When you open the Frequency Response Based PID Tuner, it reads parameters from
the PID Controller block to determine the structure of your PID controller. These
parameters include:

• PID Controller Type (P, I, PI, PID etc.)
• PID Controller Form (Parallel, Ideal)
• Integrator Method, if applicable (Forward Euler, Trapezoidal etc.)
• Derivative Filter Method, if applicable (Forward Euler, Trapezoidal etc.)
• Sample Time, if applicable

Specify Experiment Settings

Before tuning, specify parameters of the experiment the tuner performs to estimate the
frequency response of the plant.

Start time is the time, in seconds, at which the tuner begins applying the perturbation
signals to the plant. Choose a start time at which the plant is at the nominal operating
point you want to use for tuning. For this example, the buck converter has an initial
transient that falls off by 0.002 seconds. Therefore, enter 0.002 for Start Time.

Specify the Duration of the perturbation experiment. A conservative estimate for the
duration of the experiment is 100 divided by the target bandwidth. The target bandwidth
is approximately 2/τ, where τ is the desired rise time. For this example, the desired rise
time is 250e-6 seconds which results in a target bandwidth of 8000 radians per second. In
this example a conservative estimate for the duration would then be 100/8000 or 0.0125
seconds. Choose 0.0125 seconds for the Duration.

During the experiment, the tuner injects sinusoidal signals into the plant at four
frequencies, [1/3, 1, 3, 10] , where is the target bandwidth you specify for tuning.
Specify the amplitudes of the injected sine waves in the Sine Amplitudes field.

Choose amplitudes which have magnitudes above the noise floor of the system and will
not saturate the system. For this example there is no noise in the system to consider.
However, the controller output (duty cycle of the PWM) is limited to [0 1] and the nominal

 Design PID Controller Using Plant Frequency Response Near Bandwidth

6-63

output of the controller at steady-state is 0.5. To remain within these limits, specify a sine
amplitude of 0.1. Specifying a scalar value uses the same amplitude at all four
frequencies.

For an asymptotically stable plant, the tuner also injects a step signal to estimate the
plant DC gain. Choose an amplitude for this step signal based on the same considerations
you used to choose the sine amplitudes. For this example, enter 0.1 in the Step
Amplitude field as well.

Specify Design Goals

Finally, specify the target bandwidth for tuning. As noted previously, the target bandwidth
is 8000 radians per second. Enter 8000 in the Bandwidth field. The default target phase
margin, 60 degrees, corresponds to an overshoot of about 10% or better.

Tune the PID Controller and Validate the Results

Click Tune to begin the two simulations of the buck converter and tune the PID
Controller.

At the conclusion of the tuning procedure the tuned gains, estimated phase margin and
nominal plant input are displayed in Frequency Response Based PID Tuner dialog in
the Tuning Results section. Check the estimated phase margin to ensure that it is close
to the Target phase margin.

6 PID Controller Tuning

6-64

To verify the results simulate the model using the tuned PID gains. To do so, update the
gains in the PID Controller block. Click Update PID Block to write the tuned gains to the
PID Controller block. Then, simulate the model to confirm the PID controller
performance.

 Design PID Controller Using Plant Frequency Response Near Bandwidth

6-65

bdclose('scdbuckconverter')

See Also

6 PID Controller Tuning

6-66

Import Measured Response Data for Plant Estimation
This example shows how to use PID Tuner to import measured response data for plant
estimation.

If you have System Identification Toolbox software, you can use PID Tuner to estimate
the parameters of a linear plant model based on time-domain response data. PID Tuner
then tunes a PID controller for the resulting estimated model. The response data can be
either measured from your real-world system, or obtained by simulating your Simulink
model. Plant estimation is especially useful when your Simulink model cannot be
linearized or linearizes to zero.

When you import response data, PID Tuner assumes that your measured data represents
a plant connected to the PID controller in a negative-feedback loop. In other words, PID
Tuner assumes the following structure for your system. PID Tuner assumes that you
injected an input signal at u and measured the system response at y, as shown.

You can import response data stored in the MATLAB workspace as a numeric array, a
timeseries object, or an iddata object. To import response data:

1 In PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New
Plant.

 Import Measured Response Data for Plant Estimation

6-67

2
In the Plant Identification tab, click Get I/O data. Select the type of measured
response data you have. For example, if you measured the response of your plant to a
step input, select Step Response. To import the response of your system to an
arbitrary stimulus, select Arbitrary I/O Data.

3 In the Import Response dialog box, enter information about your response data. For
example, for step-response data stored in a variable outputy and sampled every
0.1s:

6 PID Controller Tuning

6-68

Click Import. The Plant Identification tab opens, displaying the response data
and the response of an initial estimated plant.

 Import Measured Response Data for Plant Estimation

6-69

4 Depending on the quality and features of your response data, you might want to
perform some preprocessing on the data to improve the estimated plant results. The
Preprocess menu gives you several options for preprocessing response data, such as
removing offsets, filtering, or extracting on a subset of the data. In particular, when
the response data has an offset, it is important for good identification results to
remove the offset.

In the Plant Identification tab, click Preprocess and select the preprocessing
option you want to use. A tab opens with a figure that displays the original and
preprocessed data. Use the options in the tab to specify preprocessing parameters.

6 PID Controller Tuning

6-70

(For more information about preprocessing options, see “Preprocess Data” on page 6-
85.)

When you are satisfied with the preprocessed signal, click Update to save the

change to the signal. Click to return to the Plant Identification tab.

PID Tuner automatically adjusts the plant parameters to create a new initial guess
for the plant based on the preprocessed response signal.

 Import Measured Response Data for Plant Estimation

6-71

You can now adjust the structure and parameters of the estimated plant to obtain the
estimated linear plant model for PID Tuning. See “Interactively Estimate Plant from
Measured or Simulated Response Data” on page 6-73 for more information.

See Also

More About
• “System Identification for PID Control” on page 6-81
• “Input/Output Data for Identification” on page 6-89
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page

6-73

6 PID Controller Tuning

6-72

Interactively Estimate Plant from Measured or
Simulated Response Data

If you have System Identification Toolbox software, PID Tuner lets you estimate the
parameters of a linear plant model based on time-domain response data . PID Tuner then
tunes a PID controller for the resulting estimated model. The response data can be either
measured from your real-world system, or obtained by simulating your Simulink model.
Plant estimation is especially useful when your Simulink model cannot be linearized or
linearizes to zero.

PID Tuner gives you several techniques to graphically, manually, or automatically adjust
the estimated model to match your response data. This topic illustrates some of those
techniques.

Obtain Response Data for Identification

In PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New Plant.

 Interactively Estimate Plant from Measured or Simulated Response Data

6-73

In the Plant Identification tab, click Get I/O data. This menu allows you to obtain
system response data in one of two ways:

• Simulate Data. Obtain system response data by simulating the response of your
Simulink model to an input signal. For more information, see Design a PID Controller
Using Simulated I/O Data.

• Import I/O Data. Import measured system response data as described in “Import
Measured Response Data for Plant Estimation” on page 6-67.

Once you have imported or simulated data, the Plant Identification plot displays the
response data and the response of an initial estimated plant. You can now select the plant
structure and adjust the estimated plant parameters until the response of the estimated
plant is a good fit to the response data.

6 PID Controller Tuning

6-74

Preprocess Data

Depending on the quality and features of your imported or simulated data, you might
want to perform some preprocessing on the data to improve the estimated plant results.
PID Tuner provides several options for preprocessing response data, such as removing
offsets, filtering, or extracting a subset of the data. For information, see “Preprocess
Data” on page 6-85.

 Interactively Estimate Plant from Measured or Simulated Response Data

6-75

Adjust Plant Structure and Parameters

PID Tuner allows you to specify a plant structure, such as One Pole, Two Real Poles, or
State-Space Model. In the Structure menu, choose the plant structure that best
matches your response. You can also add a transfer delay, a zero, or an integrator to your
plant.

In the following sample plot, the one-pole structure gives the qualitatively correct
response. You can make further adjustments to the plant structure and parameter values
to make the response of the estimated system a better match to the measured response
data.

6 PID Controller Tuning

6-76

PID Tuner gives you several ways to adjust the plant parameters:

• Graphically adjust the response of the estimated system by dragging the adjustors on
the plot. In this example, drag the red x to adjust the estimated plant time constant.
PID Tuner recalculates system parameters as you do so. As you change the estimated
system’s response, it becomes apparent that there is some time delay between the
application of the step input at t = 5 s, and the response of the system to that step
input.

To add a transport delay to the estimated plant model, in the Plant Structure section,
check Delay. A vertical line appears on the plot, indicating the current value of the
delay. Drag the line left or right to change the delay, and make further adjustments to
the system response by dragging the red x.

• Adjust the numerical values of system parameters such as gains, time constants, and

time delays. To numerically adjust the values of system parameters, click Edit
Parameters.

 Interactively Estimate Plant from Measured or Simulated Response Data

6-77

Suppose that you know from an independent measurement that the transport delay in
your system is 1.5 seconds. In the Plant Parameters dialog box, enter 1.5 for τ.
Check Fix to fix the parameter value. When you check Fix for a parameter, neither
graphical nor automatic adjustments to the estimated plant model affect that
parameter value.

• Automatically optimize the system parameters to match the measured response data.

Click Auto Estimate to update the estimated system parameters using the
current values as an initial guess.

You can continue to iterate using any of these methods to adjust plant structure and
parameter values until the estimated system’s response adequately matches the
measured response.

6 PID Controller Tuning

6-78

Save Plant and Tune PID Controller

When you are satisfied with the fit, click Save Plant. Doing so saves the estimated
plant, Plant1, to PID Tuner workspace. Doing so also selects the Step Plot: Reference
Tracking figure and returns you to the PID Tuner tab. PID Tuner automatically designs
a PI controller for Plant1, and displays a response plot for the new closed-loop system.
The Plant menu reflects that Plant1 is selected for the current controller design.

Tip To examine variables stored in the PID Tuner workspace, open the Data Browser.

You can now use the PID Tuner tools to refine the controller design for the estimated
plant and examine tuned system responses.

You can also export the identified plant from the PID Tuner workspace to the MATLAB

workspace for further analysis. In the PID Tuner tab, click Export. Check the plant
model you want to export to the MATLAB workspace. For this example, export Plant1,
the plant you identified from response data. You can also export the tuned PID controller.

Click OK. The models you selected are saved to the MATLAB workspace.

Identified plant models are saved as identified LTI models, such as idproc or idss.

 Interactively Estimate Plant from Measured or Simulated Response Data

6-79

Tip Alternatively, right-click a plant in the Data Browser to select it for tuning or export
it to the MATLAB workspace.

See Also

More About
• “Choosing Identified Plant Structure” on page 6-90
• “Input/Output Data for Identification” on page 6-89
• “System Identification for PID Control” on page 6-81
• “Import Measured Response Data for Plant Estimation” on page 6-67

6 PID Controller Tuning

6-80

System Identification for PID Control

Plant Identification
In many situations, a dynamic representation of the system you want to control is not
readily available. One solution to this problem is to obtain a dynamical model using
identification techniques. The system is excited by a measurable signal and the
corresponding response of the system is collected at some sample rate. The resulting
input-output data is then used to obtain a model of the system such as a transfer function
or a state-space model. This process is called system identification or estimation. The goal
of system identification is to choose a model that yields the best possible fit between the
measured system response to a particular input and the model’s response to the same
input.

If you have a Simulink model of your control system, you can simulate input/output data
instead of measuring it. The process of estimation is the same. The system response to
some known excitation is simulated, and a dynamical model is estimated based upon the
resulting simulated input/output data.

Whether you use measured or simulated date for estimation, once a suitable plant model
is identified, you impose control objectives on the plant based on your knowledge of the
desired behavior of the system that the plant model represents. You then design a
feedback controller to meet those objectives.

If you have System Identification Toolbox software, you can use PID Tuner for both plant
identification and controller design in a single interface. You can import input/output data
and use it to identify one or more plant models. Or, you can obtain simulated input/output
data from a Simulink model and use that to identify one or more plant models. You can
then design and verify PID controllers using these plants. PID Tuner also allows you to
directly import plant models, such as one you have obtained from an independent
identification task.

For an overview of system identification, see About System Identification (System
Identification Toolbox).

Linear Approximation of Nonlinear Systems for PID Control
The dynamical behavior of many systems can be described adequately by a linear
relationship between the system’s input and output. Even when behavior becomes

 System Identification for PID Control

6-81

nonlinear in some operating regimes, there are often regimes in which the system
dynamics are linear. For example, the behavior of an operational amplifier or the lift-vs-
force dynamics of aerodynamic bodies can be described by linear models, within a certain
limited operating range of inputs. For such a system, you can perform an experiment (or a
simulation) that excites the system only in its linear range of behavior and collect the
input/output data. You can then use the data to estimate a linear plant model, and design
a PID controller for the linear model.

In other cases, the effects of nonlinearities are small. In such a case, a linear model can
provide a good approximation, such that the nonlinear deviations are treated as
disturbances. Such approximations depend heavily on the input profile, the amplitude and
frequency content of the excitation signal.

Linear models often describe the deviation of the response of a system from some
equilibrium point, due to small perturbing inputs. Consider a nonlinear system whose
output, y(t), follows a prescribed trajectory in response to a known input, u(t). The
dynamics are described by dx(t)/dt = f(x, u), y = g(x,u) . Here, x is a vector of internal
states of the system, and y is the vector of output variables. The functions f and g, which
can be nonlinear, are the mathematical descriptions of the system and measurement
dynamics. Suppose that when the system is at an equilibrium condition, a small
perturbation to the input, Δu, leads to a small perturbation in the output, Δy:

D D D

D D D

&x
f

x
x

f

u
u

y
g

x
x

g

u
u

=
∂

∂
+

∂

∂

=
∂

∂
+

∂

∂

,

.

For example, consider the system of the following Simulink block diagram:

6 PID Controller Tuning

6-82

When operating in a disturbance-free environment, the nominal input of value 50 keeps
the plant along its constant trajectory of value 2000. Any disturbances would cause the
plant to deviate from this value. The PID Controller’s task is to add a small correction to
the input signal that brings the system back to its nominal value in a reasonable amount
of time. The PID Controller thus needs to work only on the linear deviation dynamics even
though the actual plant itself might be nonlinear. Thus, you might be able to achieve
effective control over a nonlinear system in some regimes by designing a PID controller
for a linear approximation of the system at equilibrium conditions.

Linear Process Models
A common use case is designing PID controllers for the steady-state operation of
manufacturing plants. In these plants, a model relating the effect of a measurable input
variable on an output quantity is often required in the form of a SISO plant. The overall
system may be MIMO in nature, but the experimentation or simulation is carried out in a
way that makes it possible to measure the incremental effect of one input variable on a
selected output. The data can be quite noisy, but since the expectation is to control only
the dominant dynamics, a low-order plant model often suffices. Such a proxy is obtained
by collecting or simulating input-output data and deriving a process model (low order
transfer function with unknown delay) from it. The excitation signal for deriving the data
can often be a simple bump in the value of the selected input variable.

Advanced System Identification Tasks
In PID Tuner, you can only identify single-input, single output, continuous-time plant
models. Additionally, PID Tuner cannot perform the following system identification tasks:

 System Identification for PID Control

6-83

• Identify transfer functions of arbitrary number of poles and zeros. (PID Tuner can
identify transfer functions up to three poles and one zero, plus an integrator and a
time delay. PID Tuner can identify state-space models of arbitrary order.)

• Estimate the disturbance component of a model, which can be useful for separating
measured dynamics from noise dynamics.

• Validate estimation by comparing the plant response against an independent dataset.
• Perform residual analysis.

If you need these enhanced identification features, import your data into the System
Identification app (System Identification). Use the System Identification app to
perform model identification and export the identified model to the MATLAB workspace.
Then import the identified model into PID Tuner for PID controller design.

For more information about the System Identification Tool, see “Identify Linear Models
Using System Identification App” (System Identification Toolbox).

See Also
System Identification

More About
• “Input/Output Data for Identification” on page 6-89
• “Choosing Identified Plant Structure” on page 6-90
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page

6-73

6 PID Controller Tuning

6-84

Preprocess Data

Ways to Preprocess Data
In PID Tuner, you can preprocess plant data before you use it for estimation. After you
import I/O data, on the Plant Identification tab, use the Preprocess menu to select a
preprocessing operation.

• “Remove Offset” on page 6-86 — Remove mean values, a constant value, or an initial
value from the data.

• “Scale Data” on page 6-86 — Scale data by a constant value, signal maximum value,
or signal initial value.

• “Extract Data” on page 6-87 — Select a subset of the data to use in the . You can
graphically select the data to extract, or enter start and end times in the text boxes.

• “Filter Data” on page 6-87 — Process data using a low-pass, high-pass, or band-pass
filter.

• “Resample Data” on page 6-87 –– Resample data using zero-order hold or linear
interpolation.

 Preprocess Data

6-85

• “Replace Data” on page 6-88 –– Replace data with a constant value, region initial
value, region final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your
application. For instance, you can both filter the data and remove an offset.

Remove Offset
It is important for good results to remove data offsets. In the Remove Offset tab, you can
remove offset from all signals at once or select a particular signal using the Remove
offset from signal drop down list. Specify the value to remove using the Offset to
remove drop down list. The options are:

• A constant value. Enter the value in the box. (Default: 0)
• Mean of the data, to create zero-mean data.
• Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking

.

Scale Data
In the Scale Data tab, you can choose to scale all signals or specify a signal to scale.
Select the scaling value from the Scale to use drop-down list. The options are:

• A constant value. Enter the value in the box. (Default: 1)
• Signal maximum value.
• Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking

.

6 PID Controller Tuning

6-86

Extract Data
Select a subset of data to use in Extract Data tab. You can extract data graphically or by
specifying start time and end time. To extract data graphically, click and drag the vertical
bars to select a region of the data to use.

Filter Data
You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter
blocks high frequency signals, a high-pass filter blocks low frequency signals, and a band-
pass filter combines the properties of both low- and high-pass filters.

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose to
filter all signals or specify a particular signal. For the low-pass and high-pass filtering, you
can specify the normalized cutoff frequency of the signal. Where, a normalized frequency
of 1 corresponds to half the sampling rate. For the band-pass filter, you can specify the
normalized start and end frequencies. Specify the frequencies by either entering the
value in the associated field on the tab. Alternatively, you can specify filter frequencies
graphically, by dragging the vertical bars in the frequency-domain plot of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking

.

Resample Data
In the Resample Data tab, specify the sampling period using the Resample with
sample period: field. You can resample your data using one of the following interpolation
methods:

• Zero-order hold — Fill the missing data sample with the data value immediately
preceding it.

• Linear interpolation — Fill the missing data using a line that connects the two
data points.

By default, the resampling method is set to zero-order hold. You can select the
linear interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

 Preprocess Data

6-87

After making choices, update the existing data with the preprocessed data by clicking

.

Replace Data
In the Replace Data tab, select data to replace by dragging across a region in the plot.
Once you select data, choose how to replace it using the Replace selected data drop-
down list. You can replace the data you select with one of these options:

• A constant value
• Region initial value
• Region final value
• A line

The replaced preview data changes color and the replacement data appears on the plot.
At any time before updating, click Clear preview to clear the data you replaced and start
over.

After making choices, update the existing data with the preprocessed data by clicking

.

Replace Data can be useful, for example, to replace outliers. Outliers can be defined as
data values that deviate from the mean by more than three standard deviations. When
estimating parameters from data containing outliers, the results may not be accurate.
Hence, you might choose to replace the outliers in the data before you estimate the
parameters.

See Also

More About
• “Input/Output Data for Identification” on page 6-89
• “System Identification for PID Control” on page 6-81
• “Import Measured Response Data for Plant Estimation” on page 6-67

6 PID Controller Tuning

6-88

Input/Output Data for Identification

Data Preparation
Identification of a plant model for PID tuning requires a single-input, single-output data
set.

If you have measured data, use the data import dialogs to bring in identification data.
Some common sources of identification data are transient tests such as bump test and
impact test. For such data, PID Tuner provides dedicated dialogs that require you to
specify data for only the output signal while characterizing the input by its shape. For an
example, see “Interactively Estimate Plant from Measured or Simulated Response Data”
on page 6-73.

If you want to obtain input/output data by simulating a Simulink model, the PID Tuner
interface lets you specify the shape of the input stimulus used to generate the response.
For an example, see the Simulink Control Design example “Design a PID Controller Using
Simulated I/O Data.”

Data Preprocessing
PID Tuner lets you preprocess your imported or simulated data. PID Tuner provides
various options for detrending, scaling, and filtering the data.

It is strongly recommended to remove any equilibrium-related signal offsets from the
input and output signals before proceeding with estimation. You can also filter the data to
focus the signal contents to the frequency band of interest.

Some data processing actions can alter the nature of the data, which can result in
transient data (step, impulse or wide pulse responses) to be treated as arbitrary input/
output data. When that happens the identification plot does not show markers for
adjusting the model time constants and damping coefficient.

For an example that includes a data-preprocessing step, see: “Interactively Estimate Plant
from Measured or Simulated Response Data” on page 6-73.

For further information about data-preprocessing options, see “Preprocess Data” on page
6-85.

 Input/Output Data for Identification

6-89

Choosing Identified Plant Structure
PID Tuner provides two types of model structures for representing the plant dynamics:
process models and state-space models.

Use your knowledge of system characteristics and the level of accuracy required by your
application to pick a model structure. In absence of any prior information, you can gain
some insight into the order of dynamics and delays by analyzing the experimentally
obtained step response and frequency response of the system. For more information see
the following in the System Identification Toolbox documentation:

• “Correlation Models” (System Identification Toolbox)
• “Frequency-Response Models” (System Identification Toolbox)

Each model structure you choose has associated dynamic elements, or model parameters.
You adjust the values of these parameters manually or automatically to find an identified
model that yields a satisfactory match to your measured or simulated response data. In
many cases, when you are unsure of the best structure to use, it helps to start with the
simplest model structure, transfer function with one pole. You can progressively try
identification with higher-order structures until a satisfactory match between the plant
response and measured output is achieved. The state-space model structure allows an
automatic search for optimal model order based on an analysis of the input-output data.

When you begin the plant identification task, a transfer function model structure with one
real pole is selected by default. This default set up is not sensitive to the nature of the
data and may not be a good fit for your application. It is therefore recommended that you
choose a suitable model structure before performing parameter identification.

Process Models
Process models are transfer functions with 3 or fewer poles, and can be augmented by
addition of zero, delay and integrator elements. Process models are parameterized by
model parameters representing time constants, gain, and time delay. In PID Tuner,
choose a process model in the Plant Identification tab using the Structure menu.

6 PID Controller Tuning

6-90

For any chosen structure you can optionally add a delay, a zero and/or an integrator
element using the corresponding checkboxes. The model transfer function configured by
these choices is displayed next to the Structure menu.

The simplest available process model is a transfer function with one real pole and no zero
or delay elements:

 Choosing Identified Plant Structure

6-91

H s
K

T s
() =

+
1

1
.

This model is defined by the parameters K, the gain, and T1, the first time constant. The
most complex process-model structure choose has three poles, an additional integrator, a
zero, and a time delay, such as the following model, which has one real pole and one
complex conjugate pair of poles:

H s K
T s

s T s T s T s

e
z s() =

+

+() + +()
-1

1 2 11
2 2

w w

t

z
.

In this model, the configurable parameters include the time constants associated with the
poles and the zero, T1, Tω, and Tz. The other parameters are the damping coefficient ζ, the
gain K, and the time delay τ.

When you select a process model type, PID Tuner automatically computes initial values
for the plant parameters and displays a plot showing both the estimated model response
and your measured or simulated data. You can edit the parameter values graphically
using indicators on the plot, or numerically using the Plant Parameters editor. For an
example illustrating this process, see “Interactively Estimate Plant Parameters from
Response Data” (Control System Toolbox).

The following table summarizes the various parameters that define the available types of
process models.

Parameter Used By Description
K — Gain All transfer functions Can take any real value.

In the plot, drag the plant
response curve (blue) up or
down to adjust K.

T1 — First time constant Transfer function with one
or more real poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the red x
left (towards zero) or right
(towards T) to adjust T1.

6 PID Controller Tuning

6-92

Parameter Used By Description
T2— Second time constant Transfer function with two

real poles
Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the
magenta x left (towards
zero) or right (towards T) to
adjust T2.

Tω — Time constant
associated with the natural
frequency ωn, where Tω =
1/ωn

Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust
Tω.

ζ — Damping coefficient Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and 1.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust ζ.

τ — Transport delay Any transfer function Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the orange
vertical bar left (towards
zero) or right (towards T) to
adjust τ.

 Choosing Identified Plant Structure

6-93

Parameter Used By Description
Tz — Model zero Any transfer function Can take any value between

–T and T, the time span of
measured or simulated data.

In the plot, drag the red
circle left (towards –T) or
right (towards T) to adjust
Tz.

Integrator Any transfer function Adds a factor of 1/s to the
transfer function. There is
no associated parameter to
adjust.

State-Space Models
The state-space model structure for identification is primarily defined by the choice of
number of states, the model order. Use the state-space model structure when higher
order models than those supported by process model structures are required to achieve a
satisfactory match to your measured or simulated I/O data. In the state-space model
structure, the system dynamics are represented by the state and output equations:

&x Ax Bu

y Cx Du

= +

= +

,

.

x is a vector of state variables, automatically chosen by the software based on the
selected model order. u represents the input signal, and y the output signals.

To use a state-space model structure, in the Plant Identification tab, in the Structure
menu, select State-Space Model. Then click Configure Structure to open the State-
Space Model Structure dialog box.

6 PID Controller Tuning

6-94

Use the dialog box to specify model order, delay and feedthrough characteristics. If you
are unsure about the order, select Pick best value in the range, and enter a range of
orders. In this case, when you click Estimate in the Plant Estimation tab, the software
displays a bar chart of Hankel singular values. Choose a model order equal to the number
of Hankel singular values that make significant contributions to the system dynamics.

When you choose a state-space model structure, the identification plot shows a plant
response (blue) curve only if a valid estimated model exists. For example, if you change
structure after estimating a process model, the state-space equivalent of the estimated
model is displayed. If you change the model order, the plant response curve disappears
until a new estimation is performed.

When using the state-space model structure, you cannot directly interact with the model
parameters. The identified model should thus be considered unstructured with no
physical meaning attached to the state variables of the model.

However, you can graphically adjust the input delay and the overall gain of the model.
When you select a state-space model with a time delay, the delay is represented on the
plot by a vertical orange bar is shown on the plot. Drag this bar horizontally to change the
delay value. Drag the plant response (blue) curve up and down to adjust the model gain.

 Choosing Identified Plant Structure

6-95

Existing Plant Models
Any previously imported or identified plant models are listed the Plant List section of the
Data Browser.

You can define the model structure and initialize the model parameter values using one of
these plants. To do so, in the Plant Identification tab, in the Structure menu, select the
linear plant model you want to use for structure an initialization.

6 PID Controller Tuning

6-96

If the plant you select is a process model (idproc object), PID Tuner uses its structure.
If the plant is any other model type, PID Tuner uses the state-space model structure.

Switching Between Model Structures
When you switch from one model structure to another, the software preserves the model
characteristics (pole/zero locations, gain, delay) as much as possible. For example, when
you switch from a one-pole model to a two-pole model, the existing values of T1, Tz, τ and
K are retained, T2 is initialized to a default (or previously assigned, if any) value.

 Choosing Identified Plant Structure

6-97

Estimating Parameter Values
Once you have selected a model structure, you have several options for manually or
automatically adjusting parameter values to achieve a good match between the estimated
model response and your measured or simulated input/output data. For an example that
illustrates all these options, see:

• “Interactively Estimate Plant Parameters from Response Data” (Control System
Toolbox) (Control System Toolbox)

• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 6-
73 Simulink Control Design)

PID Tuner does not perform a smart initialization of model parameters when a model
structure is selected. Rather, the initial values of the model parameters, reflected in the
plot, are arbitrarily-chosen middle of the range values. If you need a good starting point
before manually adjusting the parameter values, use the Initialize and Estimate option
from the Plant Identification tab.

Handling Initial Conditions
In some cases, the system response is strongly influenced by the initial conditions. Thus a
description of the input to output relationship in the form of a transfer function is
insufficient to fit the observed data. This is especially true of systems containing weakly
damped modes. PID Tuner allows you to estimate initial conditions in addition to the
model parameters such that the sum of the initial condition response and the input
response matches the observed output well. Use the Estimation Options dialog box to
specify how the initial conditions should be handled during automatic estimation. By
default, the initial condition handling (whether to fix to zero values or to estimate) is
automatically performed by the estimation algorithm. However, you can enforce a certain
choice by using the Initial Conditions menu.

Initial conditions can only be estimated with automatic estimation. Unlike the model
parameters, they cannot be modified manually. However, once estimated they remain
fixed to their estimated values, unless the model structure is changed or new
identification data is imported.

If you modify the model parameters after having performed an automatic estimation, the
model response will show a fixed contribution (i.e., independent of model parameters)
from initial conditions. In the following plot, the effects of initial conditions were
identified to be particularly significant. When the delay is adjusted afterwards, the portion

6 PID Controller Tuning

6-98

of the response to the left of the input delay marker (the τ Adjustor) comes purely from
initial conditions. The portion to the right of the τ Adjustor contains the effects of both the
input signal as well as the initial conditions.

See Also

More About
• “System Identification for PID Control” on page 6-81
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page

6-73

 See Also

6-99

Design PID Controller Using FRD Model Obtained From
"frestimate" Command

This example shows how to design a PI controller with frequency response estimated
from a plant built in Simulink. This is an alternative PID design workflow when the
linearized plant model is invalid for PID design (for example, when the plant model has
zero gain).

Opening the Model

Open the engine control model and take a few moments to explore it.

mdl = 'scdenginectrlpidblock';
open_system(mdl)

The PID loop includes a PI controller in parallel form that manipulates the throttle angle
to control the engine speed. The PI controller has default gains that makes the closed
loop system oscillate. We want to design the controller using the PID Tuner that is
launched from the PID block dialog.

open_system([mdl '/Engine Speed (rpm)'])
sim(mdl);

6 PID Controller Tuning

6-100

PID Tuner Obtaining a Plant Model with Zero Gain From Linearization

In this example, the plant seen by the PID block is from throttle angle to engine speed.
Linearization input and output points are already defined at the PID block output and the
engine speed measurement respectively. Linearization at the initial operating point gives
a plant model with zero gain.

% Hide scope
close_system([mdl '/Engine Speed (rpm)'])
% Obtain the linearization input and output points
io = getlinio(mdl);
% Linearize the plant at initial operating point
linsys = linearize(mdl,io)

linsys =

 D =
 Throttle Ang
 EngineSpeed 0

Static gain.

 Design PID Controller Using FRD Model Obtained From "frestimate" Command

6-101

The reason for obtaining zero gain is that there is a triggered subsystem "Compression"
in the linearization path and the analytical block-by-block linearization does not support
events-based subsystems. Since the PID Tuner uses the same approach to obtain a linear
plant model, the PID Tuner also obtains a plant model with zero gain and reject it during
the launching process.

To launch the PID Tuner, open the PID block dialog and click Tune button. An information
dialog shows up and indicates that the plant model linearized at initial operating point
has zero gain and cannot be used to design a PID controller.

6 PID Controller Tuning

6-102

The alternative way to obtain a linear plant model is to directly estimate the frequency
response data from the Simulink model, create an FRD system in MATLAB Workspace,
and import it back to the PID Tuner to continue PID design.

Obtaining Estimated Frequency Response Data Using Sinestream Signals

Sinestream input signal is the most reliable input signal for estimating an accurate
frequency response of a Simulink model using frestimate command. More information
on how to use frestimate can be found in the example "Frequency Response Estimation
Using Simulation-Based Techniques" in Simulink Control Design examples.

In this example, we create a sine stream that sweeps frequency from 0.1 to 10 rad/sec. Its
amplitude is set to be 1e-3. You can inspect the estimation results using the bode plot.

% Construct sine signal
in = frest.Sinestream('Frequency',logspace(-1,1,50),'Amplitude',1e-3);
% Estimate frequency response
sys = frestimate(mdl,io,in); % this command may take a few minutes to finish
% Display Bode plot
figure;
bode(sys);

 Design PID Controller Using FRD Model Obtained From "frestimate" Command

6-103

Designing PI with the FRD System in PID Tuner

SYS is a FRD system that represents the plant frequency response at the initial operating
point. To use it in the PID Tuner, we need to import it after the Tuner is launched. Click
Plant and select Import.

6 PID Controller Tuning

6-104

 Design PID Controller Using FRD Model Obtained From "frestimate" Command

6-105

Click the 2nd radio button, select "sys" from the list, and click "OK" to import the FRD
system into the PID Tuner. The automated design returns a stabilizing controller. Click
Add Plot and select Open-Loop Bode plot. The plot shows reasonable gain and phase
margin. Click Show Parameters to see the gain and phase margin values. Time domain
response plots are not available for FRD plant models.

6 PID Controller Tuning

6-106

 Design PID Controller Using FRD Model Obtained From "frestimate" Command

6-107

Click Update Block to update the PID block P and I gains to the PID.

Simulating Closed-Loop Performance in Simulink Model

Simulation in Simulink shows that the new PI controller provides good performance when
controlling the nonlinear model.

6 PID Controller Tuning

6-108

Close the model.

bdclose(mdl);

 Design PID Controller Using FRD Model Obtained From "frestimate" Command

6-109

Designing a Family of PID Controllers for Multiple
Operating Points

This example shows how to design an array of PID controllers for a nonlinear plant in
Simulink that operates over a wide range of operating points.

Opening the Plant Model

The plant is a continuous stirred tank reactor (CSTR) that operates over a wide range of
operating points. A single PID controller can effectively use the coolant temperature to
regulate the output concentration around a small operating range that the PID controller
is designed for. But since the plant is a strongly nonlinear system, control performance
degrades if operating point changes significantly. The closed-loop system can even
become unstable.

Open the CSTR plant model.

mdl = 'scdcstrctrlplant';
open_system(mdl)

6 PID Controller Tuning

6-110

matlab:open_system('scdcstrctrlplant')

For background, see Seborg, D.E. et al., "Process Dynamics and Control", 2nd Ed., 2004,
Wiley, pp.34-36.

Introduction to Gain Scheduling

A common approach to solve the nonlinear control problem is using gain scheduling with
linear controllers. Generally speaking designing a gain scheduling control system takes
four steps:

 Designing a Family of PID Controllers for Multiple Operating Points

6-111

1 Obtain a plant model for each operating region. The usual practice is to linearize the
plant at several equilibrium operating points.

2 Design a family of linear controllers such as PID for the plant models obtained in the
previous step.

3 Implement a scheduling mechanism such that the controller coefficients such as PID
gains are changed based on the values of the scheduling variables. Smooth
(bumpless) transfer between controllers is required to minimize disturbance to plant
operation.

4 Assess control performance with simulation.

For more background reading on gain scheduling, see a survey paper from W. J. Rugh and
J. S. Shamma: "Research on gain scheduling", Automatica, Issue 36, 2000, pp.1401-1425.

In this example, we focus on designing a family of PID controllers for the CSTR plant
described in step 1 and 2.

Obtaining Linear Plant Models for Multiple Operating Points

The output concentration C is used to identify different operating regions. The CSTR
plant can operate at any conversion rate between low conversion rate (C=9) and high
conversion rate (C=2). In this example, divide the whole operating range into 8 regions
represented by C = 2, 3, 4, 5, 6, 7, 8 and 9.

In the following, first compute equilibrium operating points with the findop command.
Then linearize the plant at each operating point with the linearize command.

% Specify operating regions
C = [2 3 4 5 6 7 8 9];
% Obtain default operating point array
op = operspec(mdl, numel(C));
% Initialize an array of operating point specifications
for ct = 1:numel(C)
 % Set the value of output concentration C to be known
 op(ct).Outputs.Known = true;
 % Compute equilibrium operating point corresponding to the value of C
 op(ct).Outputs.y = C(ct);
end
% Compute equilibrium operating point corresponding to the value of C
opoint = findop(mdl,op,findopOptions('DisplayReport','off'));
% Linearize plant
Plants = linearize(mdl, opoint);

6 PID Controller Tuning

6-112

Since the CSTR plant is nonlinear, we expect different characteristics among the linear
models. For example, plant models with high and low conversion rates are stable, while
the others are not.

isstable(Plants,'elem')'

ans =

 1x8 logical array

 1 1 0 0 0 0 1 1

Designing PID Controllers for the Plant Models

To design multiple PID controllers in batch, we can use the pidtune command. The
following command will generate an array of PID controllers in parallel form. The desired
open loop crossover frequency is at 1 rad/sec and the phase margin is the default value of
60 degrees.

% Design controllers
Controllers = pidtune(Plants,'pidf',pidtuneOptions('Crossover',1));
% Display controller for C=4
Controllers(:,:,4)

ans =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = -12.4, Ki = -1.74, Kd = -16, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

Plot the closed loop responses for step set-point tracking as below:

% Construct closed-loop systems
clsys = feedback(Plants*Controllers,1);
% Plot closed-loop responses
figure;
hold on

 Designing a Family of PID Controllers for Multiple Operating Points

6-113

for ct = 1:length(C)
 % Select a system from the LTI array
 sys = clsys(:,:,ct);
 sys.Name = ['C=',num2str(C(ct))];
 sys.InputName = 'Reference';
 % Plot step response
 stepplot(sys,20);
end
legend('show','location','southeast')

All the closed loops are stable but the overshoots of the loops with unstable plants (C=4,
5, 6, and 7) are too large. To improve the results, increase the target open loop bandwidth
to 10 rad/sec.

6 PID Controller Tuning

6-114

% Design controllers for unstable plant models
Controllers = pidtune(Plants,'pidf',10);
% Display controller for C=4
Controllers(:,:,4)

ans =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = -283, Ki = -151, Kd = -128, Tf = 0.0183

Continuous-time PIDF controller in parallel form.

Plot the closed-loop step responses for the new controllers.

% Construct closed-loop systems
clsys = feedback(Plants*Controllers,1);
% Plot closed-loop responses
figure;
hold on
for ct = 1:length(C)
 % Select a system from the LTI array
 sys = clsys(:,:,ct);
 set(sys,'Name',['C=',num2str(C(ct))],'InputName','Reference');
 % Plot step response
 stepplot(sys,20);
end
legend('show','location','southeast')

 Designing a Family of PID Controllers for Multiple Operating Points

6-115

All the closed loop responses are satisfactory now. For comparison, examine the response
when you use the same controller at all operating points. Create another set of closed-
loop systems, where each one uses the C = 2 controller.

clsys_flat = feedback(Plants*Controllers(:,:,1),1);

figure;
stepplot(clsys,clsys_flat,20)
legend('C-dependent Controllers','Single Controller')

6 PID Controller Tuning

6-116

The array of PID controllers designed separately for each concentration gives
considerably better performance than a single controller.

However, the closed-loop responses shown above are computed based on linear
approximations of the full nonlinear system. To validate the design, implement the
scheduling mechanism in your model using the PID Controller block.

Close the model.

 Designing a Family of PID Controllers for Multiple Operating Points

6-117

bdclose(mdl);

See Also
findop | operspec | pidtune

More About
• “Implement Gain-Scheduled PID Controllers” on page 6-119

6 PID Controller Tuning

6-118

Implement Gain-Scheduled PID Controllers
This example shows how to implement gain-scheduled control in a Simulink model using a
family of PID controllers. The PID controllers are tuned for a series of steady-state
operating points of the plant, which is highly nonlinear.

This example builds on the work done in “Designing a Family of PID Controllers for
Multiple Operating Points” on page 6-110. In that example, the continuous stirred tank
reactor (CSTR) plant model is linearized at steady-state operating points that have output
concentrations C = 2, 3, ..., 8, 9. The nonlinearity in the CSTR plant yields different
linearized dynamics at different output concentrations. The example uses the pidtune
command to generate and tune a separate PID controller for each output concentration.

You can expect each controller to perform well in a small operating range around its
corresponding output concentration. This example shows how to use the PID Controller
block to implement all of these controllers in a gain-scheduled configuration. In such a
configuration, the PID gains change as the output concentration changes. This
configuration ensures good PID control at any output concentration within the operating
range of the control system.

Begin with the controllers generated in “Designing a Family of PID Controllers for
Multiple Operating Points” on page 6-110. If these controllers are not already in the
MATLAB workspace, load them from the data file PIDGainSchedExample.mat.

load PIDGainSchedExample

This operation puts two variables in the MATLAB workspace, Controllers and C. The
model array Controllers contains eight pid models, each tuned for one output
concentration in the vector C.

To implement these controllers in a gain-scheduled configuration, create lookup tables
that associate each output concentration with the corresponding set of PID gains. The
Simulink model PIDGainSchedCSTRExampleModel contains such lookup tables,
configured to provide gain-scheduled control for the CSTR plant. Open this model.

open_system('PIDGainSchedCSTRExampleModel')

 Implement Gain-Scheduled PID Controllers

6-119

In this model, the PID Controller block is configured to have external input ports for the
PID coefficients. Using external inputs allows the coefficients to vary as the output
concentration varies. Double-click the block to examine the configuration.

6 PID Controller Tuning

6-120

Setting the controller parameters Source to external enables the input ports for the
coefficients.

The model uses a 1-D Lookup Table block for each of the PID coefficients. In general, for
gain-scheduled PID control, use your scheduling variable as the lookup-table input, and
the corresponding controller coefficient values as the output. In this example, the CSTR
plant output concentration is the lookup table input, and the output is the PID coefficient
corresponding to that concentration. To see how the lookup tables are configured, double-
click the P Lookup Table block.

 Implement Gain-Scheduled PID Controllers

6-121

The Table data field contains the array of proportional coefficients for each controller,
Controllers.Kp. (For more information about the properties of the pid models in the
array Controllers, see the pid reference page.) Each entry in this array corresponds to
an entry in the array C that is entered in the Breakpoints 1 field. For concentration
values that fall between entries in C, the P Lookup Table block performs linear
interpolation to determine the value of the proportional coefficient. To set up lookup
tables for the integral and derivative coefficients, configure the I Lookup Table and D
Lookup Table blocks using Controllers.Ki and Controllers.Kd, respectively. For
this example, this configuration is already done in the model.

6 PID Controller Tuning

6-122

The pid models in the Controllers array express the derivative filter coefficient as a
time constant, Controllers.Tf (see the pid reference page for more information).
However, the PID Controller block expresses the derivative filter coefficient as the inverse
constant, N. Therefore, the N Lookup Table block must be configured to use the inverse
of each value in Controllers.Tf. Double-click the N Lookup Table block to see the
configuration.

Simulate the model. The Concentration Setpoint block is configured to step through
a sequence of setpoints that spans the operating range between C = 2 and C = 9

 Implement Gain-Scheduled PID Controllers

6-123

(shown in yellow on the scope). The simulation shows that the gain-scheduled
configuration achieves good setpoint tracking across this range (pink on the scope).

As was shown in “Designing a Family of PID Controllers for Multiple Operating Points” on
page 6-110, the CSTR plant is unstable in the operating range between C = 4 and C =
7. The gain-scheduled PID controllers stabilize the plant and yield good setpoint tracking
through the entire unstable region. To fully validate the control design against the
nonlinear plant, apply a variety of setpoint test sequences that test the tracking

6 PID Controller Tuning

6-124

performance for steps of different size and direction across the operating range. You can
also compare the performance against a design without gain scheduling, by setting all
entries in the Controllers array equal.

See Also
PID Controller | n-D Lookup Table | pid | pidtune

More About
• “Designing a Family of PID Controllers for Multiple Operating Points” on page 6-110

 See Also

6-125

Plant Cannot Be Linearized or Linearizes to Zero
When you open PID Tuner, it attempts to linearize the model at the operating point
specified by the model initial conditions. Sometimes, PID Tuner cannot obtain a nonzero
linear system for the plant as seen by the PID controller.

How to Fix It
If the plant model in the PID loop cannot be linearized or linearizes to zero, you have
several options for obtaining a linear plant model for PID tuning. The following table
summarizes some of the options and when they are useful.

Approach Useful When More Information
Linearize at a different
operating point

There is a known operating
point suitable for tuning,
such as:

• A simulation snapshot
time at which the plant is
in a linearizable steady
state.

• Known state values or a
previously trimmed
operating point at which
the plant is linearizable.

“Tune at a Different
Operating Point” on page 6-
19

Import a linear model of the
plant to PID Tuner

You have an LTI model of
the plant at the desired
operating condition for
tuning in the MATLAB
workspace.

In PID Tuner, in the Plant
menu, select Import.

Tune the controller using
simulated plant frequency-
response data

The plant is not linearizable
in any operating condition
suitable for tuning.

“Design PID Controller from
Plant Frequency-Response
Data” on page 6-49

6 PID Controller Tuning

6-126

Approach Useful When More Information
Use system identification to
estimate a linear plant
model from measured or
simulated response data

You have System
Identification Toolbox
software. An advantage of
this approach is that it
yields an analytic plant
model that you can use for
further analysis.

“Interactively Estimate
Plant from Measured or
Simulated Response Data”
on page 6-73

See Also

More About
• “Cannot Find a Good Design in PID Tuner” on page 6-128
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

 See Also

6-127

Cannot Find a Good Design in PID Tuner
After adjusting the PID Tuner sliders, sometimes you cannot find a design that meets
your design requirements when you analyze the PID Tuner response plots.

How to Fix It
Try a different PID controller type. It is possible that your controller type is not the best
choice for your plant or your requirements.

For example, the closed-loop step response of a P- or PD-controlled system can settle on a
value that is offset from the setpoint. If you require a zero steady-state offset, adding an
integrator (using a PI or PID controller) can give better results.

As another example, in some cases a PI controller does not provide adequate phase
margin. You can instead try a PID controller to give the tuning algorithm extra degrees of
freedom to satisfy both speed and robustness requirements simultaneously.

To switch controller types, in the PID Controller block dialog box:

• Select a different controller type from the Controller drop-down menu.
• Click Apply to save the change.
• Click Tune to instruct PID Tuner to tune the parameters for the new controller type.

If you cannot find any satisfactory controller with PID Tuner, PID control possibly is not
sufficient for your requirements. You can design more complex controllers using Control
System Designer.

See Also
PID Controller

More About
• “Simulated Response Does Not Match the PID Tuner Response” on page 6-129
• “Control System Designer Tuning Methods” on page 8-6
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

6 PID Controller Tuning

6-128

Simulated Response Does Not Match the PID Tuner
Response

When you run your Simulink model using the PID gains computed by PID Tuner, the
simulation output differs from the PID Tuner response plot.

There are several reasons why the simulated model can differ from the PID Tuner
response plot. If the simulated result meets your design requirements (despite differing
from the PID Tuner response), you do not need to refine the design further. If the
simulated result does not meet your design requirements, see “Cannot Find an
Acceptable PID Design in the Simulated Model” on page 6-131.

Some causes for a difference between the simulated and PID Tuner responses include:

• The reference signals or disturbance signals in your Simulink model differ from the
step signals that PID Tuner uses. If you need step signals to evaluate the performance
of the PID controller in your model, change the reference signals in your model to step
signals.

• The structure of your model differs from the loop structure that PID Tuner designs
for. PID Tuner assumes the loop configuration shown in the following figure.

PID

G y
+
-

r
C

Plant

d1

+

+

d2

+

+

u

As the figure illustrates, PID Tuner designs for a PID controller in the feedforward
path of a unity-gain feedback loop. If your Simulink model differs from this structure,
or injects a disturbance signal in a different location, your simulated response differs
from the PID Tuner response.

• You have enabled nonlinear features in the PID Controller block in your model, such as
saturation limits or anti-windup circuitry. PID Tuner ignores nonlinear settings in the
PID Controller block, which can cause PID Tuner to give a different response from
the simulation.

• Your Simulink model has strong nonlinearities in the plant that make the linearization
invalid over the full operating range of the simulation.

 Simulated Response Does Not Match the PID Tuner Response

6-129

• You selected an operating point using PID Tuner that is different from the operating
point saved in the model. In this case, PID Tuner has designed a controller for a
different operating point than the operating point that begins the simulation. Simulate
your model using the PID Tuner operating point by initializing your Simulink model
with this operating point. See “Simulate Simulink Model at Specific Operating Point”
on page 1-83.

See Also
PID Controller

More About
• “Cannot Find an Acceptable PID Design in the Simulated Model” on page 6-131
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

6 PID Controller Tuning

6-130

Cannot Find an Acceptable PID Design in the Simulated
Model

When you run your Simulink model using the PID gains computed by PID Tuner, the
simulation output may not meet your design requirements.

How to Fix It
In some cases, PID control is not adequate to meet the control requirements for your
plant. If you cannot find a design that meets your requirements when you simulate your
model, consider designing a more complex controller using Control System Designer.

If you have enabled saturation limits in the PID Controller block without antiwindup
circuitry, enable antiwindup circuitry. You can enable antiwindup circuitry in two ways:

• Activate the PID Controller block antiwindup circuitry on the PID Advanced tab of
the block dialog box.

• Use the PID Controller block tracking mode to implement your own antiwindup
circuitry external to the block. Activate the PID Controller block tracking mode on the
PID Advanced tab of the block dialog box.

To learn more about both ways of implementing antiwindup circuitry, see “Anti-Windup
Control Using a PID Controller” (Simulink).

After enabling antiwindup circuitry, run the simulation again to see whether controller
performance is acceptable.

If the loop response is still unacceptable, try slowing the response of the PID controller.
To do so, reduce the response time or the bandwidth in PID Tuner. See “Refine the
Design” on page 6-16.

You can also try implementing gain-scheduled PID control to help account for
nonlinearities in your system. See “Designing a Family of PID Controllers for Multiple
Operating Points” on page 6-110 and “Implement Gain-Scheduled PID Controllers” on
page 6-119.

If you still cannot get acceptable performance with PID control, consider using a more
complex controller. See Control System Designer.

 Cannot Find an Acceptable PID Design in the Simulated Model

6-131

See Also
PID Controller

More About
• “Simulated Response Does Not Match the PID Tuner Response” on page 6-129
• “Controller Performance Deteriorates When Switching Time Domains” on page 6-

133
• “Control System Designer Tuning Methods” on page 8-6
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

6 PID Controller Tuning

6-132

Controller Performance Deteriorates When Switching
Time Domains

After you obtain a well-tuned, continuous-time controller using PID Tuner, you can
discretize the controller using the Time Domain selector button in the PID Controller
block dialog box. Sometimes, the resulting discrete-time controller performs poorly or
even becomes unstable.

How To Fix It
In some cases, you can improve performance by adjusting the sample time by trial and
error. However, this procedure can yield a poorly tuned controller, especially where your
application imposes a limit on the sample time. Instead, if you change time domains and
the response deteriorates, click Tune in the PID Controller block dialog to design a new
controller.

Note If the plant and controller time domains differ, PID Tuner discretizes the plant (or
converts the plant to continuous time) to match the controller time domain. If the plant
and controller both use discrete time, but have different sample times, PID Tuner
resamples the plant to match the controller. All conversions use the tustin method (see
“Continuous-Discrete Conversion Methods” (Control System Toolbox).

See Also
PID Controller

More About
• “When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain”

on page 6-134
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

 Controller Performance Deteriorates When Switching Time Domains

6-133

When Tuning the PID Controller, the D Gain Has a
Different Sign from the I Gain

When you design a controller using PID Tuner, the resulting derivative gain, D, can have
a different sign from the integral gain I. PID Tuner always returns a stable controller,
even if one or more gains are negative.

For example, the following expression gives the PID controller transfer function in Ideal
form:

c P
I

s

Ds

s

N

P
DN s I N s IN

s s N
= + +

+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=
+() + +() +

+()
1

1

1
2

For a stable controller, all three numerator coefficients require positive values. Because N
is positive, IN > 0 requires that I is also positive. However, the only restriction on D is
(1 + DN) > 0. Therefore, as long as DN > –1, a negative D still yields a stable PID
controller.

Similar reasoning applies for any controller type and for the Parallel controller form.
For more information about controller transfer functions, see the PID Controller block
reference page.

See Also
PID Controller

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 6-3

6 PID Controller Tuning

6-134

PID Autotuning

• “When to Use PID Autotuning” on page 7-2
• “How PID Autotuning Works” on page 7-6
• “PID Autotuning for a Plant Modeled in Simulink” on page 7-9
• “PID Autotuning in Real Time” on page 7-17
• “Control Real-Time PID Autotuning in Simulink” on page 7-27

7

When to Use PID Autotuning
The PID autotuner blocks in Simulink Control Design let you tune a PID controller without
a parametric plant model or an initial controller design. If you have a code-generation
product such as Simulink Coder™, you can generate code that implements the tuning
algorithm on hardware. Deploying the algorithm to hardware lets you tune a controller
for a physical plant, with or without using Simulink to manage the tuning process.

To achieve model-free tuning, use the Closed-Loop PID Autotuner or Open-Loop PID
Autotuner blocks. These blocks perform a frequency-response estimation experiment that
injects signals into the plant and measures the plant output with the feedback loop closed
or open, respectively. The blocks use the resulting estimated frequency response to tune
PID gains for the plant.

PID autotuning works with any asymptotically stable or integrating SISO plant, whether
low-order or high-order, with or without time delay, and with or without direct
feedthrough. It can tune any type of PID controller. You trigger the tuning process via an
input to the block, so you can tune your controller at any time.

PID Autotuning for a Physical Plant
Embedded PID autotuning is a useful option when you have a PID-controlled system and a
test bed or control environment to operate in. In this case, you can deploy an autotuner
block to your hardware and automatically tune the gains of the PID controller in your
system.

In practice, you can manage the PID autotuning process in several ways, including:

• Deploy the autotuning algorithm as a standalone embedded module and manage the
tuning process in your own software and hardware environment. For details, see “PID
Autotuning in Real Time” on page 7-17.

• Initiate, monitor, and analyze the autotuning process via Simulink. For details, see
“Control Real-Time PID Autotuning in Simulink” on page 7-27.

PID Autotuning for a Plant Model in Simulink
If you have a plant model in Simulink, you can use PID autotuning to:

• Obtain an initial PID design for your plant, which you can refine by tuning against the
physical plant.

7 PID Autotuning

7-2

• Preview plant response and adjust the settings for PID autotuning before tuning the
controller in real time. Doing so helps ensure that real-time tuning does not drive your
system out of the desirable operating range.

For more information, see “PID Autotuning for a Plant Modeled in Simulink” on page 7-
9.

Closed-Loop vs. Open-Loop PID Autotuning
The PID autotuning tools let you tune:

• In a closed-loop configuration, with your plant under control of an existing PID
controller (Closed-Loop PID Autotuner block).

• In an open-loop configuration (Open-Loop PID Autotuner block). With open-loop
autotuning, if the plant is in a feedback loop, the autotuner opens the loop for the
duration of the tuning process.

In general, if you do not have an initial PID design, start with open-loop autotuning, and
switch to closed-loop autotuning for retuning or refinement. If you have an initial PID
design for your plant, use closed-loop tuning, which is safer for your plant. With closed-
loop autotuning, the controller remains in the loop to:

• Reject unexpected plant disturbances to maintain safe operation of the plant during
the estimation experiment.

• Reduce the risk that the perturbations used for the experiment drive the plant away
from the desired operating point.

Additional advantages of the closed-loop autotuning approach include:

• Closed-loop tuning works with multiple-integrator plants. In contrast, you cannot use
open-loop autotuning for multiple-integrator plants. Even single-integrator plants risk
drifting away from the desired operating point during open-loop tuning.

• Because the feedback loop remains closed, there is no concern about controller
saturation during the tuning process. In contrast, with open-loop autotuning, a
controller with integral action can saturate while the loop is open. Such saturation can
create a jump at the plant input when the tuning process ends. With open-loop tuning,
you must take additional steps to ensure that the controller continues to track
autotuner block output during tuning. (See, for instance, “PID Autotuning for a Plant
Modeled in Simulink” on page 7-9.)

 When to Use PID Autotuning

7-3

If safe operation of your plant is not a practical concern (such as when tuning against a
plant model in Simulink), open-loop autotuning has these advantages:

• Open-loop tuning can result in more accurate frequency-response estimation and
tuning. In closed-loop tuning, the controller suppresses injected perturbations, which
can result in less accurate frequency-response estimation and poorer tuning results.

• Open-loop tuning is faster. Closed-loop tuning uses a lower-frequency perturbation
signal, which makes the process about three times longer.

• The memory footprint of the deployed algorithm is slightly smaller.

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator.

You can use closed-loop PID autotuning with a multiple-integrator plant.

To get started with either type of PID autotuner, see “How PID Autotuning Works” on
page 7-6.

When Not to Use PID Autotuning
PID Autotuning is not suitable for unstable plants. The perturbations applied in open-loop
tuning can drive an unstable plant to operating conditions that are unsafe for the plant.
Although closed-loop autotuning does not have that risk, it does not yield meaningful
tuning results for unstable plants.

PID autotuning does not work well when there are large disturbances in the plant during
the estimation experiment. Disturbances distort the plant response to the perturbation
signals, yielding poor estimation results.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

7 PID Autotuning

7-4

More About
• “How PID Autotuning Works” on page 7-6

 See Also

7-5

How PID Autotuning Works
To use PID autotuning, configure and deploy one of the PID autotuner blocks, Closed-Loop
PID Autotuner or Open-Loop PID Autotuner.

Autotuning Process
The PID autotuner blocks work by performing a frequency-response estimation
experiment. The blocks inject test signals into your plant and tune PID gains based on an
estimated frequency response.

The following schematic diagram illustrates generally how a PID autotuner block fits into
a control system.

Until the autotuning process begins, the autotuner block relays the control signal directly
from u in to the plant input at u out. In that state, the module has no effect on the
performance of your system.

When the autotuning process begins, the block injects a test signal at u out to collect
plant input-output data and estimate frequency response in real time.

• If you use the Open-Loop PID Autotuner block, the block opens the feedback loop
between u in and u out for the duration of the estimation experiment. It injects into
u out a superposition of sinusoidal signals at frequencies [1/3, 1, 3, 10]ωc, where ωc

7 PID Autotuning

7-6

is your specified target bandwidth for tuning. For nonintegrating plants, the block can
also inject a step signal to estimate the plant DC gain. All test signals are injected on
top of the nominal plant input, which is the value of the signal at u in when the
experiment begins.

• If you use the Closed-Loop PID Autotuner block, the plant remains under control of the
PID controller with its current gains during the experiment. Closed-loop tuning uses
sinusoidal test signals at the frequencies [1/10,1/3, 1, 3, 10]ωc.

When the experiment ends, the block uses the estimated frequency response to compute
PID gains. The tuning algorithm aims to balance performance and robustness while
achieving the control bandwidth and phase margin that you specify. You can configure
logic to transfer the tuned gains from the block to your PID controller, allowing you to
validate closed-loop performance in real time.

Worfklow for PID Autotuning
The following steps provide a general overview of the workflow for PID autotuning.

1 Incorporate a PID autotuner block into your system, as shown in the schematic
diagram.

2 Configure the start/stop signal that controls when the tuning experiment begins and
ends. You can use this signal to initiate the PID autotuning process at any time. When
you stop the experiment, the block returns tuned PID gains.

3 Specify controller parameters such as controller type and the target bandwidth for
tuning.

4 Configure experiment parameters such as the amplitudes of the perturbations
injected during the frequency-response experiment.

5 Start the autotuning process using the start/stop signal, and allow it to run long
enough to complete the frequency-response estimation experiment.

6 Stop the autotuning process. When the experiment stops, the autotuner computes
and returns tuned PID gains.

7 Transfer the tuned gains from the block to your PID controller. You can then validate
the performance of the tuned controller in Simulink or in real time.

For detailed information on performing each of these steps, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 7-9

 How PID Autotuning Works

7-7

• “PID Autotuning in Real Time” on page 7-17

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “When to Use PID Autotuning” on page 7-2

7 PID Autotuning

7-8

PID Autotuning for a Plant Modeled in Simulink
To use PID autotuning for a plant modeled in Simulink, you incorporate a PID autotuner
block into the model. You can control the autotuning process while the model is running.
When tuning is complete you can validate tuned controller parameters against the
simulated plant. Using PID autotuning this way can be useful for generating an initial PID
design that you later refine with real-time autotuning.

Workflow for Autotuning in Simulink
The following steps provide a general overview of the workflow for PID autotuning in
Simulink using the Closed-Loop PID Autotuner or Open-Loop PID Autotuner blocks.

1 Incorporate a PID autotuner block on page 7-9 into your model between the PID
controller and the plant.

2 Configure the start/stop signal on page 7-11 that controls when the tuning
experiment begins and ends.

3 Specify controller parameters on page 7-12 such as controller type and the target
bandwidth for tuning.

4 Configure experiment parameters on page 7-13 such as the amplitudes of the
perturbations injected during the frequency-response experiment.

5 Run the model and initiate tuning on page 7-13. Use the start/stop signal to initiate
the PID autotuning process. When you start the process, the autotuner block injects
test signals and measures the response of the plant.

6 Stop the experiment on page 7-14 with the start/stop signal. When the experiment
stops, the autotuner block computes and returns tuned PID gains. You can examine
the tuned gains for reasonableness.

7 Transfer the tuned gains on page 7-14 from the autotuner block to your PID
controller. You can then validate the performance of the tuned controller in Simulink.

Step 1. Incorporate Autotuner into Model
The following illustration shows one way to incorporate a Closed-Loop PID Autotuner
block in between your PID controller and your plant.

 PID Autotuning for a Plant Modeled in Simulink

7-9

The control signal u from the PID controller feeds into the u in port of the autotuner
block. The u out port feeds into the plant input. Before you begin the autotuning
process, the autotuner block feeds the PID control signal directly from u in to u out
and the plant input. In that state, the autotuner block has no effect on plant or controller
behavior. During the autotuning process, the block injects test signals at the plant input
and measures the response at y.

The start/stop signal controls when the autotuning process begins and ends (see “Step
2. Configure Start/Stop Signal” on page 7-11). When the experiment ends, the block
calculates PID gains and returns them at the pid gains port.

For a more detailed example of a Simulink model configured for closed-loop PID
autotuning, see “Tune PID Controller in Real Time Using Closed-Loop PID Autotuner
Block”.

Bumpless Transfer for Open-Loop Tuning

The Open-Loop PID Autotuner block opens the loop between u in and u out during the
estimation experiment. If your controller includes integral action, you can use signal
tracking to avoid integrator windup while the loop is open. Signal tracking enables the
PID controller to continue to track the real plant input while it is out of the loop. Without
it, your system can experience a bump when the control loop is closed at the end of the

7 PID Autotuning

7-10

tuning process. In system of the following illustration, the PID controller is a Simulink PID
Controller block with the Enable tracking mode parameter on. The plant input feeds
into the tracking input of the controller block.

For a more detailed example of a Simulink model configured for open-loop PID
autotuning, see “Tune PID Controller in Real Time Using Open-Loop PID Autotuner
Block”.

Step 2. Configure Start/Stop Signal
To start and stop the autotuning process, use a signal at the start/stop port. When the
experiment is not running, the block passes signals unchanged from u in to u out. In
this state, the block has no impact on plant or controller behavior.

The frequency-response estimation experiment begins and ends when the block receives
a rising or falling signal at the start/stop port, respectively. In the systems illustrated
in “Step 1. Incorporate Autotuner into Model” on page 7-9, the start/stop signal is a
simple switch. While the model is running, you can use the switch to begin and end the
experiment. When you end the experiment, the algorithm generates the tuned PID gains
and the block returns them at the pid gains port.

 PID Autotuning for a Plant Modeled in Simulink

7-11

As an alternative to a manual switch, you can configure the start/stop signal to begin
and end the experiment automatically at particular simulation times. For example, you
can use the sum of two Step blocks: Configure one Step block to step from 0 to 1 at the
experiment start time, and a second Step block to step from 1 to 0 at the end time. Feed
the sum of the two signals into the start/stop port of the PID autotuner block.

You can configure any other logic appropriate for your application to control the start and
stop times of the experiment. For more information about when to start and stop the
experiment, see “Step 5. Run Model and Initiate Tuning Experiement” on page 7-13.

Step 3. Specify Controller Parameters and Tuning Goals
In the PID autotuner block, specify the configuration of the PID controller you are tuning,
using the following block parameters:

• Type
• Form
• Time Domain
• Controller sample time (sec)
• Integrator method
• Filter method

Then, specify the target bandwidth and phase margin for tuning with the Target
bandwidth (rad/sec) and Target phase margin (degrees) parameters, respectively.

The target bandwidth is the target value for the 0-dB gain crossover frequency of the
tuned open-loop response CP, where P is the plant response, and C is the controller
response. This crossover frequency roughly sets the control bandwidth. For a desired rise-
time τ, a good guess for the target bandwidth is 2/τ.

The target phase margin reflects your desired robustness of the tuned system. Typically,
choose a value in the range of about 45°– 60°. In general, higher phase margin improves
overshoot, but can limit response speed. The default value, 60°, tends to balance
performance and robustness, yielding about 5-10% overshoot, depending on the
characteristics of your plant.

For more information about setting these parameters, see the Closed-Loop PID Autotuner
or Open-Loop PID Autotuner block reference pages.

7 PID Autotuning

7-12

Step 4. Set Experiment Parameters
The frequency-response estimation experiment injects sinusoidal signals at frequencies
around the target bandwidth ωc:

• [1/3, 1, 3, 10]ωc for the Open-Loop PID Autotuner block
• [1/10,1/3, 1, 3, 10]ωc for the Closed-Loop PID Autotuner block

Use the Sine Amplitudes parameter of the blocks to specify the amplitudes of these
signals.

If your plant is asymptotically stable, the Open-Loop PID Autotuner block can estimate
the plant DC gain with a step perturbation. Specify the amplitude of this perturbation
with the Step Amplitude parameter. If your plant has a single integrator, clear the
Estimate DC gain with step signal parameter.

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator.

You can use closed-loop PID autotuning with a multiple-integrator plant.

All the perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and
generates a response above the noise level.

• Small enough to keep the plant running within the approximately linear region near
the nominal operating point, and to avoid saturating the plant input or output.

For more information about setting the experiment parameters, see the Closed-Loop PID
Autotuner and Open-Loop PID Autotuner block reference pages.

Step 5. Run Model and Initiate Tuning Experiement
After you have configured all the parameters for tuning, run the model.

• If you have configured a manual start/stop signal, begin the experiment when your
plant has reached steady-state.

 PID Autotuning for a Plant Modeled in Simulink

7-13

• If you have configured the start/stop signal to begin and end the tuning process at
specific times, allow the simulation to run long enough to begin the experiment.

Step 6. Stop Experiment and Examine Tuned Gains
The frequency-response estimation experiment ends when the start/stop signal falls.

• If you have configured a manual start/stop signal, end the experiment when the
signal at the % conv output stabilizes near 100%.

• If you have configured the start/stop signal to begin and end the tuning process at
specific times, allow the simulation to run through the end of the experiment.

In either case, a conservative estimate for the experiment time is 200/ωc for closed-loop
tuning or 100/ωc for open-loop tuning, where ωc is your target bandwidth.

When you stop experiment, the block computes new PID gains based on the estimated
frequency response of the system and your specified tuning goals. Examine them for
reasonableness. For instance, if you have an initial PID controller, you might expect the
tuned gains to be roughly the same magnitude as the gains of the initial design. There are
several ways to see the tuned gains:

• View the output of the pid gains port of the autotuner block. One way to view this
output is to connect the output to a Simulink Display block.

• In the block, in the Block tab, click Export to MATLAB. The block creates a
structure in the MATLAB workspace, OnlinePIDTuningResult. For more
information about the contents of this structure, see the Closed-Loop PID Autotuner or
Open-Loop PID Autotuner block reference pages.

Step 7. Update PID Controller with Tuned Gains
The autotuner block can write tuned controller parameters directly to the PID controller
block, if your PID controller is either:

• A Simulink PID Controller block.
• A custom PID controller for which the following conditions are both true:

• The custom controller is a masked subsystem.
• The PID gains are mask parameters named P, I, D, and N. (You do not need to use

all four parameters. For example, if you use a custom PI controller, then you only
need mask parameters P and I.)

7 PID Autotuning

7-14

To configure the autotuner block to write tuned gains to your controller, designate the
controller as the associated PID block in the PID autotuner block parameters. (For more
information, see the see the Closed-Loop PID Autotuner or Open-Loop PID Autotuner
block reference pages.) Then, update your controller by clicking Update PID Block. You
can update the PID gains while the simulation is running. Doing so is useful for
immediately validating tuned PID gains.

Note At any time during simulation, you can change tuning or experiment parameters,
start the experiment again, and push the new tuned gains to the PID block. You can then
observe the behavior of your plant as simulation continues with the new gains.

Manual Update of PID Gains

If your custom PID controller does not satisfy the conditions for direct update, you must
transfer the tuned gains to your controller some other way, such as manually or with your
own logic.

When you examine these gains and transfer them to your own controller, be aware of the
meaning of these gains in the PID autotuner blocks. In discrete time, the blocks assume
the following PID controller transfer function:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

in parallel form, or in ideal form,

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

Fi(z) and Fd(z) depend on the values you specify for the Integrator method and Filter
method formulas, respectively. For more details, see the Closed-Loop PID Autotuner or
Open-Loop PID Autotuner block reference pages.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

 See Also

7-15

More About
• “When to Use PID Autotuning” on page 7-2
• “PID Autotuning in Real Time” on page 7-17
• “Control Real-Time PID Autotuning in Simulink” on page 7-27

7 PID Autotuning

7-16

PID Autotuning in Real Time
To use the PID autotuning algorithm in a standalone application for real-time tuning
against your physical plant, you must deploy the PID autotuner block into your own
system. To do so, you create a Simulink model for deployment. You can configure this
model with the experiment and tuning parameters. Or, you can configure it to supply such
parameters externally from elsewhere in your system. Once deployed to your own system,
the autotuner model injects signals into your plant and receives the plant response,
without using Simulink to control the tuning process. Deploying the PID autotuning
algorithm requires a code-generation product such as Simulink Coder.

As an alternative, you can tune in real time against your physical plant while using
Simulink to control the experiment. For more information, see “Control Real-Time PID
Autotuning in Simulink” on page 7-27.

Workflow
In overview, the workflow for deploying a PID autotuning algorithm for real-time tuning
is:

1 Create a Simulink model on page 7-18 for deploying a PID autotuner block into your
system.

2 Configure the start/stop signal on page 7-21 that controls when the tuning
experiment begins and ends. After deployment, you can use this signal to initiate the
PID autotuning process at any time.

3 Specify controller parameters on page 7-21 such as controller type and the target
bandwidth for tuning.

4 Configure experiment parameters on page 7-22 such as the amplitudes of the
perturbations injected during the frequency-response experiment.

5 Deploy the model to your system, and initiate the autotuning process on page 7-23
against your physical plant. You can validate closed-loop performance in real time.

In practice, for real-time tuning, you might want to specify some parameters at run time,
such as the target bandwidth or perturbation amplitudes. For information about
specifying parameters in your deployed application, see “Access Autotuning Parameters
After Deployment” on page 7-24.

 PID Autotuning in Real Time

7-17

Step 1. Create Deployable Simulink Model with PID Autotuner
Block
Using a PID autotuner block for real-time tuning requires creating a Simulink model for
deployment. There are several ways to do so.

Deployable Module with Autotuner Only

In the most basic form, a model for deploying real-time PID autotuning resembles the
following illustration, using either the Closed-Loop PID Autotuner or the Open-Loop PID
Autotuner block. An advantage of this approach is that it lets you switch between and
tune different PID controllers at run time.

Here, the blocks connected to the inputs and outputs of the PID autotuner block
represent hardware interfaces that read or write real-time data for your system. For
example, the Read PID controller output block can be an interface for receiving
serial data, a UDP Receive block for receiving UDP packets, or an interface for receiving
other signals via wireless network. Similarly the blocks for writing data, such as Write
plant input, can be interfaces for serial, UDP, or other interfaces for writing data to
hardware.

7 PID Autotuning

7-18

The default ports of the autotuner block are:

• u in — Receives the control signal.
• y — Receives the plant output.
• start/stop — Receives the signal that begins and ends the tuning process.
• u out — Outputs the signal to feed to the plant input. When the experiment is not

running, u out outputs the control signal as input at u in. When the experiment is
running the block and injects the test signals at u out. For open-loop tuning only, the
block breaks the loop between u in and u out for the duration of the experiment.
When the experiment ends, the block restores the connection between u in and u
out.

• % conv — Outputs a numeric indicator of the progress of the frequency-response
estimation experiment.

• pid gains — Outputs the tuned PID gains when the tuning process stops.

In this configuration, the PID controller itself exists in another module of your system.
When tuning is complete, you use your own logic to write the tuned PID gains from the
pid gains port of the autotuning block to your PID controller.

Deployable Module with Controller

Alternatively, you can deploy a module that includes both the PID controller and the PID
autotuning algorithm, such as shown in the following illustration. An advantage of this
approach is that it facilitates retuning a specific controller in an individual system.

 PID Autotuning in Real Time

7-19

In this illustration, the PID controller is implemented as a Simulink PID Controller block.
Because the PID gains of that block are tunable, you can configure your system to write
the tuned gains to the deployed controller. Alternatively, you can also use your own
custom PID controller subsystem in the model that you deploy.

You can implement any logic appropriate to your application to determine whether and
how to update the PID controller with the tuned gains. In the illustrated system, the PID
update logic subsystem represents such a module. The External data block
represents whatever other information your logic requires to determine whether to
update the controller.

Note When you are using the Closed-Loop PID Autotuner block, feeding the pid gains
outputs directly into the PID Controller gain inputs can introduce an algebraic loop that
prevents code generation. To avoid this problem, you can introduce a state in your PID
update logic that breaks the algebraic loop. For example, you can try one of the following
approaches:

• Use a Unit Delay block to keep the controller output one time step ahead of the
controller inputs.

• Use a Data Store Memory block, as illustrated in “Tune PID Controller in Real Time
Using Closed-Loop PID Autotuner Block”.

Bumpless Transfer for Open-Loop Tuning

When you use the Open-Loop PID Autotuner, if your controller includes integrator action,
consider implementing signal tracking to avoid integrator windup during the tuning
experiment. Signal tracking enables the PID controller to continue to track the real plant
input while it is out of the loop. Without it, your system can experience a bump when the
control loop is closed at the end of the tuning process.

If your PID controller is a Simulink PID Controller block, you can use the Enable
tracking mode parameter of the controller block to avoid this bump. The following
diagram illustrates a module containing an Open-Loop PID Autotuner block and a PID
Controller block with tracking mode configured. The plant input feeds into the tracking
input of the controller block.

7 PID Autotuning

7-20

Step 2. Configure Start/Stop Signal
To start and stop the autotuning process, use a signal at the start/stop port. When the
experiment is not running, the block passes signals unchanged from u in to u out. In
this state, the block has no impact on plant or controller behavior.

The frequency-response estimation experiment begins and ends with a rising or falling
signal at the start/stop port, respectively. Thus, after deployment, to begin the
autotuning process, use a rising signal at the start/stop port. After an appropriate
time, or after the % conv signal settles near 100, use a falling signal to end the
experiment. When the experiment ends, the algorithm generates the tuned PID gains and
returns them at the pid gains port. A conservative estimate for the experiment time is
200/ωc for closed-loop tuning or 100/ωc for open-loop tuning, where ωc is your target
bandwidth. For more detailed information about how to configure the start-stop signal,
see the Closed-Loop PID Autotuner or Open-Loop PID Autotuner block reference pages.

Step 3. Set PID Tuning Parameters
To specify the configuration of the PID controller in your system, use the following
parameters of the autotuner block:

• Type
• Form
• Time Domain

 PID Autotuning in Real Time

7-21

• Controller sample time (sec)
• Integrator method
• Filter method

Then, specify the target bandwidth and phase margin for tuning with the Target
bandwidth (rad/sec) and Target phase margin (degrees) parameters, respectively.

The target bandwidth is the target value for the 0-dB gain crossover frequency of the
tuned open-loop response CP, where P is the plant response, and C is the controller
response. This crossover frequency roughly sets the control bandwidth. For a rise-time τ,
a good guess for the target bandwidth is 2/τ.

The target phase margin sets the robustness of the tuned system. Typically, choose a
value in the range of about 45°– 60°. In general, higher phase margin improves
overshoot, but can limit response speed. The default value, 60°, tends to balance
performance and robustness, yielding about 5-10% overshoot, depending on the
characteristics of your plant.

You can set most tuning parameters in your own application after deployment, instead of
fixing them in the PID autotuner block before deployment. See “Access Autotuning
Parameters After Deployment” on page 7-24.

For more details about the values to use for these parameters, see the Closed-Loop PID
Autotuner or Open-Loop PID Autotuner block reference pages.

Step 4. Set Experiment Parameters
The frequency-response estimation experiment injects sinusoidal signals at frequencies
around the target bandwidth ωc:

• [1/3, 1, 3, 10]ωc for the Open-Loop PID Autotuner block
• [1/10,1/3, 1, 3, 10]ωc for the Closed-Loop PID Autotuner block

Use the Sine Amplitudes parameter of the blocks to specify the amplitudes of these
signals.

If your plant is asymptotically stable, the Open-Loop PID Autotuner block can estimate
the plant DC gain with a step perturbation. Specify the amplitude of this perturbation
with the Step Amplitude parameter. If your plant has a single integrator, clear the
Estimate DC gain with step signal parameter.

7 PID Autotuning

7-22

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator.

You can use closed-loop PID autotuning with a multiple-integrator plant.

All the perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and
generates a response above the noise level.

• Small enough to keep the plant running within the approximately linear region near
the nominal operating point, and to avoid saturating the plant input or output.

For more information about setting the experiment parameters, see the Closed-Loop PID
Autotuner and Open-Loop PID Autotuner block reference pages.

Step 5. Tune and Validate
After you deploy the autotuner module to your system, use a rising start/stop signal to
begin the autotuning process. The deployed module injects the test signals into your
physical plant in real time. After an appropriate time, or when the % conv signal
stabilizes near 100%, use a falling start/stop signal to end the experiment. A
conservative estimate for the experiment time is 200/ωc for closed-loop tuning or 100/ωc
for open-loop tuning, where ωc is your target bandwidth. When the experiment stops, the
module computes new PID gains based on the estimated frequency response at the
system and your specified tuning goals. You can examine the tuned PID gains using the
pid gains signal.

When you examine these gains and transfer them to your own controller, be aware of the
meaning of these gains in the PID autotuner blocks. In discrete time, the blocks assume
the following PID controller transfer function:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

in parallel form, or in ideal form,

 PID Autotuning in Real Time

7-23

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

Fi(z) and Fd(z) depend on the values you specify for the Integrator method and Filter
method formulas, respectively. For more details, see the Closed-Loop PID Autotuner or
Open-Loop PID Autotuner block reference pages.

After you transfer the tuned gains to your PID controller, you can observe and validate the
continued performance of your system with the new gains.

Access Autotuning Parameters After Deployment
Some of the parameters that you set to configure the autotuner are tunable, such that you
can access them in the generated code. For the parameters that are not tunable, you must
configure them in the block before deployment.

Tunable Parameters

The following parameters of the PID autotuner blocks are tunable after deployment. For
more information about all these parameters, see the Closed-Loop PID Autotuner or
Open-Loop PID Autotuner block reference pages.

Parameter Description
Target bandwidth (rad/sec) Target crossover frequency of open-loop

response
Target phase margin (degrees) Target minimum phase margin of open-loop

response
Sine Amplitudes Amplitude of sinusoidal perturbations
Estimate DC gain with step signal Inject step signal into plant
Step Amplitude Amplitude of step perturbation
Type PID controller type (such as PI, PD, or PID)
Form PID controller form
Integrator method Discrete integration formula for integrator

term

7 PID Autotuning

7-24

Parameter Description
Filter method Discrete integration formula for derivative

filter term

Non-Tunable Parameters

The following parameters of the PID autotuner blocks are not tunable after deployment.
You must specify them in the block before code generation, and their values remain fixed
in your application. For more information about all these parameters, see the Closed-Loop
PID Autotuner or Open-Loop PID Autotuner block reference pages.

Parameter Description
Time Domain PID controller time domain
Controller sample time (sec) Sample time of PID controller (see “Modify

Sample Times After Deployment” on page
7-25)

Decrease memory footprint (external
mode only)

Deploy tuning algorithm only

Data Type Floating-point precision

Modify Sample Times After Deployment

The Controller sample time (sec) parameter is not tunable. As a consequence, you
cannot access it directly in generated code when you deploy the block. To change the
controller sample time in the deployed block at run time:

1 Set Controller sample time (sec) to –1.
2 Put the autotuner block in a Triggered Subsystem.
3 Trigger the subsystem at the desired sample time.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 7-6

 See Also

7-25

• “Control Real-Time PID Autotuning in Simulink” on page 7-27
• “PID Autotuning for a Plant Modeled in Simulink” on page 7-9

7 PID Autotuning

7-26

Control Real-Time PID Autotuning in Simulink
Deploying the PID autotuner blocks lets you tune your system in real time without
Simulink in the loop. However, it can be useful to run the autotuning algorithm on
hardware while controlling the experiment from Simulink.

One way to do so is to use a model that contains a PID controller and a PID autotuner
block, and run this model in external simulation mode. External mode allows
communication between the Simulink block diagram and the standalone program that is
built from the generated code. In this mode, Simulink serves as a real-time monitoring
interface in which you can interact with the tuning algorithm running on hardware. For
instance, you can start and stop the experiment or change tuning goals from the Simulink
interface while the model is running.

When tuning in external mode, you can deploy the experiment algorithm only, such that
the PID tuning part of the calculation is performed in Simulink. Doing so can save
memory on your target hardware. Running the PID autotuning algorithm in external mode
requires a code-generation product such as Simulink Coder.

Simulink Model for External-Mode Tuning
A Simulink model for PID autotuning in external mode resembles the following
illustration.

 Control Real-Time PID Autotuning in Simulink

7-27

Here, the blocks marked Read plant output from hardware and Write plant
input to hardware represent hardware interfaces that read data from or write data to
your physical plant. When you are ready for tuning, you run this model in external
simulation mode.

Bumpless Transfer for Open-Loop Tuning

When you use the Open-Loop PID Autotuner, if your controller includes integrator action,
consider implementing signal tracking to avoid integrator windup during the tuning
experiment. Signal tracking enables the PID controller to continue to track the real plant
input while it is out of the loop. Without it, your system can experience a bump when the
control loop is closed at the end of the tuning process.

If your PID controller is a Simulink PID Controller block, you can use the Enable
tracking mode parameter of the controller block to avoid this bump. The following
diagram illustrates a module containing an Open-Loop PID Autotuner block and a PID
Controller block with tracking mode configured. The plant input feeds into the tracking
input of the controller block.

For external-mode tuning, you configure the start-stop signal as described in “PID
Autotuning for a Plant Modeled in Simulink” on page 7-9. The models illustrated here use
a simple switch with a binary signal to start and stop the experiment manually.

7 PID Autotuning

7-28

You also configure controller parameters, tuning goals, and experiment parameters as
described in “PID Autotuning for a Plant Modeled in Simulink” on page 7-9.

Run the Model and Tune the Controller Gains
After configuring the block parameters for the experiment, in the model, select external
mode, set the simulation time to infinite, and run the model.

Simulink compiles the model and deploys it to your connected hardware.

• If you have configured the start/stop signal to begin and end the tuning process at
specific times, allow the simulation to run through the end of the experiment.

• If you have configured a manual start/stop signal, begin the experiment when your
plant has reached steady-state. Observe the signal at the % conv output, and stop the
experiment when the signal stabilizes near 100%.

When tuning is complete, examine and validate the tuned gains as described in “PID
Autotuning for a Plant Modeled in Simulink” on page 7-9.

For a more detailed example that illustrates the use of external mode to control the
autotuning process via Simulink, see “Tune PID Controller in Real Time Using Open-Loop
PID Autotuner Block”.

Reduce Memory Footprint When Using External Mode
The autotuner blocks contain two modules, one that performs the real-time frequency-
response estimation, and one that uses the resulting estimated response to tune the PID
gains. When you run a Simulink model containing the block in the external simulation

 Control Real-Time PID Autotuning in Simulink

7-29

mode, by default both modules are deployed. You can save memory on the target
hardware by deploying the estimation module only. In this case, the tuning algorithm runs
on the Simulink host computer instead of the target hardware. To do so, use the
Decrease memory footprint option in the autotuner block. When this option is selected,
the deployed algorithm uses about a third as much memory as when the option is cleared.

Additionally, the PID gain calculation demands more computational load than the
frequency-response estimation. For fast controller sample times, some hardware might
not finish the gain calculation within one execution cycle. Therefore, when using
hardware with limited computing power, selecting this option lets you tune a PID
controller with a fast sample time.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “PID Autotuning in Real Time” on page 7-17
• “When to Use PID Autotuning” on page 7-2

7 PID Autotuning

7-30

Classical Control Design

• “Choose a Control Design Approach” on page 8-2
• “Control System Designer Tuning Methods” on page 8-6
• “What Blocks Are Tunable?” on page 8-12
• “Designing Compensators for Plants with Time Delays” on page 8-14
• “Design Compensator Using Automated PID Tuning and Graphical Bode Design”

on page 8-17
• “Analyze Designs Using Response Plots” on page 8-38
• “Compare Performance of Multiple Designs” on page 8-48
• “Update Simulink Model and Validate Design” on page 8-53
• “Single Loop Feedback/Prefilter Compensator Design” on page 8-54
• “Cascaded Multi-Loop/Multi-Compensator Feedback Design” on page 8-64
• “Tune Custom Masked Subsystems” on page 8-75
• “Tuning Simulink Blocks in the Compensator Editor” on page 8-85

8

Choose a Control Design Approach
Simulink Control Designlets you design and tune many types of control systems in
Simulink. There are are also deployable PID autotuning tools that let you tune your
controller in real time against a physical plant.

Design in Simulink
Simulink Control Design provides several approaches to tuning Simulink blocks, such as
Transfer Fcn and PID Controller blocks. Use the following table to determine which
approach best supports what you want to do.

 Model-Based PID
Tuning

Classical Control
Design

Multiloop,
Multiobjective
Tuning

Supported Blocks PID Controller
PID Controller 2DOF

Linear Blocks (see
“What Blocks Are
Tunable?” on page 8-
12)

Any blocks; only
some blocks are
automatically
parameterized (See
“How Tuned
Simulink Blocks Are
Parameterized”
(Control System
Toolbox))

Architecture 1-DOF and 2-DOF
PID loops

Control systems that
contain one or more
SISO compensators

Any structure,
including any
number of SISO or
MIMO feedback
loops

8 Classical Control Design

8-2

 Model-Based PID
Tuning

Classical Control
Design

Multiloop,
Multiobjective
Tuning

Control Design
Approach

Automatically tune
PID gains to balance
performance and
robustness

• Graphically tune
poles and zeros
on design plots,
such as Bode,
root locus, and
Nichols

• Automatically
tune
compensators
using response
optimization
(Simulink Design
Optimization),
LQG synthesis, or
IMC tuning

Automatically tune
controller
parameters to meet
design requirements
you specify, such as
setpoint tracking,
stability margins,
disturbance
rejection, and loop
shaping (see “Tuning
Goals” (Control
System Toolbox))

Analysis of Control
System
Performance

Time and frequency
responses for
reference tracking
and disturbance
rejection

Any combination of
system responses

Any combination of
system responses

 Choose a Control Design Approach

8-3

 Model-Based PID
Tuning

Classical Control
Design

Multiloop,
Multiobjective
Tuning

Interface • Graphical tuning
using PID Tuner
(see “Introduction
to Model-Based
PID Tuning in
Simulink” on
page 6-3)

• Tuning of plants
that do not
linearize (see
“Frequency-
Response Based
Tuning” on page
6-51)

• Programmatic
tuning using
pidtune (see
“PID Controller
Design at the
Command Line”
(Control System
Toolbox))

Graphical tuning
using Control
System Designer

• Graphical tuning
using Control
System Tuner

• Programmatic
tuning using
slTuner (see
“Programmatic
Tuning”)

Real-Time PID Autotuning
The real-time PID autotuning tools in Simulink Control Design let you deploy an
automatic tuning algorithm as a stand-alone application for PID tuning against a physical
plant. Real-time PID autotuning lets you tune a PID controller to achieve a specified
bandwidth and phase margin without a parametric plant model or an initial controller
design.

The real-time PID autotuning algorithm can tune PID gains in Simulink PID Controller
blocks or in your own custom PID blocks. You can tune against your physical plant with or
without Simulink in the loop. Deploying the real-time PID autotuning algorithm requires a
code-generation product such as Simulink Coder.

8 Classical Control Design

8-4

For more information, see “When to Use PID Autotuning” on page 7-2.

See Also

More About
• “PID Controller Tuning”
• “Classical Control Design”
• “Tuning with Control System Tuner”
• “Programmatic Tuning”

 See Also

8-5

Control System Designer Tuning Methods
Using Control System Designer, you can tune compensators using various graphical
and automated tuning methods.

Graphical Tuning Methods
Use graphical tuning methods to interactively add, modify, and remove controller poles,
zeros, and gains.

Tuning Method Description Useful For
Bode Editor Tune your compensator to achieve

a specific open-loop frequency
response (loop shaping).

Adjusting open-loop bandwidth
and designing to gain and phase
margin specifications.

Closed-Loop
Bode Editor

Tune your prefilter to improve
closed-loop system response.

Improving reference tracking,
input disturbance rejection, and
noise rejection.

Root Locus
Editor

Tune your compensator to produce
closed-loop pole locations that
satisfy your design specifications.

Designing to time-domain design
specifications, such as maximum
overshoot and settling time.

Nichols Editor Tune your compensator to achieve
a specific open-loop response (loop
shaping), combining gain and
phase information on a Nichols
plot.

Adjusting open-loop bandwidth
and designing to gain and phase
margin specifications.

When using graphical tuning, you can modify the compensator either directly from the
editor plots or using the compensator editor. A common design approach is to roughly
tune your compensator using the editor plots, and then use the compensator editor to
fine-tune the compensator parameters. For more information, see “Edit Compensator
Dynamics” (Control System Toolbox)

The graphical tuning methods are not mutually exclusive. For example, you can tune your
compensator using both the Bode editor and root locus editor simultaneously. This option
is useful when designing to both time-domain and frequency-domain specifications.

For examples of graphical tuning, see the following:

8 Classical Control Design

8-6

• “Bode Diagram Design” (Control System Toolbox)
• “Root Locus Design” (Control System Toolbox)
• “Nichols Plot Design” (Control System Toolbox)

Automated Tuning Methods
Use automated tuning methods to automatically tune compensators based on your design
specifications.

Tuning Method Description Requirements and Limitations
PID Tuning Automatically tune PID gains to

balance performance and
robustness or tune controllers
using classical PID tuning
formulas.

Classical PID tuning formulas
require a stable or integrating
effective plant.

Optimization
Based Tuning

Optimize compensator parameters
using design requirements
specified in graphical tuning and
analysis plots.

Requires Simulink Design
Optimization software.

Tunes the parameters of a
previously defined controller
structure.

LQG Synthesis Design a full-order stabilizing
feedback controller as a linear-
quadratic-Gaussian (LQG) tracker.

Maximum controller order
depends on the effective plant
dynamics.

Loop Shaping Find a full-order stabilizing
feedback controller with a
specified open-loop bandwidth or
shape.

Requires Robust Control Toolbox
software.

Maximum controller order
depends on the effective plant
dynamics.

 Control System Designer Tuning Methods

8-7

Tuning Method Description Requirements and Limitations
Internal Model
Control (IMC)
Tuning

Obtain a full-order stabilizing
feedback controller using the IMC
design method.

Assumes that your control system
uses an IMC architecture that
contains a predictive model of
your plant dynamics.

Maximum controller order
depends on the effective plant
dynamics.

A common design approach is to generate an initial compensator using PID tuning, LQG
synthesis, loop shaping, or IMC tuning. You can then improve the compensator
performance using either optimization-based tuning or graphical tuning.

For more information on automated tuning methods, see “Design Compensator Using
Automated Tuning Methods” (Control System Toolbox).

Effective Plant for Tuning
An effective plant is the system controlled by a compensator that contains all elements of
the open loop in your model other than the compensator you are tuning. The following
diagrams show examples of effective plants:

Knowing the properties of the effective plant seen by your compensator can help you
understand which tuning methods work for your system. For example, some automated

tuning methods apply only to compensators whose open loops (L C P=

Ÿ

) have stable

8 Classical Control Design

8-8

effective plants (P

Ÿ

). Also, for tuning methods such as IMC and loop shaping, the
maximum controller order depends on the dynamics of the effective plant.

Tuning Compensators In Simulink
If the compensator in your Simulink model has constraints on its poles, zeros, or gain, you
cannot use LQG synthesis, loop shaping, or IMC tuning. For example, you cannot tune the
parameters of a PID Controller block using these methods. If your application requires
controller constraints, use an alternative automated or graphical tuning method.

Also, any compensator constraints in your Simulink model limit the structure of your
tuned compensator. For example, if you are using PID tuning and you configure your PID
Controller block as a PI controller, your tuned compensator must have a zero derivative
parameter.

Select a Tuning Method
To select a tuning method, in Control System Designer, click Tuning Methods.

 Control System Designer Tuning Methods

8-9

See Also
Control System Designer

Related Examples
• “Bode Diagram Design” (Control System Toolbox)
• “Root Locus Design” (Control System Toolbox)
• “Nichols Plot Design” (Control System Toolbox)

8 Classical Control Design

8-10

• “Design Compensator Using Automated Tuning Methods” (Control System Toolbox)

 See Also

8-11

What Blocks Are Tunable?
You can tune parameters in the following Simulink blocks using Simulink Control Design
software. The block input and output signals for tunable blocks must have scalar, double-
precision values.

Tunable Block Description
Gain Constant gain
LTI System Linear time-invariant system
Discrete Filter Discrete-time infinite impulse response filter
PID Controller One degree-of-freedom PID controller
State-Space Continuous-time state-space model
Discrete State-Space Discrete-time state-space model
Zero-Pole Continuous-time zero-pole-gain transfer function
Discrete Zero-Pole Discrete-time zero-pole-gain transfer function
Transfer Fcn Continuous-time transfer function model
Discrete Transfer
Fcn

Discrete-time transfer function model

Additionally, you can tune the linear State-Space, Zero-Pole, and Transfer Fcn blocks in
the Simulink Extras Additional Linear library.

You can tune the following versions of the listed tunable blocks:

• Blocks with custom configuration functions associated with a masked subsystem
• Blocks discretized using the Simulink Model Discretizer

Note If your model contains Model blocks with normal-mode model references to other
models, you can select tunable blocks in the referenced models for compensator design.

See Also
Control System Designer

8 Classical Control Design

8-12

Related Examples
• “Control System Designer Tuning Methods” on page 8-6

 See Also

8-13

Designing Compensators for Plants with Time Delays
You can design compensators for plants with time delays using Simulink Control Design
software. When opened from Simulink, Control System Designer creates a linear model
of your plant. Within this model, you can represent time delays using either Padé
approximations or exact delays.

To represent time delays using Padé approximations, specify the Padé order in the Block
Parameters dialog box for each Simulink block with delays.

8 Classical Control Design

8-14

If you do not specify a Padé order for a block, Control System Designer uses exact
delays by default when possible.

However, the following design methods and plots do not support systems with exact time
delays:

• Root locus plots
• Pole-zero maps
• PID automated tuning
• IMC automated tuning
• LQG automated tuning
• Loop shaping automated tuning

For these design methods and plots, the app automatically computes a Padé
approximation for any exact delays in your model using a default Padé order.

To specify the default order, in Control System Designer, on the Control System tab,
click Preferences.

In the Control System Designer Preferences dialog box, on the Time Delays tab, specify
one of the following:

• Pade order — Specific Padé order.
• Bandwidth of accuracy — Highest frequency at which the approximated response

matches the exact response. The app computes and displays the corresponding Padé
order.

 Designing Compensators for Plants with Time Delays

8-15

For more information on designing compensators using Control System Designer, see
“Control System Designer Tuning Methods” on page 8-6.

See Also
pade

More About
• “Choose a Control Design Approach” on page 8-2
• “What Blocks Are Tunable?” on page 8-12

8 Classical Control Design

8-16

Design Compensator Using Automated PID Tuning and
Graphical Bode Design

This example shows how to design a compensator for a Simulink model using automated
PID tuning.

System Model

This example uses the watertank_comp_design Simulink model. To open the model, at
the MATLAB command line, enter:

watertank_comp_design

This model contains a Water-Tank System plant model and a PID controller in a single-
loop feedback system.

To view the water tank model, double-click the Water-Tank System block.

This model represents the following water tank system:

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-17

where

• H is the height of water in the tank.
• Vol is the volume of water in the tank.
• V is the voltage applied to the pump.
• A is the cross-sectional area of the tank.
• b is a constant related to the flow rate into the tank.
• a is a constant related to the flow rate out of the tank.

Water enters the tank from the top at a rate proportional to the voltage applied to the
pump. The water leaves through an opening in the tank base at a rate that is proportional
to the square root of the water height in the tank. The presence of the square root in the
water flow rate results in a nonlinear plant. Based on these flow rates, the rate of change
of the tank volume is:

d

dt
Vol A

dH

dt
bV a H= = -

8 Classical Control Design

8-18

Design Requirements

Tune the PID controller to meet the following closed-loop step response design
requirements:

• Overshoot less than 5%
• Rise time less than five seconds

Open Control System Designer

To open Control System Designer, in the Simulink model window, select Analysis >
Control Design > Control System Designer.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-19

Control System Designer opens and automatically opens the Edit Architecture dialog
box.

8 Classical Control Design

8-20

Specify Blocks to Tune

To specify the compensator to tune, in the Edit Architecture dialog box, click Add Blocks.

In the Select Blocks to Tune dialog box, in the left pane, click the Controller subsystem
and, in the Tune column, check the box for the PID Controller.

Click OK.

In the Edit Architecture dialog box, the app adds the selected controller block to the list
of blocks to tune on the Blocks tab. On the Signals tab, the app also adds the output of
the PID Controller block to the list of analysis point Locations.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-21

When Control System Designer opens, it adds any analysis points previously defined in
the Simulink model to the Locations list. For the watertank_comp_design, there are
two such signals.

• Desired Water Level block output — Reference signal for the closed-loop step response
• Water-Tank System block output — Output signal for the closed-loop step response

To linearize the Simulink model and set the control architecture, click OK.

By default, Control System Designer linearizes the plant model at the model initial
conditions.

The app adds the PID controller to the Data Browser, in the Controllers and Fixed
Blocks area. The app also computes the open-loop transfer function at the output of the
PID Controller block, and adds this response to the Data Browser.

8 Classical Control Design

8-22

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-23

Plot Closed-Loop Step Response

To analyze the controller design, create a closed-loop transfer function of the system, and
plot its step response.

On the Control System tab, click New Plot, and select New Step.

In the New Step to plot dialog box, in the Select Response to Plot drop-down list, select
New Input-Output Transfer Response.

To add an input signal, in the Specify input signals area, click +. In the drop-down list,
select the output of the Desired Water Level block.

8 Classical Control Design

8-24

To add an output signal, in the Specify output signals area, click +. In the drop-down
list, select the output of the Water-Tank System block.

To create the closed-loop transfer function and plot the step response, click Plot.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-25

To view the maximum overshoot on the response plot, right-click the plot area, and select
Characteristics > Peak Response.

To view the rise time on the response plot, right-click the plot area, and select
Characteristics > Rise Time.

8 Classical Control Design

8-26

Mouse-over the characteristic indicators to view their values. The current design has a:

• Maximum overshoot of 47.9%.
• Rise time of 2.13 seconds.

This response does not satisfy the 5% overshoot design requirement.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-27

Tune Compensator Using Automated PID Tuning

To tune the compensator using automated PID tuning, click Tuning Methods, and select
PID Tuning.

In the PID Tuning dialog box, in the Specifications section, select the following options:

• Tuning method — Robust response time
• Controller Type — PI

Click Update Compensator. The app updates the closed-loop response for the new
compensator settings and updates the step response plot.

8 Classical Control Design

8-28

To check the system performance, mouse over the response characteristic markers. The
system response with the tuned compensator has a:

• Maximum overshoot of 13.8%.
• Rise time of 51.2 seconds.

This response exceeds the maximum allowed overshoot of 5%. The rise time is much
slower than the required rise time of five seconds.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-29

Tune Compensator Using Bode Graphical Tuning

To decrease the rise time, interactively increase the compensator gain using graphical
Bode Tuning.

To open the open-loop Bode editor, click Tuning Methods, and select Bode Editor.

In the Select Response to Edit dialog box, the open-loop response at the output of the PID
Controller block is already selected. To open the Bode editor for this response, click Plot.

To view the Bode Editor and Step Response plots side-by-side, on the View tab, click
Left/Right.

8 Classical Control Design

8-30

In the Bode Editor plot, drag the magnitude response up to increase the compensator
gain. By increasing the gain, you increase the bandwidth and speed up the response.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-31

As you drag the Bode response upward, the app automatically updates the compensator
and the associated response plots. Also, when you release the plot, in the status bar, on
the right side, the app displays the updated gain value.

Increase the compensator gain until the step response meets the design requirements.
One potential solution is to set the gain to 1.7.

8 Classical Control Design

8-32

At this gain value, the closed loop response has a:

• Maximum overshoot of 4.74%.
• Rise time of 4.36 seconds.

Fine Tune Controller Using Compensator Editor

To tune the parameters of your compensator directly, use the compensator editor. In the
Bode Editor, right-click the plot area, and select Edit Compensator.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-33

In the Compensator Editor dialog box, on the Parameter tab, tune the PID controller
gains. For more information on editing compensator parameters, see “Tuning Simulink
Blocks in the Compensator Editor” on page 8-85.

While the tuned compensator meets the design requirements, the settling time is over 30
seconds. To improve the settling time, adjust the P and I parameters of the controller
manually.

For example, set the compensator parameters to:

• P = 4

8 Classical Control Design

8-34

• I = 0.1

This compensator produces a closed-loop response with a:

• Maximum overshoot of 0.206%.
• Rise time of 1.74 seconds.
• Settling time of around three seconds.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

8-35

Simulate Closed-Loop System in Simulink

Validate your compensator design by simulating the nonlinear Simulink model with the
tuned controller parameters.

To write the tuned compensator parameters to the PID Controller block, in Control
System Designer, on the Control System tab, click Update Blocks.

In the Simulink model window, run the simulation.

To view the closed-loop simulation output, double-click theScope block.

8 Classical Control Design

8-36

The closed-loop response of the nonlinear system satisfies the design requirements with a
rise time of less than five seconds and minimal overshoot.

See Also

More About
• “Control System Designer Tuning Methods” on page 8-6
• “Update Simulink Model and Validate Design” on page 8-53

 See Also

8-37

Analyze Designs Using Response Plots
This example shows how to analyze your control system designs using the plotting tools in
Control System Designer. There are two types of Control System Designer plots:

• Analysis plots — Use these plots to visualize your system performance and display
response characteristics.

• Editor plots — Use these plots to visualize your system performance and interactively
tune your compensator dynamics using graphical tuning methods.

Analysis Plots
Use analysis plots to visualize your system performance and display response
characteristics. You can also use these plots to compare multiple control system designs.
For more information, see “Compare Performance of Multiple Designs” on page 8-48.

To create a new analysis plot, in Control System Designer, on the Control System tab,
click New Plot, and select the type of plot to add.

8 Classical Control Design

8-38

In the new plot dialog box, specify an existing or new response to plot.

 Analyze Designs Using Response Plots

8-39

Note Using analysis plots, you can compare the performance of multiple designs stored
in the Data Browser. For more information, see “Compare Performance of Multiple
Designs” on page 8-48.

Plot Existing Response

To plot an existing response, in the Select Response to Plot drop-down list, select an
existing response from the Data Browser. The details for the selected response are
displayed in the text box.

To plot the selected response, click Plot.

Plot New Response

To plot a new response, specify the following:

• Select Response to Plot — Select the type of response to create.

• New Input-Output Transfer Response — Create a transfer function response
for specified input signals, output signals, and loop openings.

• New Open-Loop Response — Create an open-loop transfer function response at a
specified location with specified loop openings.

• New Sensitivity Transfer Response — Create a sensitivity response at a
specified location with specified loop openings.

• Response Name — Enter a name in the text box.
• Signal selection boxes — Specify signals as inputs, outputs, or loop openings by

clicking . If you open Control System Designer from:

• MATLAB — Select a signal using the Architecture block diagram for reference.
• Simulink — Select an existing signal from the current control system architecture,

or add a signal from the Simulink model.

Use , , and to reorder and delete signals.

To add the specified response to the Data Browser and create the selected plot, click
Plot.

8 Classical Control Design

8-40

Editor Plots
Use editor plots to visualize your system performance and interactively tune your
compensator dynamics using graphical tuning methods.

To create a new editor plot, in Control System Designer, on the Control System tab,
click Tuning Methods, and select one of the Graphical Tuning methods.

For examples of graphical tuning using editor plots, see:

• “Bode Diagram Design” (Control System Toolbox)
• “Root Locus Design” (Control System Toolbox)
• “Nichols Plot Design” (Control System Toolbox)

For more information on interactively editing compensator dynamics, see “Edit
Compensator Dynamics” (Control System Toolbox).

 Analyze Designs Using Response Plots

8-41

Plot Characteristics
On any analysis plot in Control System Designer:

• To see response information and data values, click a line on the plot.

• To view system characteristics, right-click anywhere on the plot, as described in
“Frequency-Domain Characteristics on Response Plots” (Control System Toolbox).

8 Classical Control Design

8-42

Plot Tools
Mouse over any analysis plot to access plot tools at the upper right corner of the plot.

 Analyze Designs Using Response Plots

8-43

•
 and — Zoom in and zoom out. Click to activate, and drag the cursor over the

region to zoom. The zoom icon turns dark when zoom is active. Right-click while zoom
is active to access additional zoom options. Click the icon again to deactivate.

•
 — Pan. Click to activate, and drag the cursor across the plot area to pan. The pan

icon turns dark when pan is active. Right-click while pan is active to access additional
pan options. Click the icon again to deactivate.

8 Classical Control Design

8-44

•
 — Legend. By default, the plot legend is inactive. To toggle the legend on and off,

click this icon. To move the legend, drag it to a new location on the plot.

To change the way plots are tiled or sorted, use the options on the View tab.

Design Requirements
You can add graphical representations of design requirements to any editor or analysis
plots. These requirements define shaded exclusion regions in the plot area.

 Analyze Designs Using Response Plots

8-45

Use these regions as guidelines when analyzing and tuning your compensator designs. To
meet a design requirement, your response plots must remain outside of the
corresponding shaded area.

To add design requirements to a plot, right-click anywhere on the plot and select Design
Requirements > New.

8 Classical Control Design

8-46

In the New Design Requirement dialog box, specify the Design requirement type, and
define the Design requirement parameters. Each type of design requirement has a
different set of parameters to configure. For more information on adding design
requirements to analysis and editor plots, see “Design Requirements” (Control System
Toolbox).

See Also

More About
• “Control System Designer Tuning Methods” on page 8-6
• “Compare Performance of Multiple Designs” on page 8-48
• “Design Requirements” (Control System Toolbox)

 See Also

8-47

Compare Performance of Multiple Designs
This example shows how to compare the performance of two different control system
designs. Such comparison is useful, for example, to see the effects of different tuning
methods or compensator structures.

Store First Design

In this example, the first design is the compensator tuned graphically in “Bode Diagram
Design” (Control System Toolbox).

After tuning the compensator with this first tuning method, store the design in Control
System Designer.

On the Control System tab, in the Designs section, click Store. The stored design
appears in the Data Browser in the Designs area.

8 Classical Control Design

8-48

The stored design contains the tuned values of the controller and filter blocks. The app
does not store the values of any fixed blocks.

To rename the stored design, in the Data Browser, double-click the design, and specify a
new name.

Compute New Design

On the Control System tab, tune the compensator using a different tuning method.

Under Tuning Methods, select PID Tuning.

 Compare Performance of Multiple Designs

8-49

To design a controller with the default Robust response time specifications, in the
PID Tuning dialog box, click Update Compensator.

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design.

On the Control System tab, click Compare.

In the Compare Designs dialog box, the current design is checked by default. To
compare a design with the current design, check the corresponding box. All analysis plots
update to reflect the checked designs. The blue trace corresponds to the current design.
Refer to the plot legend to identify the responses for other designs.

8 Classical Control Design

8-50

To compare a stored design with the current design, the sample times of the current
design and stored design must be the same. To modify the sample time of the current
design to match that of a stored design, on the Control System tab, click Edit
Architecture. Then, in the Edit Architecture dialog box, on the Linearization Options
tab, specify the working domain and rate conversion method.

Restore Previously Saved Design

Under some conditions, it is useful to restore a previously stored design. For example,
when designing a compensator for a Simulink model, you can write the current

 Compare Performance of Multiple Designs

8-51

compensator values to the model (see “Update Simulink Model and Validate Design” on
page 8-53). To test a stored compensator in your model, first restore the stored design as
the current design.

To do so, in Control System Designer, click Retrieve. Select the stored design that
you want to make current.

As with design comparison, to retrieve a stored design, the sample times of the current
design and stored design must be the same.

Note The retrieved design overwrites the current design. If necessary, store the current
design before retrieving a previously stored design.

See Also

More About
• “Analyze Designs Using Response Plots” on page 8-38
• “Control System Designer Tuning Methods” on page 8-6

8 Classical Control Design

8-52

Update Simulink Model and Validate Design
This example shows how to update compensator blocks in a Simulink model and validate
a control system design.

To tune a control system for a nonlinear Simulink model, Control System Designer
linearizes the system. Therefore, it is good practice to validate your tuned control system
in Simulink.

1 Tune your control system using Control System Designer.

For an example, see “Design Compensator Using Automated PID Tuning and
Graphical Bode Design” on page 8-17.

2 Insure that the control system satisfies the design requirements.

In Control System Designer, analyze the controller design. For more information,
see “Analyze Designs Using Response Plots” on page 8-38.

3 Write tuned compensator parameters to your Simulink model.

In Control System Designer, on the Control System tab, click Update
Blocks.

4 Simulate the updated model.

In the Simulink model window, click .
5 Verify whether your compensator satisfies the design requirements when simulated

with your nonlinear Simulink model.

See Also
Control System Designer

More About
• “Design Compensator Using Automated PID Tuning and Graphical Bode Design” on

page 8-17

 Update Simulink Model and Validate Design

8-53

Single Loop Feedback/Prefilter Compensator Design
This example shows how to tune multiple compensators (feedback and prefilter) to
control a single loop.

Open the Model

Open the engine speed control model and take a few moments to explore it.

open_system('scdspeedctrl');

Design Overview

This example introduces the process of designing a single-loop control system with both
feedback and prefilter compensators. The goal of the design is to

• Track the reference signal from a Simulink step block scdspeedctrl/Speed
Reference. The design requirement is to have a settling time of under 5 seconds and
zero steady-state error to the step reference input.

• Reject an unmeasured output disturbance specified in the subsystem scdspeedctrl/
External Disturbance. The design requirement is to reduce the peak deviation to
190 RPM and to have zero steady-state error for a step disturbance input.

In this example, the stabilization of the feedback loop and the rejection of the output
disturbance are achieved by designing the PID compensator scdspeedctrl/PID
Controller. The prefilter scdspeedctrl/Reference Filter is used to tune the
response of the feedback system to changes in the reference tracking.

8 Classical Control Design

8-54

Open the Control System Designer

In this example, you will use Control System Designer to tune the compensators in this
feedback system. To open the Control System Designer

• Launch a pre-configured Control System Designer session by double-clicking the
subsystem in the lower left corner of the model.

• Configure the Control System Designer using the following procedure.

Start a New Design

Step 1 To open the Control System Designer, in the Simulink model window, select
Analysis > Control Design > Control System Designer.

The Edit Architecture dialog box opens when the Control System Designer is launched.

 Single Loop Feedback/Prefilter Compensator Design

8-55

Step 2 In the Edit Architecture dialog box, on the Blocks tab, click Add Blocks, and
select the following blocks to tune:

• scdspeedctrl/Reference Filter

8 Classical Control Design

8-56

• scdspeedctrl/PID Controller

Step 3 On the Signals tab, the analysis points defined in the Simulink model are
automatically added as Locations.

• Input: scdspeedctrl/Speed Reference output port 1

• Input scdspeedctrl/External Disturbance/Step Disturbance output port 1

• Output scdspeedctrl/Speed Output output port 1

 Single Loop Feedback/Prefilter Compensator Design

8-57

Step 4 On the Linearization Options tab, in the Operating Point drop-down list, select
Model Initial Condition.

Step 5 Create new plots to view the step responses while tuning the controllers.

• In the Control System Designer, click New Plot, and select New Step. In the Select
Response to Plot drop-down menu, select New Input-Output Transfer Response.
Configure the response as follows:

8 Classical Control Design

8-58

To view the response, click Plot.

• Similarly, create a step response plot to show the disturbance rejection. In the New
Step to plot dialog box, configure the response as follows::

 Single Loop Feedback/Prefilter Compensator Design

8-59

Tune Compensators

The Control System Designer contains four methods to tune a control system:

• Manually tune the parameters of each compensator using the compensator editor. For
more information, see "Tuning Simulink Blocks in the Compensator Editor".

• Graphically tune the compensator poles, zeros, and gains using open/closed-loop Bode,
root locus, or Nichols editor plots. Click Tuning Methods, and select an editor under
Graphical Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain
design requirements (requires Simulink Design Optimization™ software). Click

8 Classical Control Design

8-60

Tuning Methods, and select Optimization based tuning. For more information, see
"Enforcing Time and Frequency Requirements on a Single-Loop Controller Design".

• Compute initial compensator parameters using automated tuning based on parameters
such as closed-loop time constants. Click Tuning Methods, and select either PID
tuning, IMC tuning, Loop shaping (requires Robust Control Toolbox™ software), or
LQG synthesis.

Completed Design

The following compensator parameters satisfy the design requirements:

• scdspeedctrl/PID Controller has parameters:

 P = 0.0012191

 I = 0.0030038

• scdspeedctrl/Reference Filter:

 Numerator = 10;

 Denominator = [1 10];

The responses of the closed-loop system are shown below:

 Single Loop Feedback/Prefilter Compensator Design

8-61

8 Classical Control Design

8-62

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks.
You can then test your design on the nonlinear model.

bdclose('scdspeedctrl')

See Also
Control System Designer

 See Also

8-63

Cascaded Multi-Loop/Multi-Compensator Feedback
Design

This example shows how to tune two cascaded feedback loops using Simulink Control
Design.

Open the Model

Open the airframe model and take a few moments to explore it.

open_system('scdairframectrl');

Design Overview

This example introduces the process of designing two cascaded feedback loops so that the
acceleration component (az) tracks reference signals with a maximum rise time of 0.5
seconds. The feedback loop structure in this example uses the body rate (q) as an inner
feedback loop and the acceleration (az) as an outer feedback loop.

8 Classical Control Design

8-64

The two feedback controllers are:

• scdairframectrl/q Control - A discrete-time integrator and a gain block stabilize
the inner loop.

open_system('scdairframectrl/q Control')

• scdairframectrl/az Control - A discrete-time integrator, a discrete transfer
function, and a gain block stabilize the outer loop.

open_system('scdairframectrl/az Control')

Decoupling Loops in a Multi-Loop Design

The typical design procedure for cascaded feedback systems is to first design the inner
loop and then the outer loop. In the Control System Designer it is possible to design both
loops simultaneously; by default, when designing a multi-loop feedback system the
coupling effects between loops are taken into account. However, when designing two
feedback loops simultaneously, it might be necessary to remove the effect of the outer
loop when tuning the inner loop. In this example, you design the inner feedback loop (q)
with the effect of the outer loop removed (az). The example shows how to decouple
feedback loops in the Control System Designer.

Open the Control System Designer

In this example, you will use Control System Designer to tune the compensators in this
feedback system. To open the Control System Designer

• Launch a pre-configured Control System Designer session by double-clicking the
subsystem in the lower left corner of the model.

 Cascaded Multi-Loop/Multi-Compensator Feedback Design

8-65

• Configure the Control System Designer using the following procedure.

Start a New Design

Step 1 To open the Control System Designer, in the Simulink model window, select
Analysis > Control Design > Control System Designer.

Step 2 In the Edit Architecture dialog box, on the Blocks tab, select the following
blocks to tune:

• scdairframectrl/q Control/q Gain
• scdairframectrl/az Control/az Gain
• scdairframectrl/az Control/az DTF

On the Signals tab, the analysis points defined in the Simulink model are automatically
added as Locations.

• Input: scdairframectrl/Step az - output port 1
• Output: scdairframectrl/Airframe Model - output port 1

In addition, the following loops are shown in Data Browser in the Responses area, since
they are automatically recognized as potential feedback loops for open-loop design:

• Open Loop at outport 1 of scdairframectrl/az Control/az DTF

8 Classical Control Design

8-66

• Open Loop at outport 1 of scdairframectrl/az Control/az Gain
• Open Loop at outport 1 of scdairframectrl/q Control/q Gain

Step 3 Open graphical Bode editors for each of the following responses. In the Control
System Designer, select Tuning Methods > Bode Editor. Then, in the Select Response
to Edit drop-down list, select the corresponding open-loop responses.

• Open Loop at outport 1 of scdairframectrl/az Control/az DTF

• Open Loop at outport 1 of scdairframectrl/q Control/q Gain

 Cascaded Multi-Loop/Multi-Compensator Feedback Design

8-67

Step 4 To view the closed-loop response of the feedback system, create a step plot for a
new input-output transfer function response. Select New Plot > New Step, and in the
Select Response to Plot drop-down list, select New Input-Output Transfer
Response.

• Add scdairframectrl/Step az/1 as an input signal and scdairframectrl/
Airframe Model/1 as an output signal.

Removing Effect of Outer Feedback Loop

In the outer-loop bode editor plot, Bode Editor for
LoopTransfer_scdairframectrl_az_Control_az_DTF, increase the gain of the feedback
loop, by dragging the magnitude response upward. The inner-loop bode editor plot, Bode

8 Classical Control Design

8-68

Editor for LoopTransfer_scdairframectrl_q_Control_q_Gain, plot also changes. This
is a result of the coupling between the feedback loops. A more systematic approach is to
first design the inner feedback loop, with the outer loop open.

To remove the effect of the outer loop when designing the inner loop, add a loop opening
to the open-loop response of the inner loop.

Step 1 In the Data Browser, in the Responses area, right-click on the inner loop
response, and select Open Selection.

 Cascaded Multi-Loop/Multi-Compensator Feedback Design

8-69

Step 2 In the Open-Loop Transfer Function dialog box, specify scdairframectrl/az
Control/az DTF/1 as the loop opening. Click OK.

8 Classical Control Design

8-70

Step 3 In the outer-loop bode editor plot, increase the gain by dragging the magnitude
response. Since the loops are decoupled, the inner-loop bode editor plot does not change.

You can now complete the design of the inner loop without the effect of the outer loop and
simultaneously design the outer loop while taking the effect of the inner loop into
account.

Tune Compensators

The Control System Designer contains four methods to tune a control system:

 Cascaded Multi-Loop/Multi-Compensator Feedback Design

8-71

• Manually tune the parameters of each compensator using the compensator editor. For
more information, see "Tuning Simulink Blocks in the Compensator Editor".

• Graphically tune the compensator poles, zeros, and gains using open/closed-loop Bode,
root locus, or Nichols editor plots. Click Tuning Methods, and select an editor under
Graphical Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain
design requirements (requires Simulink Design Optimization™ software). Click
Tuning Methods, and select Optimization based tuning. For more information, see
"Enforcing Time and Frequency Requirements on a Single-Loop Controller Design".

• Compute initial compensator parameters using automated tuning based on parameters
such as closed-loop time constants. Click Tuning Methods, and select either PID
tuning, IMC tuning, Loop shaping (requires Robust Control Toolbox™ software), or
LQG synthesis.

Complete Design

The following compensator parameters satisfy the design requirements:

• scdairframectrl/q Control/q Gain:

 K_q = 2.7717622

• scdairframectrl/az Control/az Gain

 K_az = 0.00027507

• scdairframectrl/az Control/az DTF

 Numerator = [100.109745 -99.109745]

 Denominator = [1 -0.88893]

The response of the closed-loop system is shown below:

8 Classical Control Design

8-72

 Cascaded Multi-Loop/Multi-Compensator Feedback Design

8-73

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks.
You can then test your design on the nonlinear model.

bdclose('scdairframectrl')

See Also
Control System Designer

More About
• “Design Multiloop Control System” (Control System Toolbox)

8 Classical Control Design

8-74

Tune Custom Masked Subsystems
This example shows how to enable custom masked subsystems in Control System
Designer. Once configured, you can tune a custom masked subsystem in the same way as
any supported blocks in Simulink Control Design. For more information, see "What Blocks
Are Tunable?".

Lead-Lag Library Block

For this example, tune the Lead-Lag Controller block in the scdexblks library.

open_system('scdexblks')

This block implements a compensator with a single zero, a single pole, and a gain. To
open the Block Parameters dialog box, add the Lead-Lag Controller block to your model,
and double-click the block.

 Tune Custom Masked Subsystems

8-75

The block uses the specified Gain, K, Zero Frequency, wz, and Pole Frequency, wp, to
implement the compensator transfer function:

Configure the Subsystem for Control System Designer

To configure a masked subsystem for tuning with Control System Designer, you specify a
configuration function. In this example, use the configuration function in
scdleadexample.m, which specifies that:

• There is only one pole allowed (MaxPoles constraint)

8 Classical Control Design

8-76

matlab:edit('scdleadexample')

• There is only one zero allowed (MaxZeros constraint)
• The gain is tunable (isStaticGainTunable constraint)

Register the configuration in the subsystem using the SCDConfigFcn block callback
function. Right-click the Lead-Lag Controller block and select Properties. In the Block
Properties dialog box, on the Callbacks tab, set SCDConfigFcn.

Alternatively, you can set SCDConfigFcn using the command set_param.

 Tune Custom Masked Subsystems

8-77

8 Classical Control Design

8-78

After setting the SCDConfigFcn the block is now ready to be used in a Simulink
Compensator Design Task.

Example

The scdspeedctrlleadlag model uses the Lead-Lag Controller block to tune the feedback
loop in "Single Loop Feedback/Prefilter Design". In this model, the SCDConfigFcn
property is already set. .

open_system('scdspeedctrlleadlag')

Step 1 To open the Control System Designer, in the Simulink model window, select
Analysis > Control Design > Control System Designer.

Step 2 In the Edit Architecture dialog box, on the Blocks tab, click Add Blocks. In the
Select Blocks to Tune dialog box, click Feedback Controller, and select Lead-Lag
Controller.

 Tune Custom Masked Subsystems

8-79

Step 3 On the Signals tab, the analysis points defined in the Simulink model are
automatically added as Locations.

• Input: scdspeedctrlleadlag/Speed Reference output port 1

• Output scdspeedctrlleadlag/Plant Model output port 1

Step 4 On the Linearization Options tab, in the Operating Point drop-down list, select
Model Initial Condition.

Step 5 Create new plots to view the step responses while tuning the controllers.

• In the Control System Designer, click New Plot, and select New Step. In the Select
Response to Plot drop-down menu, select New Input-Output Transfer Response.
Configure the response as follows:

8 Classical Control Design

8-80

To view the response, click Plot.

Tune Compensators

The Control System Designer contains four methods to tune a control system:

• Manually tune the parameters of the Lead-Lag Controller using the compensator
editor. For more information, see "Tuning Simulink Blocks in the Compensator Editor".

 Tune Custom Masked Subsystems

8-81

• Graphically tune the compensator poles, zeros, and gains using open/closed-loop Bode,
root locus, or Nichols editor plots. Click Tuning Methods, and select an editor under
Graphical Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain
design requirements (requires Simulink Design Optimization™ software). Click
Tuning Methods, and select Optimization based tuning. For more information, see
"Enforcing Time and Frequency Requirements on a Single-Loop Controller Design".

• Compute initial compensator parameters using automated tuning based on parameters
such as closed-loop time constants. Click Tuning Methods, and select either PID
tuning, IMC tuning, Loop shaping (requires Robust Control Toolbox™ software), or
LQG synthesis.

Complete Design

The design requirements for the reference step response in the example "Single Loop
Feedback/Prefilter Design" can be met with the following Lead-Lag Controller block
parameters:

8 Classical Control Design

8-82

 Gain = 0.0075426

 Zero Frequency (rad/s) = 2

 Pole Frequency (rad/s) = 103.59

The responses of the closed-loop system are shown below:

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks.
You can then test your design on the nonlinear model.

 Tune Custom Masked Subsystems

8-83

bdclose('scdexblks')
bdclose('scdspeedctrlleadlag')

See Also
Control System Designer

8 Classical Control Design

8-84

Tuning Simulink Blocks in the Compensator Editor
This example shows how to use Compensator Editor dialog box to tune Simulink blocks.

Open the Model

This example uses a model of speed control system for a sparking ignition engine. The
initial compensator has been designed in a fashion similar to the example entitled "Single
Loop Feedback/Prefilter Design". Take a few moments to explore the model.

Open the engine speed control model.

open_system('scdspeedctrl');

Introduction

This example uses the Compensator Editor to tune Simulink blocks. When tuning a
block in Simulink using the Control System Designer, you can use one of compensator
parameter representations. These representations are the block parameters and the pole/
zero/gain representations. For example, in the speed control example there is a PID
controller with filtered derivative scdspeedctrl/PID Controller:

 Tuning Simulink Blocks in the Compensator Editor

8-85

8 Classical Control Design

8-86

This block implements the traditional PID with filtered derivative as:

In this block P, I, D, and N are the parameters that are available for tuning. Another
approach is to reformulate the block transfer function to use zero-pole-gain format:

This formulation of poles, zeros, and gains allows for direct graphical tuning on design
plots such as Bode, root locus, and Nichols plots. Additionally, the Control System
Designer allows for both representations to be tuned using the compensator editor. The
tuning of both representations is available for all supported blocks in Simulink Control
Design. For more information, see "What Blocks Are Tunable?"

Open Control System Designer

In this example, to tune the compensators in this feedback system, open a pre-configured
Control System Designer session by double-clicking the subsystem in the lower left hand
corner of the model.

Compensator Editor Dialog Box

You can view the representations of the PID compensator using the Compensator Editor
dialog box. To open the Compensator Editor, in the Data Browser, in the Controllers
and Fixed Blocks area, double-click scdspeedctrl_PID_Controller. In the
Compensator Editor dialog box, in the Compensator section, you can view and edit any of
the compensators in your system.

 Tuning Simulink Blocks in the Compensator Editor

8-87

On the Pole/Zero tab, you can add, delete, and edit compensator poles and zeros. Since
the PID with filtered derivative is fixed in structure, the number of poles and zeros is
limited to having up to two zeros, one pole, and an integrator at s = 0.

On the Parameter tab, you can independently tune the P, I, D, and N parameters.

8 Classical Control Design

8-88

Enter new parameters values in the Value column. To interactively tune the parameters,
use the sliders. You can change the slider limits using the Min Value and Max Value
columns.

When you change parameter values, any associated editor and analysis plots
automatically update.

Complete Design

The design requirements in the example "Single Loop Feedback/Prefilter Design" can be
met with the following controller parameters:

 Tuning Simulink Blocks in the Compensator Editor

8-89

• scdspeedctrl/PID Controller

 P = 0.0012191

 I = 0.0030038

• scdspeedctrl/Reference Filter:

 Numerator = 10;

 Denominator = [1 10];

In the Compensator Editor dialog box, specify these parameters. The responses of the
closed-loop system are shown below:

8 Classical Control Design

8-90

 Tuning Simulink Blocks in the Compensator Editor

8-91

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks.
You can then test your design on the nonlinear model.

bdclose('scdspeedctrl')

See Also
Control System Designer

More About
• “Edit Compensator Dynamics” (Control System Toolbox)
• “Update Simulink Model and Validate Design” on page 8-53

8 Classical Control Design

8-92

Control System Tuning

• “Automated Tuning Overview” on page 9-3
• “Choosing an Automated Tuning Approach” on page 9-5
• “Automated Tuning Workflow” on page 9-7
• “Specify Control Architecture in Control System Tuner” on page 9-9
• “Open Control System Tuner for Tuning Simulink Model” on page 9-13
• “Specify Operating Points for Tuning in Control System Tuner” on page 9-15
• “Specify Blocks to Tune in Control System Tuner” on page 9-24
• “View and Change Block Parameterization in Control System Tuner” on page 9-26
• “Setup for Tuning Control System Modeled in MATLAB” on page 9-35
• “How Tuned Simulink Blocks Are Parameterized” on page 9-36
• “Specify Goals for Interactive Tuning” on page 9-39
• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 9-48
• “Quick Loop Tuning” on page 9-58
• “Step Tracking Goal” on page 9-62
• “Step Rejection Goal” on page 9-68
• “Transient Goal” on page 9-74
• “LQR/LQG Goal” on page 9-81
• “Gain Goal” on page 9-86
• “Variance Goal” on page 9-92
• “Reference Tracking Goal” on page 9-97
• “Overshoot Goal” on page 9-104
• “Disturbance Rejection Goal” on page 9-109
• “Sensitivity Goal” on page 9-114
• “Weighted Gain Goal” on page 9-119
• “Weighted Variance Goal” on page 9-124
• “Minimum Loop Gain Goal” on page 9-129

9

• “Maximum Loop Gain Goal” on page 9-135
• “Loop Shape Goal” on page 9-141
• “Margins Goal” on page 9-148
• “Passivity Goal” on page 9-153
• “Conic Sector Goal” on page 9-158
• “Weighted Passivity Goal” on page 9-165
• “Poles Goal” on page 9-171
• “Controller Poles Goal” on page 9-176
• “Manage Tuning Goals” on page 9-179
• “Generate MATLAB Code from Control System Tuner for Command-Line Tuning”

on page 9-181
• “Interpret Numeric Tuning Results” on page 9-184
• “Visualize Tuning Goals” on page 9-189
• “Create Response Plots in Control System Tuner” on page 9-198
• “Examine Tuned Controller Parameters in Control System Tuner” on page 9-205
• “Compare Performance of Multiple Tuned Controllers” on page 9-207
• “Create and Configure slTuner Interface to Simulink Model” on page 9-212
• “Stability Margins in Control System Tuning” on page 9-218
• “Tune Control System at the Command Line” on page 9-223
• “Speed Up Tuning with Parallel Computing Toolbox Software” on page 9-225
• “Validate Tuned Control System” on page 9-227
• “Extract Responses from Tuned MATLAB Model at the Command Line” on page 9-232

9 Control System Tuning

9-2

Automated Tuning Overview
The control system tuning tools such as systune and Control System Tuner
automatically tune control systems from high-level tuning goals you specify, such as
reference tracking, disturbance rejection, and stability margins. The software jointly
tunes all the free parameters of your control system regardless of control system
architecture or the number of feedback loops it contains. For example, the model of the
following illustration represents a multiloop control system for a helicopter.

This control system includes a number of fixed elements, such as the helicopter model
itself and the roll-off filters. The inner control loop provides static output feedback for
decoupling. The outer loop includes PI controllers for setpoint tracking. The tuning tools
jointly optimize the gains in the SOF and PI blocks to meet setpoint tracking, stability
margin, and other requirements that you specify. These tools allow you to specify any
control structure and designate which blocks in your system are tunable.

Control systems are tuned to meet your specific performance and robustness goals
subject to feasibility constraints such as actuator limits, sensor accuracy, computing
power, or energy consumption. The library of tuning goals lets you capture these
objectives in a form suitable for fast automated tuning. This library includes standard
control objectives such as reference tracking, disturbance rejection, loop shapes, closed-

 Automated Tuning Overview

9-3

loop damping, and stability margins. Using these tools, you can perform multi-objective
tuning of control systems having any structure.

See Also
Control System Designer | systune

More About
• “Choosing an Automated Tuning Approach” on page 9-5
• “Automated Tuning Workflow” on page 9-7

9 Control System Tuning

9-4

Choosing an Automated Tuning Approach
You can tune control systems at the MATLAB command line or using the Control System
Tuner App.

Control System Tuner provides an interactive graphical interface for specifying your
tuning goals and validating the performance of the tuned control system.

Use Control System Tuner to tune control systems consisting of any number of feedback
loops, with tunable components having any structure (such as PID, gain block, or state-
space). You can represent your control architecture in MATLAB as a tunable generalized

 Choosing an Automated Tuning Approach

9-5

state-space (genss) model. If you have Simulink Control Design software, you can tune a
control system represented by a Simulink model. Use the graphical interface to configure
your tuning goals, examine response plots, and validate your controller design.

The systune command can perform all the same tuning tasks as Control System Tuner.
Tuning at the command line allows you to write scripts for repeated tuning tasks.
systune also provides advanced techniques such as tuning a controller for multiple
plants, or designing gain-scheduled controllers. To use the command-line tuning tools,
you can represent your control architecture in MATLAB as a tunable generalized state-
space (genss) model. If you have Simulink Control Design software, you can tune a
control system represented by a Simulink model using an slTuner interface. Use the
TuningGoal requirement objects to configure your tuning goals. Analysis commands
such as getIOTransfer and viewGoal let you examine and validate the performance of
your tuned system.

See Also
Control System Designer | systune

More About
• “Automated Tuning Workflow” on page 9-7

9 Control System Tuning

9-6

Automated Tuning Workflow
Whether you are tuning a control system at the command line or using Control System
Tuner, the basic workflow includes the following steps:

1 Define your control architecture, by building a model of your control system from
fixed-value blocks and blocks with tunable parameters. You can do so in one of
several ways:

• Create a Simulink model of your control system. (Tuning a Simulink model
requires Simulink Control Design software.)

• Use a predefined control architecture available in Control System Tuner.
• At the command line, build a tunable genss model of your control system out of

numeric LTI models and tunable control design blocks.

For more information, see “Specify Control Architecture in Control System Tuner” on
page 9-9.

2 Set up your model for tuning.

• In Control System Tuner, identify which blocks of the model you want to tune. See
Model Setup for Control System Tuner.

• If tuning a Simulink model at the command line, create and configure the
slTuner interface to the model. See Model Setup for Tuning at the Command
Line.

3 Specify your tuning goals. Use the library of tuning goals to capture requirements
such as reference tracking, disturbance rejection, stability margins, and more.

• In Control System Tuner, use the graphical interface to specify tuning goals. See
Tuning Goals (Control System Tuner).

• At the command-line, use the TuningGoal requirement objects to specify your
tuning goals. See Tuning Goals (programmatic tuning).

4 Tune the model. Use the systune command or Control System Tuner to optimize the
tunable parameters of your control system to best meet your specified tuning goals.
Then, analyze the tuned system responses and validate the design. Whether at the
command line or in Control System Tuner, you can plot system responses to examine
any aspects of system performance you need to validate your design.

• For tuning and validating in Control System Tuner, see Tuning, Analysis, and
Validation (Control System Tuner).

 Automated Tuning Workflow

9-7

• For tuning at the command line, see Tuning, Analysis, and Validation
(programmatic tuning).

9 Control System Tuning

9-8

Specify Control Architecture in Control System Tuner
About Control Architecture
Control System Tuner lets you tune a control system having any architecture. Control
system architecture defines how your controllers interact with the system under control.
The architecture comprises the tunable control elements of your system, additional filter
and sensor components, the system under control, and the interconnections among all
these elements. For example, a common control system architecture is the single-loop
feedback configuration of the following illustration:

G is the plant model, and H the sensor dynamics. These are usually the fixed components
of the control system. The prefilter F and feedback controller C are the tunable elements.
Because control systems are so conveniently expressed in this block diagram form, these
elements are referred to as fixed blocks and tunable blocks.

Control System Tuner gives you several ways to define your control system architecture:

• Use the predefined feedback structure of the illustration.
• Model any control system architecture in MATLAB by building a generalized state-

space (genss) model from fixed LTI components and tunable control design blocks.
• Model your control system in Simulink and specify the blocks to tune in Control

System Tuner (requires Simulink Control Design software).

Predefined Feedback Architecture
If your control system has the single-loop feedback configuration of the following
illustration, use the predefined feedback structure built into Control System Tuner.

 Specify Control Architecture in Control System Tuner

9-9

For example, suppose you have a DC motor for which you want to tune a PID controller.
The response of the motor is modeled as G(s) = 1/(s + 1)2. Create a fixed LTI model
representing the plant, and a tunable PID controller model.

Gmot = zpk([],[-1,-1],1);
Cmot = tunablePID('Cmot','PID');

Open Control System Tuner.

controlSystemTuner

Control System Tuner opens, set to tune this default architecture. Next, specify the values

of the blocks in the architecture. Click to open the Standard feedback
configuration dialog box.

Enter the values for C and G that you created. Control System Tuner reads these values
from the MATLAB workspace. Click OK.

The default value for the sensor dynamics is a fixed unity-gain transfer function. The
default value for the filter F is a tunable gain block.

You can now select blocks to tune, create tuning goals, and tune the control system.

9 Control System Tuning

9-10

Arbitrary Feedback Control Architecture
If your control architecture does not match Control System Tuner’s predefined control
architecture, you can create a generalized state-space (genss) model with tunable
components representing your controller elements. For example, suppose you want to
tune the cascaded control system of the following illustration, that includes two tunable
PID controllers.

.

r
-

G2

+

-

C1

+

G1

C2

PID PI
u1 u2

y2 y1
x2

x1

Create tunable control design blocks for the controllers, and fixed LTI models for the
plant components, G1 and G2. Also include optional loop-opening locations x1 and x2.
These locations indicate where you can open loops or inject signals for the purpose of
specifying requirements for tuning the system.

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

C20 = tunablePID('C2','pi');
C10 = tunablePID('C1','pid');

X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');

Connect these components to build a model of the entire closed-loop control system.

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and output channels allows
you to identify them when you specify tuning requirements for the system.

 Specify Control Architecture in Control System Tuner

9-11

Open Control System Tuner to tune this model.

controlSystemTuner(CL0)

You can now select blocks to tune, create tuning goals, and tune the control system.

Related Examples

• “Building Tunable Models” (Control System Toolbox)

• “Specify Blocks to Tune in Control System Tuner” on page 9-24
• “Specify Goals for Interactive Tuning” on page 9-39

Control System Architecture in Simulink
If you have Simulink Control Design software, you can model an arbitrary control system
architecture in a Simulink model and tune the model in Control System Tuner.

See “Open Control System Tuner for Tuning Simulink Model” on page 9-13.

9 Control System Tuning

9-12

Open Control System Tuner for Tuning Simulink Model
To open Control System Tuner for tuning a Simulink model, open the model. In the
Simulink Editor, select Analysis > Control Design > Control System Tuner.

Each instance of Control System Tuner is linked to the Simulink model from which it is
opened. The title bar of the Control System Tuner window reflects the name of the
associated Simulink model.

 Open Control System Tuner for Tuning Simulink Model

9-13

Command-Line Equivalents
At the MATLAB command line, use the controlSystemTuner command to open Control
System Tuner for tuning a Simulink model. For example, the following command opens
Control System Tuner for the model rct_helico.slx.

controlSystemTuner('rct_helico')

If SLT0 is an slTuner interface to the Simulink model, the following command opens
Control System Tuner using the information in the interface, such as blocks to tune and
analysis points.

controlSystemTuner(SLT0)

See Also

Related Examples
• “Specify Operating Points for Tuning in Control System Tuner” on page 9-15
• “Specify Blocks to Tune in Control System Tuner” on page 9-24

More About
• “Automated Tuning Workflow” on page 9-7

9 Control System Tuning

9-14

Specify Operating Points for Tuning in Control System
Tuner

About Operating Points in Control System Tuner
When you use Control System Tuner with a Simulink model, the software computes
system responses and tunes controller parameters for a linearization of the model. That
linearization can depend on model operating conditions.

By default, Control System Tuner linearizes at the operating point specified in the model,
which comprises the initial state values in the model (the model initial conditions). You
can specify one or more alternate operating points for tuning the model. Control System
Tuner lets you compute two types of alternate operating points:

• Simulation snapshot time. Control System Tuner simulates the model for the amount
of time you specify, and linearizes using the state values at that time. Simulation
snapshot linearization is useful, for instance, when you know your model reaches an
equilibrium state after a certain simulation time.

• Steady-state operating point. Control System Tuner finds a steady-state operating
point at which some specified condition is met (trimming). For example, if your model
represents an automobile motor, you can compute an operating point at which the
motor operates steadily at 2000 rpm.

For more information on finding steady-state operating points, see “About Operating
Points” on page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

Linearize at Simulation Snapshot Times
This example shows how to compute linearizations at one or more simulation snapshot
times.

In the Control System tab, in the Operating Point menu, select Linearize At.

 Specify Operating Points for Tuning in Control System Tuner

9-15

In the Enter snapshot times to linearize dialog box, specify one or more simulation
snapshot times. Click OK.

9 Control System Tuning

9-16

When you are ready to analyze system responses or tune your model, Control System
Tuner computes linearizations at the specified snapshot times. If you enter multiple
snapshot times, Control System Tuner computes an array of linearized models, and
displays analysis plots that reflect the multiple linearizations in the array. In this case,
Control System Tuner also takes into account all linearizations when tuning parameters.
This helps to ensure that your tuned controller meets your design requirements at a
variety of operating conditions.

Compute Operating Points at Simulation Snapshot Times
This example shows how to compute operating points at one or more simulation snapshot
times. Doing so stores the operating point within Control System Tuner. When you later
want to analyze or tune the model at a stored operating point, you can select the stored
operating point from the Operating Point menu.

In the Control System tab, in the Operating Point menu, select Take simulation
snapshot.

 Specify Operating Points for Tuning in Control System Tuner

9-17

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot
times field, enter one or more simulation snapshot times. Enter multiple snapshot times
as a vector.

9 Control System Tuning

9-18

Click Take Snapshots. Control System Tuner simulates the model and computes the
snapshot operating points.

Compute additional snapshot operating points if desired. Enter additional snapshot times

and click Take Snapshots. Close the dialog box when you are done.

When you are ready to analyze responses or tune your model, select the operating point
at which you want to linearize the model. In the Control System tab, in the Operating
Point menu, stored operating points are available.

 Specify Operating Points for Tuning in Control System Tuner

9-19

9 Control System Tuning

9-20

If you entered a vector of snapshot times, all the resulting operating points are stored
together in an operating-point vector. You can use this vector to tune a control system at
several operating points simultaneously.

Compute Steady-State Operating Points
This example shows how to compute a steady-state operating point with specified
conditions. Doing so stores the operating point within Control System Tuner. When you
later want to analyze or tune the model at a stored operating point, you can select the
stored operating point from the Operating Point menu.

In the Control System tab, in the Operating Point menu, select Trim model.

 Specify Operating Points for Tuning in Control System Tuner

9-21

In the Trim the model dialog box, enter the specifications for the steady-state state
values at which you want to find an operating point.

For examples showing how to use the Trim the model dialog box to specify the
conditions for a steady-state operating point search, see “Compute Steady-State
Operating Point from State Specifications” on page 1-13 and “Compute Steady-State
Operating Point from Output Specifications” on page 1-28.

When you have entered your state specifications, click Start trimming. Control
System Tuner finds an operating point that meets the state specifications and stores it.

When you are ready to analyze responses or tune your model, select the operating point
at which you want to linearize the model. In the Control System tab, in the Operating
Point menu, stored operating points are available.

9 Control System Tuning

9-22

See Also

Related Examples
• “Specify Blocks to Tune in Control System Tuner” on page 9-24
• “Robust Tuning Approaches” (Robust Control Toolbox)

 See Also

9-23

Specify Blocks to Tune in Control System Tuner
To select which blocks of your Simulink model to tune in Control System Tuner:

1 In the Tuning tab, click Select Blocks. The Select tuned Blocks dialog opens.
2 Click Add Blocks. Control System Tuner analyzes your model to find blocks that can

be tuned.
3 In the Select Blocks to Tune dialog box, use the nodes in the left panel to navigate

through your model structure to the subsystem that contains blocks you want to tune.
Check Tune? for the blocks you want to tune. The parameters of blocks you do not
check remain constant when you tune the model.

Tip To find a block in your model, select the block in the Block Name list and click
Highlight Selected Block.

4 Click OK. The Select tuned blocks dialog box now reflects the blocks you added.

9 Control System Tuning

9-24

To import the current value of a block from your model into the current design in Control
System Tuner, select the block in the Blocks list and click Sync from Model. Doing so is
useful when you have tuned a block in Control System Tuner, but wish to restore that
block to its original value. To store the current design before restoring a block value, in
the Control System tab, click Store.

See Also

Related Examples
• “View and Change Block Parameterization in Control System Tuner” on page 9-26

More About
• “How Tuned Simulink Blocks Are Parameterized” on page 9-36

 See Also

9-25

View and Change Block Parameterization in Control
System Tuner

Control System Tuner parameterizes every block that you designate for tuning.

• When you tune a Simulink model, Control System Tuner automatically assigns a
default parameterization to tunable blocks in the model. The default parameterization
depends on the type of block. For example, a PID Controller block configured for PI
structure is parameterized by proportional gain and integral gain as follows:

u K K
s

p i= +
1

.

Kp and Ki are the tunable parameters whose values are optimized to satisfy your
specified tuning goals.

• When you tune a predefined control architecture or a MATLAB (generalized state-
space) model, you define the parameterization of each tunable block when you create
it at the MATLAB command line. For example, you can use tunablePID to create a
tunable PID block.

Control System Tuner lets you view and change the parameterization of any block to be
tuned. Changing the parameterization can include changing the structure or current
parameter values. You can also designate individual block parameters fixed (non-tunable)
or limit their tuning range.

View Block Parameterization
To access the parameterization of a block that you have designated as a tuned block, in
the Data Browser, in the Tuned Blocks area, double-click the name of a block. The
Tuned Block Editor dialog box opens, displaying the current block parameterization.

9 Control System Tuning

9-26

 View and Change Block Parameterization in Control System Tuner

9-27

The fields of the Tuned Block Editor display the type of parameterization, such as PID,

State-Space, or Gain. For more specific information about the fields, click .

Note To find a tuned block in the Simulink model, right-click the block name in the Data
Browser and select Highlight.

Fix Parameter Values or Limit Tuning Range
You can change the current value of a parameter, fix its current value (make the
parameter nontunable), or limit the parameter’s tuning range.

To change a current parameter value, type a new value in its text box. Alternatively, click

 to use a variable editor to change the current value. If you attempt to enter an invalid
value, the parameter returns to its previous value.

Click to access and edit additional properties of each parameter.

9 Control System Tuning

9-28

• Minimum — Minimum value that the parameter can take when the control system is
tuned.

• Maximum — Maximum value that the parameter can take when the control system is
tuned.

• Free — When the value is true, Control System Toolbox tunes the parameter. To fix
the value of the parameter, set Free to false.

For array-valued parameters, you can set these properties independently for each entry in
the array. For example, for a vector-valued gain of length 3, enter [1 10 100] to set the

current value of the three gains to 1, 10, and 100 respectively. Alternatively, click to
use a variable editor to specify such values.

 View and Change Block Parameterization in Control System Tuner

9-29

For vector or matrix-valued parameters, you can use the Free parameter to constrain the
structure of the parameter. For example, to restrict a matrix-valued parameter to be a
diagonal matrix, set the current values of the off-diagonal elements to 0, and set the
corresponding entries in Free to false.

Custom Parameterization
When tuning a control system represented by a Simulink model or by a “Predefined
Feedback Architecture” on page 9-9, you can specify a custom parameterization for any
tuned block using a generalized state-space (genss) model. To do so, create and
configure a genss model in the MATLAB workspace that has the desired
parameterization, initial parameter values, and parameter properties. In the Change
parameterization dialog box, select Custom. In the Parameterization area, the
variable name of the genss model.

For example, suppose you want to specify a tunable low-pass filter, F = a/(s +a), where a
is the tunable parameter. First, at the MATLAB command line, create a tunable genss
model that represents the low-pass filter structure.

a = realp('a',1);
F = tf(a,[1 a]);

F =

 Generalized continuous-time state-space model with 1 outputs, 1 inputs,
 1 states, and the following blocks:
 a: Scalar parameter, 2 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and
"F.Blocks" to interact with the blocks.

Then, in the Tuned Block Editor, enter F in the Parameterization area.

9 Control System Tuning

9-30

When you specify a custom parameterization for a Simulink block, you might not be able
to write the tuned block value back to the Simulink model. When writing values to
Simulink blocks, Control System Tuner skips blocks that cannot represent the tuned value
in a straightforward and lossless manner. For example, if you reparameterize a PID
Controller Simulink block as a third-order state-space model, Control System Tuner will
not write the tuned value back to the block.

Block Rate Conversion
When Control System Tuner writes tuned parameters back to the Simulink model, each
tuned block value is automatically converted from the sample time used for tuning, to the
sample time of the Simulink block. When the two sample times differ, the Tuned Block
Editor contains additional rate conversion options that specify how this resampling
operation is performed for the corresponding block.

 View and Change Block Parameterization in Control System Tuner

9-31

By default, Control System Tuner performs linearization and tuning in continuous time
(sample time = 0). You can specify discrete-time linearization and tuning and change the
sample time. To do so, on the Control System tab, click Linearization Options. Sample
time for tuning reflects the sample time specified in the Linearization Options dialog
box.

The remaining rate conversion options depend on the parameterized block.

9 Control System Tuning

9-32

Rate Conversion for Parameterized PID Blocks

For parameterization of continuous-time PID Controller and PID Controller (2-DOF)
blocks, you can independently specify the rate-conversion methods as discretization
formulas for the integrator and derivative filter. Each has the following options:

• Trapezoidal (default) — Integrator or derivative filter discretized as (Ts/2)*(z
+1)/(z-1), where Ts is the target sample time.

• Forward Euler — Ts/(z-1).
• Backward Euler — Ts*z/(z-1).

For more information about PID discretization formulas, see “Discrete-Time Proportional-
Integral-Derivative (PID) Controllers” (Control System Toolbox).

For discrete-time PID Controller and PID Controller (2-DOF) blocks, you set the integrator
and derivative filter methods in the block dialog box. You cannot change them in the
Tuned Block Editor.

Rate Conversion for Other Parameterized Blocks

For blocks other than PID Controller blocks, the following rate-conversion methods are
available:

• Zero-order hold — Zero-order hold on the inputs. For most dynamic blocks this is
the default rate-conversion method.

• Tustin — Bilinear (Tustin) approximation.
• Tustin with prewarping — Tustin approximation with better matching between

the original and rate-converted dynamics at the prewarp frequency. Enter the
frequency in the Prewarping frequency field.

• First-order hold — Linear interpolation of inputs.
• Matched (SISO only) — Zero-pole matching equivalents.

For more detailed information about these rate-conversion methods, see “Continuous-
Discrete Conversion Methods” (Control System Toolbox).

Blocks with Fixed Rate Conversion Methods

For the following blocks, you cannot set the rate-conversion method in the Tuned Block
Editor.

 View and Change Block Parameterization in Control System Tuner

9-33

• Discrete-time PID Controller and PID Controller (2-DOF) block. Set the integrator and
derivative filter methods in the block dialog box.

• Gain block, because it is static.
• Transfer Fcn Real Zero block. This block can only be tuned at the sample time
specified in the block.

• Block that has been discretized using the Model Discretizer. Sample time for this block
is specified in the Model Discretizer itself.

See Also

Related Examples
• “Specify Blocks to Tune in Control System Tuner” on page 9-24

More About
• “How Tuned Simulink Blocks Are Parameterized” on page 9-36

9 Control System Tuning

9-34

Setup for Tuning Control System Modeled in MATLAB
To model your control architecture in MATLAB for tuning in Control System Tuner,
construct a tunable model of the control system that identifies and parameterizes its
tunable elements. You do so by combining numeric LTI models of the fixed elements with
parametric models of the tunable elements. The result is a tunable generalized state-
space genss model.

Building a tunable genss model for Control System Tuner is the same as building such a
model for tuning at the command line. For information about building such models,
“Setup for Tuning MATLAB Models” (Control System Toolbox).

When you have a tunable genss model of your control system, use the
controlSystemTuner command to open Control System Tuner. For example, if T0 is the
genss model, the following command opens Control System Tuner for tuning T0:

controlSystemTuner(T0)

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39

 Setup for Tuning Control System Modeled in MATLAB

9-35

How Tuned Simulink Blocks Are Parameterized

Blocks With Predefined Parameterization
When you tune a Simulink model, either with Control System Tuner or at the command
line through an slTuner interface, the software automatically assigns a predefined
parameterization to certain Simulink blocks. For example, for a PID Controller block set
to the PI controller type, the software automatically assigns the parameterization Kp +
Ki/s, where Kp and Ki are the tunable parameters. For blocks that have a predefined
parameterization, you can write tuned values back to the Simulink model for validating
the tuned controller.

Blocks that have a predefined parameterization include the following:

Simulink Library Blocks with Predefined
Parameterization

Math Operations Gain
Continuous • State-Space

• Transfer Fcn
• Zero-Pole
• PID Controller
• PID Controller (2 DOF)

Discrete • Discrete State-Space
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Discrete Filter
• Discrete PID Controller
• Discrete PID Controller (2 DOF)

Lookup Tables • 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table

Control System Toolbox LTI System

9 Control System Tuning

9-36

Simulink Library Blocks with Predefined
Parameterization

Discretizing (Model Discretizer Blocks) • Discretized State-Space
• Discretized Transfer Fcn
• Discretized Zero-Pole
• Discretized LTI System
• Discretized Transfer Fcn (with initial

states)
Simulink Extras/Additional Linear State-Space (with initial outputs)

Scalar Expansion

The following tunable blocks support scalar expansion:

• Discrete Filter
• Gain
• 1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table
• PID Controller, PID Controller (2DOF)

Scalar expansion means that the block parameters can be scalar values even when the
input and output signals are vectors. For example, you can use a Gain block to implement
y = k*u with scalar k and vector u and y. To do so, you set the Multiplication mode of
the block to Element-wise(K.*u), and set the gain value to the scalar k.

When a tunable block uses scalar expansion, its default parameterization uses tunable
scalars. For example, in the y = k*u Gain block, the software parameterizes the scalar k
as a tunable real scalar (realp of size [1 1]). If instead you want to tune different gain
values for each channel, replace the scalar gain k by a N-by-1 gain vector in the block
dialog, where N is the number of channels, the length of the vectors u and y. The software
then parameterizes the gain as a realp of size [N 1].

Blocks Without Predefined Parameterization
You can specify blocks for tuning that do not have a predefined parameterization. When
you do so, the software assigns a state-space parameterization to such blocks based upon
the block linearization. For blocks that do not have a predefined parameterization, the
software cannot write tuned values back to the block, because there is no clear mapping

 How Tuned Simulink Blocks Are Parameterized

9-37

between the tuned parameters and the block. To validate a tuned control system that
contains such blocks, you can specify a block linearization in your model using the value
of the tuned parameterization. (See “Specify Linear System for Block Linearization Using
MATLAB Expression” on page 2-160 for more information about specifying block
linearization.)

View and Change Block Parameterization
You can view and edit the current parameterization of every block you designate for
tuning.

• In Control System Tuner, see “View and Change Block Parameterization in Control
System Tuner” on page 9-26.

• At the command line, use getBlockParam to view the current block
parameterization. Use setBlockParam to change the block parameterization.

9 Control System Tuning

9-38

Specify Goals for Interactive Tuning
This example shows how to specify your tuning goals for automated tuning in Control
System Tuner.

Use the New Goal menu to create a tuning goal such as a tracking requirement,
disturbance rejection specification, or minimum stability margins. Then, when you are
ready to tune your control system, use Manage Goals to designate which goals to
enforce.

This example creates tuning goals for tuning the sample model rct_helico.

Choose Tuning Goal Type

In Control System Tuner, in the Tuning tab, click New Goal. Select the type of goal
you want to create. A tuning goal dialog box opens in which you can provide the detailed
specifications of your goal. For example, select Tracking of step commands to make a
particular step response of your control system match a desired response.

 Specify Goals for Interactive Tuning

9-39

Choose Signal Locations for Evaluating Tuning Goal

Specify the signal locations in your control system at which the tuning goal is evaluated.
For example, the step response goal specifies that a step signal applied at a particular
input location yields a desired response at a particular output location. Use the Step
Response Selection section of the dialog box to specify these input and output locations.

9 Control System Tuning

9-40

(Other tuning goal types, such as loop-shape or stability margins, require you to specify
only one location for evaluation. The procedure for specifying the location is the same as
illustrated here.)

Under Specify step-response inputs, click Add signal to list. A list of available
input locations appears.

If the signal you want to designate as a step-response input is in the list, click the signal
to add it to the step-response inputs. If the signal you want to designate does not appear,
and you are tuning a Simulink model, click Select signal from model.

In the Select signals dialog box, build a list of the signals you want. To do so, click
signals in the Simulink model editor. The signals that you click appear in the Select
signals dialog box. Click one signal to create a SISO tuning goal, and click multiple
signals to create a MIMO tuning goal.

Click Add signal(s). The Select signals dialog box closes, returning you to the new
tuning-goal specification dialog box.

 Specify Goals for Interactive Tuning

9-41

The signals you selected now appear in the list of step-response inputs in the tuning goal
dialog box.

Similarly, specify the locations at which the step response is measured to the step-
response outputs list. For example, the following configuration constrains the response to
a step input applied at theta-ref and measured at theta in the Simulink model
rct_helico.

9 Control System Tuning

9-42

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and .

Specify Loop Openings

Most tuning goals can be enforced with loops open at one or more locations in the control
system. Click Add loop opening location to list to specify such locations for the
tuning goal.

 Specify Goals for Interactive Tuning

9-43

Define Other Specifications of the Tuning Goal

The tuning goal dialog box prompts you to specify other details about the tuning goal. For
example, to create a step response requirement, you provide details of the desired step
response in the Desired Response area of the Step Response Goal dialog box. Some
tuning goals have additional options in an Options section of the dialog box.

For information about the fields for specifying a particular tuning goal, click in the
tuning goal dialog box.

Store the Tuning Goal for Tuning

When you have finished specifying the tuning goal, click OK in the tuning goal dialog box.
The new tuning goal appears in the Tuning Goals section of the Data Browser. A new
figure opens displaying a graphical representation of the tuning goal. When you tune your
control system, you can refer to this figure to evaluate graphically how closely the tuned
system satisfies the tuning goal.

9 Control System Tuning

9-44

Tip To edit the specifications of the tuning goal, double-click the tuning goal in the Data
Browser.

Activate the Tuning Goal for Tuning

When you have saved your tuning goal, click New Goal to create additional tuning
goals.

When you are ready to tune your control system, click Manage Goals to select
which tuning goals are active for tuning. In the Manage Tuning Goals dialog box,

 Specify Goals for Interactive Tuning

9-45

Active is checked by default for any new goals. Uncheck Active for any tuning goal that
you do not want enforced.

You can also designate one or more tuning goals as Hard goals. Control System Tuner
attempts to satisfy hard requirements, and comes as close as possible to satisfying
remaining (soft) requirements subject to the hard constraints. By default, new goals are
designated soft goals. Check Hard for any goal to designate it a hard goal.

For example, if you tune with the following configuration, Control System Tuner optimizes
StepRespGoal1, subject to MarginsGoal1. The tuning goal PolesGoal1 is ignored.

Deactivating tuning goals or designating some goals as soft requirements can be useful
when investigating the tradeoffs between different tuning requirements. For example, if
you do not obtain satisfactory performance with all your tuning goals active and hard, you
might try another design in which less crucial goals are designated as soft or deactivated
entirely.

See Also

Related Examples
• “Manage Tuning Goals” on page 9-179

9 Control System Tuning

9-46

• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 9-48
• “Create Response Plots in Control System Tuner” on page 9-198

 See Also

9-47

Quick Loop Tuning of Feedback Loops in Control System
Tuner

This example shows how to tune a Simulink model of a control system to meet a specified
bandwidth and specified stability margins in Control System Tuner, without explicitly
creating tuning goals that capture these requirements. You can use a similar approach for
quick loop tuning of control systems modeled in MATLAB.

This example demonstrates how the Quick Loop Tuning option of Control System Tuner
generates tuning goals from your crossover frequency and gain and phase margin
specifications. This option lets you quickly set up SISO or MIMO feedback loops for
tuning using a loop-shaping approach. The example also shows how to add further tuning
requirements to the control system after using the Quick Loop Tuning option.

Quick Loop Tuning is the Control System Tuner equivalent of the looptune command.

Set up the Model for Tuning

Open the Simulink model.

open_system('rct_distillation')

This model represents a distillation column, captured in the two-input, two-output plant G.
The tunable elements are the decoupling gain matrix DM, and the two PI controllers, PI_L
and PI_V. (For more information about this model, see “Decoupling Controller for a
Distillation Column” (Control System Toolbox).)

9 Control System Tuning

9-48

Suppose your goal is to tune the MIMO feedback loop between r and y to a bandwidth
between 0.1 and 0.5 rad/s. Suppose you also require a gain margin of 7 dB and a phase
margin of 45 degrees. You can use the Quick Loop Tuning option to quickly configure
Control System Tuner for these goals.

In the Simulink model editor, open Control System Tuner by selecting Analysis >
Control Design > Control System Tuner.

Designate the blocks you want to tune. In the Tuning tab of Control System Tuner, click
 Select Blocks. In the Select tuned blocks dialog box, click Add blocks. Then, select

DM, PI_L, and PI_V for tuning. (For more information about selecting tuned blocks, see
“Specify Blocks to Tune in Control System Tuner” on page 9-24.)

The model is now ready to tune to the target bandwidth and stability margins.

Specify the Goals for Quick Loop Tuning

In the Tuning tab, select New Goal > Quick Loop Tuning.

For Quick Loop Tuning, you need to identify the actuator signals and sensor signals that
separate the plant portion of the control system from the controller, which for the purpose
of Quick Loop Tuning is the rest of the control system. The actuator signals are the
controller outputs that drive the plant, or the plant inputs. The sensor signals are the
measurements of plant output that feed back into the controller. In this control system,

 Quick Loop Tuning of Feedback Loops in Control System Tuner

9-49

the actuator signals are represented by the vector signal u, and the sensor signals by the
vector signal y.

In the Quick Loop Tuning dialog box, under Specify actuator signals (controls), add
the actuator signal, u. Similarly, under Specify sensor signals (measurements), add
the sensor signal, y (For more information about specifying signals for tuning, see
“Specify Goals for Interactive Tuning” on page 9-39.)

Under Desired Goals, in the Target gain crossover region field, enter the target
bandwidth range, [0.1 0.5]. Enter the desired gain margin and phase margin in the
corresponding fields.

9 Control System Tuning

9-50

 Quick Loop Tuning of Feedback Loops in Control System Tuner

9-51

Click OK. Control System Tuner automatically generates tuning goals that capture the
desired goals you entered in the dialog box.

Examine the Automatically-Created Tuning Goals

In this example, Control System Tuner creates a Loop Shape Goal and a Margins Goal. If
you had changed the pole-location settings in the Quick Loop Tuning dialog box, a Poles
goal would also have been created.

9 Control System Tuning

9-52

Click Manage Goals to examine the automatically-created goals. By default, the
goals are active and designated as soft tuning goals.

You can double-click the tuning goals to examine their parameters, which are
automatically computed and populated. You can also examine the graphical
representations of the tuning goals. In the Tuning tab, examine the
LoopTuning1_LoopShapeGoal plot.

 Quick Loop Tuning of Feedback Loops in Control System Tuner

9-53

The target crossover range is expressed as a Loop Shape goal with an integrator open-
loop gain profile. The shaded areas of the graph show that the permitted crossover range
is [0.1 0.5] rad/s, as you specified in the Quick Loop Tuning dialog box.

Similarly, your margin requirements are captured in the LoopTuning1_MarginsGoal
plot.

Tune the Model

Click Tune to tune the model to meet the automatically-created tuning goals. In the
tuning goal plots, you can see that the requirements are satisfied.

9 Control System Tuning

9-54

To create additional plots for examining other system responses, see “Create Response
Plots in Control System Tuner” on page 9-198.

Change Design Requirements

If you want to change your design requirements after using Quick Loop Tuning, you can
edit the automatically-created tuning goals and tune the model again. You can also create
additional tuning goals.

For example, add a requirement that limits the response to a disturbance applied at the
plant inputs. Limit the response to a step command at dL and dV at the outputs, y, to be
well damped, to settle in less than 20 seconds, and not exceed 4 in amplitude. Select New
Goal > Rejection of step disturbances and enter appropriate values in the Step
Rejection Goal dialog box. (For more information about creating tuning goals, see
“Specify Goals for Interactive Tuning” on page 9-39.)

 Quick Loop Tuning of Feedback Loops in Control System Tuner

9-55

9 Control System Tuning

9-56

You can now retune the model to meet all these tuning goals.

See Also
looptune (for slTuner)

Related Examples
• “Specify Operating Points for Tuning in Control System Tuner” on page 9-15
• “Manage Tuning Goals” on page 9-179
• “Setup for Tuning Control System Modeled in MATLAB” on page 9-35

 See Also

9-57

Quick Loop Tuning

Purpose
Tune SISO or MIMO feedback loops using a loop-shaping approach in Control System
Tuner.

Description
Quick Loop Tuning lets you tune your system to meet open-loop gain crossover and
stability margin requirements without explicitly creating tuning goals that capture these
requirements. You specify the feedback loop whose open-loop gain you want to shape by
designating the actuator signals (controls) and sensor signals (measurements) that form
the loop. Actuator signals are the signals that drive the plant. The sensor signals are the
plant outputs that feed back into the controller.

You enter the target loop bandwidth and desired gain and phase margins. You can also
specify constraints on pole locations of the tuned system, to eliminate fast dynamics.
Control System Tuner automatically creates Tuning Goals that capture your specifications
and ensure integral action at frequencies below the target loop bandwidth.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Quick Loop Tuning to
specify loop-shaping requirements.

Command-Line Equivalent

When tuning control systems at the command line, use looptune (for slTuner) or
looptune for tuning feedback loops using a loop-shaping approach.

Feedback Loop Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify actuator signals (controls)

9 Control System Tuning

9-58

Designate one or more signals in your model as actuator signals. These are the input
signals that drive the plant. To tune a SISO feedback loop, select a single-valued input
signal. To tune MIMO loop, select multiple signals or a vector-valued signal.

• Specify sensor signals (measurements)

Designate one or more signals in your model as sensor signals. These are the plant
outputs that provide feedback into the controller. To tune a SISO feedback loop, select
a single-valued input signal. To tune MIMO loop, select multiple signals or a vector-
valued signal.

• Compute the response with the following loops open

Designate additional locations at which to open feedback loops for the purpose of
tuning the loop defined by the control and measurement signals.

Quick Loop Tuning tunes the open-loop response of the loop defined by the control and
measurement signals. If you want your specifications for that loop to apply with other
feedback loops in the system opened, specify loop-opening locations in this section of
the dialog box. For example, if you are tuning a cascaded-loop control system with an
inner loop and an outer loop, you might want to tune the inner loop with the outer loop
open.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Desired Goals
Use this section of the dialog box to specify desired characteristics of the tuned system.
Control System Tuner converts these into Loop Shape, Margin, and Poles goals.

• Target gain crossover region

Specify a frequency range in which the open-loop gain should cross 0 dB. Specify the
frequency range as a row vector of the form [min,max], expressed in frequency units
of your model. Alternatively, if you specify a single target frequency, wc, the target
range is taken as [wc/10^0.1,wc*10^0.1], or wc ± 0.1 decade.

 Quick Loop Tuning

9-59

• Gain margin (db)

Specify the desired gain margin in decibels. For MIMO control system, the gain
margin is the multiloop disk margin. See loopmargin for information about multiloop
disk margins.

• Phase margin (degrees)

Specify the desired phase margin in degrees. For MIMO control system, the phase
margin is the multiloop disk margin. See loopmargin for information about multiloop
disk margins.

• Keep poles inside the following region

Specify minimum decay rate and maximum natural frequency for the closed-loop poles
of the tuned system. While the other Quick Loop Tuning options specify characteristics
of the open-loop response, these specifications apply to the closed-loop dynamics.

The minimum decay rate you enter constrains the closed-loop pole locations to:

• Re(s) < -mindecay, for continuous-time systems.
• log(|z|) < -mindecay*Ts, for discrete-time systems with sample time Ts.

The maximum frequency you enter constrains the closed-loop poles to satisfy |s|
 < maxfreq for continuous time, or |log(z)| < maxfreq*Ts for discrete-time
systems with sample time Ts. This constraint prevents fast dynamics in the closed-loop
system.

Options
Use this section of the dialog box to specify additional characteristics.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

9 Control System Tuning

9-60

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Control System Tuner uses looptuneSetup (for slTuner) or looptuneSetup to
convert Quick Loop Tuning specifications into tuning goals.

See Also

Related Examples
• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 9-48
• “Specify Goals for Interactive Tuning” on page 9-39
• “Visualize Tuning Goals” on page 9-189
• “Manage Tuning Goals” on page 9-179

 See Also

9-61

Step Tracking Goal

Purpose
Make the step response from specified inputs to specified outputs closely match a target
response, when using Control System Tuner.

Description
Step Tracking Goal constrains the step response between the specified signal locations to
match the step response of a stable reference system. The constraint is satisfied when the
relative difference between the tuned and target responses falls within the tolerance you
specify. You can use this goal to constrain a SISO or MIMO response of your control
system.

You can specify the reference system for the target step response in terms of first-order
system characteristics (time constant) or second-order system characteristics (natural
frequency and percent overshoot). Alternatively, you can specify a custom reference
system as a numeric LTI model.

9 Control System Tuning

9-62

Creation

In the Tuning tab of Control System Tuner, select New Goal > Tracking of step
commands to create a Step Tracking Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.StepTracking to
specify a step response goal.

Step Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step input. To
constrain a SISO response, select a single-valued input signal. For example, to
constrain the step response from a location named 'u' to a location named 'y', click

 Add signal to list and select 'u'. To constrain a MIMO response, select multiple
signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure the response to
the step input. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the step response from a location named 'u' to a location
named 'y', click Add signal to list and select 'y'. To constrain a MIMO
response, select multiple signals or a vector-valued signal. For MIMO systems, the
number of outputs must equal the number of outputs.

• Compute step response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

 Step Tracking Goal

9-63

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Desired Response
Use this section of the dialog box to specify the shape of the desired step response.

• First-order characteristics

Specify the desired step response (the reference model Href) as a first-order response
with time constant τ:

H
s

ref =

+

1

1

/

/
.

t

t

Enter the desired value for τ in the Time Constant text box. Specify τ in the time
units of your model.

• Second-order characteristics

Specify the desired step response as a second-order response with time constant τ,
and natural frequency 1/τ.

Enter the desired value for τ in the Time Constant text box. Specify τ in the time
units of your model.

Enter the target overshoot percentage in the Overshoot text box.

The second-order reference system has the form:

H
s s

ref =
()

+ () + ()

1

2 1

2

2 2

/

/ /

.
t

z t t

The damping constant ζ is related to the overshoot percentage by ζ =
cos(atan2(pi,-log(overshoot/100))).

9 Control System Tuning

9-64

• Custom reference model

Specify the reference system for the desired step response as a dynamic system
model, such as a tf, zpk, or ss model.

Enter the name of the reference model in the MATLAB workspace in the LTI model to
match text field. Alternatively, enter a command to create a suitable reference model,
such as tf(1,[1 1.414 1]).

The reference model must be stable and must have DC gain of 1 (zero steady-state
error). The model can be continuous or discrete. If the model is discrete, it can include
time delays which are treated as poles at z = 0.

The reference model can be MIMO, provided that it is square and that its DC singular
value (sigma) is 1. Then number of inputs and outputs of the reference model must
match the dimensions of the inputs and outputs specified for the step response goal.

For best results, the reference model should also include intrinsic system
characteristics such as non-minimum-phase zeros (undershoot).

If your selected inputs and outputs define a MIMO system and you apply a SISO reference
system, the software attempts to match the diagonal channels of the MIMO system. In
that case, cross-couplings tend to be minimized.

Options
Use this section of the dialog box to specify additional characteristics of the step response
goal.

• Keep % mismatch below

Specify the relative matching error between the actual (tuned) step response and the
target step response. Increase this value to loosen the matching tolerance. The
relative matching error, erel, is defined as:

e
y t y t

y t
rel

ref

ref

=
() - ()

- ()
2

2
1

.

y(t) – yref(t) is the response mismatch, and 1 – yref(t) is the step-tracking error of the

target model. ◊

2
 denotes the signal energy (2-norm).

 Step Tracking Goal

9-65

• Adjust for step amplitude

For a MIMO tuning goal, when the choice of units results in a mix of small and large
signals in different channels of the response, this option allows you to specify the
relative amplitude of each entry in the vector-valued step input. This information is
used to scale the off-diagonal terms in the transfer function from reference to tracking
error. This scaling ensures that cross-couplings are measured relative to the amplitude
of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track
reference signals 'r1'and 'r2'. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less
than 0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure
this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference
signal.

The default value, No , means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

9 Control System Tuning

9-66

For Step Response Goal, f(x) is given by:

f x
s

T s x H s

e
s

H s I

ref

rel ref

() =

() - ()()

() -()

1

1

2

2

,

.

T(s,x) is the closed-loop transfer function between the specified inputs and outputs,
evaluated with parameter values x. Href(s) is the reference model. erel is the relative error

(see “Options” on page 9-65). ◊

2
 denotes the H2 norm (see norm).

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the
specified loop-opening locations. The dynamics affected by this implicit constraint are the
stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-67

Step Rejection Goal
Purpose
Set a minimum standard for rejecting step disturbances, when using Control System
Tuner.

Description
Use Step Rejection Goal to specify how a step disturbance injected at a specified
location in your control system affects the signal at a specified output location.

You can specify the desired response in time-domain terms of peak value, settling time,
and damping ratio. Control System Tuner attempts to make the actual rejection at least as
good as the desired response. Alternatively, you can specify the response as a stable
reference model having DC-gain. In that case, the tuning goal is to reject the disturbance
as well as or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use
Disturbance Rejection Goal.

9 Control System Tuning

9-68

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The dotted line shows the target step response you specify. The solid line is the current
corresponding response of your system.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Rejection of step
disturbance to create a Step Rejection Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.StepRejection to
specify a step response goal.

Step Disturbance Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify step disturbance inputs

Select one or more signal locations in your model at which to apply the input. To
constrain a SISO response, select a single-valued input signal. For example, to
constrain the step-disturbance response from a location named 'u' to a location
named 'y', click Add signal to list and select 'u'. To constrain a MIMO
response, select multiple signals or a vector-valued signal.

• Specify step response outputs

Select one or more signal locations in your model at which to measure the response to
the step disturbance. To constrain a SISO response, select a single-valued output
signal. For example, to constrain the transient response from a location named 'u' to
a location named 'y', click Add signal to list and select 'y'. To constrain a
MIMO response, select multiple signals or a vector-valued signal. For MIMO systems,
the number of outputs must equal the number of outputs.

• Compute the response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you

 Step Rejection Goal

9-69

identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Desired Response to Step Disturbance
Use this section of the dialog box to specify the shape of the desired response to the step
disturbance. Control System Tuner attempts to make the actual response at least as good
as the desired response.

• Response Characteristics

Specify the desired response in terms of time-domain characteristics. Enter the
maximum amplitude, maximum settling time, and minimum damping constant in the
text boxes.

• Reference Model

Specify the desired response in terms of a reference model.

Enter the name of the reference model in the MATLAB workspace in the Reference
Model text field. Alternatively, enter a command to create a suitable reference model,
such as tf([1 0],[1 1.414 1]).

The reference model must be stable and must have zero DC gain. The model can be
continuous or discrete. If the model is discrete, it can include time delays which are
treated as poles at z = 0.

For best results, the reference model and the open-loop response from the disturbance
to the output should have similar gains at the frequency where the reference model
gain peaks.

9 Control System Tuning

9-70

Options
Use this section of the dialog box to specify additional characteristics of the step rejection
goal.

• Adjust for amplitude of input signals and Adjust for amplitude of output
signals

For a MIMO tuning goal, when the choice of units results in a mix of small and large
signals in different channels of the response, this option allows you to specify the
relative amplitude of each entry in the vector-valued signals. This information is used
to scale the off-diagonal terms in the transfer function from the tuning goal inputs to
outputs. This scaling ensures that cross-couplings are measured relative to the
amplitude of each reference signal.

When these options are set to No, the closed-loop transfer function being constrained
is not scaled for relative signal amplitudes. When the choice of units results in a mix of
small and large signals, using an unscaled transfer function can lead to poor tuning
results. Set the option to Yes to provide the relative amplitudes of the input signals
and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function.
Suppose further that second input signal to the transfer function tends to be about
100 times greater than the first signal. In that case, select Yes and enter [1,100] in
the Amplitudes of input signals text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled
transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are
diagonal matrices with the Amplitudes of output signals and Amplitudes of input
signals values on the diagonal, respectively.

The default value, No, means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth

 Step Rejection Goal

9-71

models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning requirement is a hard constraint.

Step Rejection Goal aims to keep the gain from disturbance to output below the gain of
the reference model. The scalar value of the requirement f(x) is given by:

f x W s T s xF dy() = () ()
•

, ,

or its discrete-time equivalent. Here, Tdy(s,x) is the closed-loop transfer function of the

constrained response, and ◊
•

 denotes the H∞ norm (see norm). WF is a frequency
weighting function derived from the step-rejection profile you specify in the tuning goal.
The gain of WF roughly matches the inverse of the reference model for gain values within
60 dB of the peak gain. For numerical reasons, the weighting function levels off outside
this range, unless you specify a reference model that changes slope outside this range.
This adjustment is called regularization. Because poles of WF close to s = 0 or s = Inf
might lead to poor numeric conditioning for tuning, it is not recommended to specify
reference models with very low-frequency or very high-frequency dynamics.For more
information about regularization and its effects, see “Visualize Tuning Goals” on page 9-
189.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the
specified loop-opening locations. The dynamics affected by this implicit constraint are the
stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly

9 Control System Tuning

9-72

constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-73

Transient Goal

Purpose
Shape how the closed-loop system responds to a specific input signal when using Control
System Tuner. Use a reference model to specify the desired transient response.

Description
Transient Goal constrains the transient response from specified input locations to
specified output locations. This requirement specifies that the transient response closely
match the response of a reference model. The constraint is satisfied when the relative
difference between the tuned and target responses falls within the tolerance you specify.

You can constrain the response to an impulse, step, or ramp input signal. You can also
constrain the response to an input signal that is given by the impulse response of an input
filter you specify.

9 Control System Tuning

9-74

Creation

In the Tuning tab of Control System Tuner, select New Goal > Transient response
matching to create a Transient Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Transient to
specify a step response goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify response inputs

Select one or more signal locations in your model at which to apply the input. To
constrain a SISO response, select a single-valued input signal. For example, to
constrain the transient response from a location named 'u' to a location named 'y',
click Add signal to list and select 'u'. To constrain a MIMO response, select
multiple signals or a vector-valued signal.

• Specify response outputs

Select one or more signal locations in your model at which to measure the transient
response. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the transient response from a location named 'u' to a location
named 'y', click Add signal to list and select 'y'. To constrain a MIMO
response, select multiple signals or a vector-valued signal. For MIMO systems, the
number of outputs must equal the number of outputs.

• Compute the response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

 Transient Goal

9-75

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Initial Signal Selection
Select the input signal shape for the transient response you want to constrain in Control
System Tuner.

• Impulse — Constrain the response to a unit impulse.
• Step — Constrain the response to a unit step. Using Step is equivalent to using a

Step Tracking Goal.
• Ramp — Constrain the response to a unit ramp, u = t.
• Other — Constrain the response to a custom input signal. Specify the custom input

signal by entering a transfer function (tf or zpkmodel) in the Use impulse response
of filter field. The custom input signal is the response of this transfer function to a
unit impulse.

This transfer function represents the Laplace transform of the desired custom input
signal. For example, to constrain the transient response to a unit-amplitude sine wave
of frequency w, enter tf(w,[1,0,w^2]). This transfer function is the Laplace
transform of sin(wt).

The transfer function you enter must be continuous, and can have no poles in the open
right-half plane. The series connection of this transfer function with the reference
system for the desired transient response must have no feedthrough term.

Desired Transient Response
Specify the reference system for the desired transient response as a dynamic system
model, such as a tf, zpk, or ss model. The Transient Goal constrains the system
response to closely match the response of this system to the input signal you specify in
Initial Signal Selection.

Enter the name of the reference model in the MATLAB workspace in the Reference
Model field. Alternatively, enter a command to create a suitable reference model, such as

9 Control System Tuning

9-76

tf(1,[1 1.414 1]). The reference model must be stable, and the series connection of
the reference model with the input shaping filter must have no feedthrough term.

Options
Use this section of the dialog box to specify additional characteristics of the transient
response goal.

• Keep % mismatch below

Specify the relative matching error between the actual (tuned) transient response and
the target response. Increase this value to loosen the matching tolerance. The relative
matching error, erel, is defined as:

gap =
() - ()

()

y t y t

y t

ref

ref tr

2

2()

.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref

(deviation from steady-state value or trajectory). ◊

2
 denotes the signal energy (2-

norm). The gap can be understood as the ratio of the root-mean-square (RMS) of the
mismatch to the RMS of the reference transient.

• Adjust for amplitude of input signals and Adjust for amplitude of output
signals

For a MIMO tuning goal, when the choice of units results in a mix of small and large
signals in different channels of the response, this option allows you to specify the
relative amplitude of each entry in the vector-valued signals. This information is used
to scale the off-diagonal terms in the transfer function from the tuning goal inputs to
outputs. This scaling ensures that cross-couplings are measured relative to the
amplitude of each reference signal.

When these options are set to No, the closed-loop transfer function being constrained
is not scaled for relative signal amplitudes. When the choice of units results in a mix of
small and large signals, using an unscaled transfer function can lead to poor tuning
results. Set the option to Yes to provide the relative amplitudes of the input signals
and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function.
Suppose further that second input signal to the transfer function tends to be about

 Transient Goal

9-77

100 times greater than the first signal. In that case, select Yes and enter [1,100] in
the Amplitudes of input signals text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled
transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are
diagonal matrices with the Amplitudes of output signals and Amplitudes of input
signals values on the diagonal, respectively.

The default value, No, means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Tips
• When you use this requirement to tune a control system, Control System Tuner

attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
of the tuning goal (see “Algorithms” on page 9-79), is infinite for continuous-time
systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable
parameters that contribute to the feedthrough term. Control System Tuner returns an
error when fixing these tunable parameters is insufficient to enforce zero feedthrough.
In such cases, you must modify the requirement or the control structure, or manually
fix some tunable parameters of your system to values that eliminate the feedthrough
term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall
feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough

9 Control System Tuning

9-78

term of one of the blocks. If you want to control which block has feedthrough fixed to
zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 9-26.

• This tuning goal also imposes an implicit stability constraint on the closed-loop
transfer function between the specified inputs to outputs, evaluated with loops opened
at the specified loop-opening locations. The dynamics affected by this implicit
constraint are the stabilized dynamics for this tuning goal. The Minimum decay rate
and Maximum natural frequency tuning options control the lower and upper
bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the
Tuning tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning requirement is a hard constraint.

For Transient Goal, f(x) is based upon the relative gap between the tuned response and
the target response:

gap =
() - ()

()

y t y t

y t

ref

ref tr

2

2()

.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref

(deviation from steady-state value or trajectory). ◊

2
 denotes the signal energy (2-norm).

The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to
the RMS of the reference transient.

 Transient Goal

9-79

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-80

LQR/LQG Goal

Purpose
Minimize or limit Linear-Quadratic-Gaussian (LQG) cost in response to white-noise inputs,
when using Control System Tuner.

Description
LQR/LQG Goal specifies a tuning requirement for quantifying control performance as an
LQG cost. It is applicable to any control structure, not just the classical observer
structure of optimal LQG control.

The LQG cost is given by:

J = E(z(t)′ QZ z(t)).

z(t) is the system response to a white noise input vector w(t). The covariance of w(t) is
given by:

E(w(t)w(t)′) = QW.

The vector w(t) typically consists of external inputs to the system such as noise,
disturbances, or command. The vector z(t) includes all the system variables that
characterize performance, such as control signals, system states, and outputs. E(x)
denotes the expected value of the stochastic variable x.

The cost function J can also be written as an average over time:

J E
T

z t QZ z t dt
T

T
= () ()Ê

ËÁ
ˆ
¯̃Æ• Úlim ’ .

1

0

Creation

In the Tuning tab of Control System Tuner, select New Goal > LQR/LQG objective to
create an LQR/LQG Goal.

 LQR/LQG Goal

9-81

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.LQG to specify an
LQR/LQG goal.

Signal Selection
Use this section of the dialog box to specify noise input locations and performance output
locations. Also specify any locations at which to open loops for evaluating the tuning goal.

• Specify noise inputs (w)

Select one or more signal locations in your model as noise inputs. To constrain a SISO
response, select a single-valued input signal. For example, to constrain the LQG cost
for a noise input 'u' and performance output 'y', click Add signal to list and
select 'u'. To constrain the LQG cost for a MIMO response, select multiple signals or
a vector-valued signal.

• Specify performance outputs (z)

Select one or more signal locations in your model as performance outputs. To
constrain a SISO response, select a single-valued output signal. For example, to
constrain the LQG cost for a noise input 'u' and performance output 'y', click
Add signal to list and select 'y'. To constrain the LQG cost for a MIMO response,
select multiple signals or a vector-valued signal.

• Evaluate LQG objective with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

9 Control System Tuning

9-82

LQG Objective
Use this section of the dialog box to specify the noise covariance and performance
weights for the LQG goal.

• Performance weight Qz

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a
multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite
matrix. Use a diagonal matrix to independently scale or penalize the contribution of
each variable in z.

The performance weights contribute to the cost function according to:

J = E(z(t)′ Qz z(t)).

When you use the LQG goal as a hard goal, the software tries to drive the cost function
J < 1. When you use it as a soft goal, the cost function J is minimized subject to any
hard goals and its value is contributed to the overall objective function. Therefore,
select Qz values to properly scale the cost function so that driving it below 1 or
minimizing it yields the performance you require.

• Noise Covariance Qw

Covariance of the white noise input vector w(t), specified as a scalar or a matrix. Use a
scalar value to specify a multiple of the identity matrix. Otherwise specify a symmetric
nonnegative definite matrix with as many rows as there are entries in the vector w(t).
A diagonal matrix means the entries of w(t) are uncorrelated.

The covariance of w(t is given by:

E(w(t)w(t)′) = QW.

When you are tuning a control system in discrete time, the LQG goal assumes:

E(w[k]w[k]′) = QW/Ts.

Ts is the model sample time. This assumption ensures consistent results with tuning in
the continuous-time domain. In this assumption, w[k] is discrete-time noise obtained
by sampling continuous white noise w(t) with covariance QW. If in your system w[k] is
a truly discrete process with known covariance QWd, use the value Ts*QWd for the
QW value.

 LQR/LQG Goal

9-83

Options
Use this section of the dialog box to specify additional characteristics of the LQG goal.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Tips
When you use this requirement to tune a control system, Control System Tuner attempts
to enforce zero feedthrough (D = 0) on the transfer that the requirement constrains. Zero
feedthrough is imposed because the H2 norm, and therefore the value of the tuning goal,
is infinite for continuous-time systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable parameters
that contribute to the feedthrough term. Control System Tuner returns an error when
fixing these tunable parameters is insufficient to enforce zero feedthrough. In such cases,
you must modify the requirement or the control structure, or manually fix some tunable
parameters of your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one of
the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 9-26.

9 Control System Tuning

9-84

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For LQR/LQG Goal, f(x) is given by the cost function J:

J = E(z(t)′ Qz z(t)).

When you use the LQG requirement as a hard goal, the software tries to drive the cost
function J < 1. When you use it as a soft goal, the cost function J is minimized subject to
any hard goals and its value is contributed to the overall objective function. Therefore,
select Qz values to properly scale the cost function so that driving it below 1 or
minimizing it yields the performance you require.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179

 See Also

9-85

Gain Goal

Purpose
Limit gain of a specified input/output transfer function, when using Control System Tuner.

Description
Gain Goal limits the gain from specified inputs to specified outputs. If you specify multiple
inputs and outputs, Gain Goal limits the largest singular value of the transfer matrix. (See
sigma for more information about singular values.) You can specify a constant maximum
gain at all frequencies. Alternatively, you can specify a frequency-dependent gain profile.

Use Gain Goal, for example, to enforce a custom roll-off rate in a particular frequency
band. To do so, specify a maximum gain profile in that band. You can also use Gain Goal to
enforce disturbance rejection across a particular input/output pair by constraining the
gain to be less than 1.

9 Control System Tuning

9-86

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The dotted line shows the gain profile you specify. The shaded area on the plot represents
the region in the frequency domain where the gain goal is not satisfied.

By default, Gain Goal constrains a closed-loop gain. To constrain a gain computed with
one or more loops open, specify loop-opening locations in the I/O Transfer Selection
section of the dialog box.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Gain limits to create a
Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Gain to specify a
maximum gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer
function that the tuning goal constrains. Also specify any locations at which to open loops
for evaluating the tuning goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
input signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain the
largest singular value of a MIMO response, select multiple signals or a vector-valued
signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
output signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain the
largest singular value of a MIMO response, select multiple signals or a vector-valued
signal.

 Gain Goal

9-87

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Options
Use this section of the dialog box to specify additional characteristics of the gain goal.

• Limit gain to

Enter the maximum gain in the text box. You can specify a scalar value or a frequency-
dependent gain profile. To specify a frequency-dependent gain profile, enter a SISO
numeric LTI model. For example, you can specify a smooth transfer function (tf, zpk,
or ss model). Alternatively, you can sketch a piecewise maximum gain using an frd
model. When you do so, the software automatically maps the profile to a smooth
transfer function that approximates the desired minimum disturbance rejection. For
example, to specify a gain profile that rolls off at –40dB/decade in the frequency band
from 8 to 800 rad/s, enter frd([0.8 8 800],[10 1 1e-4]).

You must specify a SISO transfer function. If you specify multiple input signals or
output signals, the gain profile applies to all I/O pairs between these signals.

If you are tuning in discrete time, you can specify the maximum gain profile as a
discrete-time model with the same sampling time as you use for tuning. If you specify
the gain profile in continuous time, the tuning software discretizes it. Specifying the
gain profile in discrete time gives you more control over the gain profile near the
Nyquist frequency.

9 Control System Tuning

9-88

• Stabilize I/O transfer

By default, the tuning goal imposes a stability requirement on the closed-loop transfer
function from the specified inputs to outputs, in addition to the gain constraint. If
stability is not required or cannot be achieved, select No to remove the stability
requirement. For example, if the gain constraint applies to an unstable open-loop
transfer function, select No.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being constrained is
not scaled for relative signal amplitudes. When the choice of units results in a mix of
small and large signals, using an unscaled transfer function can lead to poor tuning
results. Set the option to Yes to provide the relative amplitudes of the input signals
and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function.
Suppose further that second input signal to the transfer function tends to be about
100 times greater than the first signal. In that case, select Yes and enter [1,100] in
the Amplitude of input signals text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled
transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are
diagonal matrices with the Amplitude of output signals and Amplitude of input
signals values on the diagonal, respectively.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

 Gain Goal

9-89

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Gain Goal, f(x) is given by:

f x W s D T s x DF o i() = () ()-

•

1
, ,

or its discrete-time equivalent. Here, T(s,x) is the closed-loop transfer function between
the specified inputs and outputs, evaluated with parameter values x. Do and Di are the

scaling matrices described in “Options” on page 9-88. ◊
•

 denotes the H∞ norm (see
getPeakGain).

The frequency weighting function WF is the regularized gain profile, derived from the
maximum gain profile you specify. The gain of WF roughly matches the inverse of the gain
profile you specify, inside the frequency band you set in the Enforce goal in frequency
range field of the tuning goal. WF is always stable and proper. Because poles of WF(s)
close to s = 0 or s = Inf might lead to poor numeric conditioning for tuning, it is not
recommended to specify maximum gain profiles with very low-frequency or very high-
frequency dynamics. For more information about regularization and its effects, see
“Visualize Tuning Goals” on page 9-189.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the
specified loop-opening locations. The dynamics affected by this implicit constraint are the
stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the

9 Control System Tuning

9-90

default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-91

Variance Goal

Purpose
Limit white-noise impact on specified output signals, when using Control System Tuner.

Description
Variance Goal imposes a noise attenuation constraint that limits the impact on specified
output signals of white noise applied at specified inputs. The noise attenuation is
measured by the ratio of the noise variance to the output variance.

For stochastic inputs with a nonuniform spectrum (colored noise), use “Weighted Variance
Goal” on page 9-124 instead.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Signal variance
attenuation to create a Variance Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Variance to
specify a constraint on noise amplification.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response outputs.
Also specify any locations at which to open loops for evaluating the tuning goal.

• Specify stochastic inputs

Select one or more signal locations in your model as noise inputs. To constrain a SISO
response, select a single-valued input signal. For example, to constrain the gain from a
location named 'u' to a location named 'y', click Add signal to list and select
'u'. To constrain the noise amplification of a MIMO response, select multiple signals
or a vector-valued signal.

• Specify stochastic outputs

9 Control System Tuning

9-92

Select one or more signal locations in your model as outputs for computing response
to the noise inputs. To constrain a SISO response, select a single-valued output signal.
For example, to constrain the gain from a location named 'u' to a location named
'y', click Add signal to list and select 'y'. To constrain the noise amplification
of a MIMO response, select multiple signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Options
Use this section of the dialog box to specify additional characteristics of the variance
goal.

• Attenuate input variance by a factor

Enter the desired noise attenuation from the specified inputs to outputs. This value
specifies the maximum ratio of noise variance to output variance.

When you tune a control system in discrete time, this requirement assumes that the
physical plant and noise process are continuous, and interprets the desired noise
attenuation as a bound on the continuous-time H2 norm. This ensures that continuous-
time and discrete-time tuning give consistent results. If the plant and noise processes
are truly discrete, and you want to bound the discrete-time H2 norm instead, multiple

the desired attenuation value by T
s

. Ts is the sample time of the model you are
tuning.

 Variance Goal

9-93

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being constrained is
not scaled for relative signal amplitudes. When the choice of units results in a mix of
small and large signals, using an unscaled transfer function can lead to poor tuning
results. Set the option to Yes to provide the relative amplitudes of the input signals
and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function.
Suppose further that second input signal to the transfer function tends to be about
100 times greater than the first signal. In that case, select Yes and enter [1,100] in
the Amplitude of input signals text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled
transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are
diagonal matrices with the Amplitude of output signals and Amplitude of input
signals values on the diagonal, respectively.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Tips
• When you use this requirement to tune a control system, Control System Tuner

attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
of the tuning goal (see “Algorithms” on page 9-95), is infinite for continuous-time
systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable
parameters that contribute to the feedthrough term. Control System Tuner returns an

9 Control System Tuning

9-94

error when fixing these tunable parameters is insufficient to enforce zero feedthrough.
In such cases, you must modify the requirement or the control structure, or manually
fix some tunable parameters of your system to values that eliminate the feedthrough
term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall
feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough
term of one of the blocks. If you want to control which block has feedthrough fixed to
zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 9-26.

• This tuning goal also imposes an implicit stability constraint on the closed-loop
transfer function between the specified inputs to outputs, evaluated with loops opened
at the specified loop-opening locations. The dynamics affected by this implicit
constraint are the stabilized dynamics for this tuning goal. The Minimum decay rate
and Maximum natural frequency tuning options control the lower and upper
bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the
Tuning tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Variance Goal, f(x) is given by:

f x T s x() = ◊ ()Attenuation , .
2

T(s,x) is the closed-loop transfer function from Input to Output. ◊

2
 denotes the H2

norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

 Variance Goal

9-95

f x
T

T z x

s

() = ()
Attenuation

, .

2

Ts is the sample time of the discrete-time transfer function T(z,x).

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-96

Reference Tracking Goal

Purpose
Make specified outputs track reference inputs with prescribed performance and fidelity,
when using Control System Tuner. Limit cross-coupling in MIMO systems.

Description
Reference Tracking Goal constrains tracking between the specified signal locations. The
constraint is satisfied when the maximum relative tracking error falls below the value you
specify at all frequencies. The relative error is the gain from reference input to tracking
error as a function of frequency.

You can specify the maximum error profile directly as a function of frequency.
Alternatively, you can specify the tracking goal a target DC error, peak error, and
response time. These parameters are converted to the following transfer function that
describes the maximum frequency-domain tracking error:

MaxError
PeakError DCError

=
() + ()

+

s

s

c

c

w

w
.

Here, ωc is 2/(response time). The following plot illustrates these relationships for an
example set of values.

 Reference Tracking Goal

9-97

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The dotted line shows the error profile you specify. The shaded area on the plot
represents the region in the frequency domain where the tuning goal is not satisfied.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Reference Tracking to
create a Reference Tracking Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Tracking to
specify a tracking goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify reference inputs

Select one or more signal locations in your model as reference signals. To constrain a
SISO response, select a single-valued reference signal. For example, to constrain the

9 Control System Tuning

9-98

response from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain a MIMO response, select multiple signals or a vector-
valued signal.

• Specify reference-tracking outputs

Select one or more signal locations in your model as reference-tracking outputs. To
constrain a SISO response, select a single-valued output signal. For example, to
constrain the step response from a location named 'u' to a location named 'y', click

 Add signal to list and select 'y'. To constrain a MIMO response, select multiple
signals or a vector-valued signal. For MIMO systems, the number of outputs must
equal the number of outputs.

• Evaluate tracking performance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Tracking Performance
Use this section of the dialog box to specify frequency-domain constraints on the tracking
error.

Response time, DC error, and peak error

Select this option to specify the tracking error in terms of response time, percent steady-
state error, and peak error across all frequencies. These parameters are converted to the
following transfer function that describes the maximum frequency-domain tracking error:

 Reference Tracking Goal

9-99

MaxError
PeakError DCError

=
() + ()

+

s

s

c

c

w

w
.

When you select this option, enter the following parameters in the text boxes:

• Response Time — Enter the target response time. The tracking bandwidth is given
by ωc = 2/Response Time. Express the target response time in the time units of your
model.

• Steady-state error (%) — Enter the maximum steady-state fractional tracking error,
expressed in percent. For MIMO tracking goals, this steady-state error applies to all
I/O pairs. The steady-state error is the DC error expressed as a percentage, DCError/
100.

• Peak error across frequency (%) — Enter the maximum fractional tracking error
across all frequencies, expressed in percent.

Maximum error as a function of frequency

Select this option to specify the maximum tracking error profile as a function of
frequency.

Enter a SISO numeric LTI model in the text box. For example, you can specify a smooth
transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise error
profile using an frd model. When you do so, the software automatically maps the error
profile to a smooth transfer function that approximates the desired error profile. For
example, to specify a maximum error of 0.01 below about 1 rad/s, gradually rising to a
peak error of 1 at 100 rad/s, enter frd([0.01 0.01 1],[0 1 100]).

For MIMO tracking goals, this error profile applies to all I/O pairs.

If you are tuning in discrete time, you can specify the maximum error profile as a
discrete-time model with the same sampling time as you use for tuning. If you specify the
attenuation profile in continuous time, the tuning software discretizes it. Specifying the
error profile in discrete time gives you more control over the profile near the Nyquist
frequency.

Options
Use this section of the dialog box to specify additional characteristics of the tracking goal.

9 Control System Tuning

9-100

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Adjust for step amplitude

For a MIMO tuning goal, when the choice of units results in a mix of small and large
signals in different channels of the response, this option allows you to specify the
relative amplitude of each entry in the vector-valued step input. This information is
used to scale the off-diagonal terms in the transfer function from reference to tracking
error. This scaling ensures that cross-couplings are measured relative to the amplitude
of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track
reference signals 'r1'and 'r2'. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less
than 0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure
this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference
signal.

The default value, No , means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

 Reference Tracking Goal

9-101

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Tracking Goal, f(x) is given by:

f x W s T s x IF() = () () -()
•

, ,

or its discrete-time equivalent. Here, T(s,x) is the closed-loop transfer function between

the specified inputs and outputs, and ◊
•

 denotes the H∞ norm (see getPeakGain). WF
is a frequency weighting function derived from the error profile you specify in the tuning
goal. The gain of WF roughly matches the inverse of the error profile for gain values
between –20 dB and 60 dB. For numerical reasons, the weighting function levels off
outside this range, unless you specify a reference model that changes slope outside this
range. This adjustment is called regularization. Because poles of WF close to s = 0 or s =
Inf might lead to poor numeric conditioning of the systune optimization problem, it is
not recommended to specify error profiles with very low-frequency or very high-frequency
dynamics. For more information about regularization and its effects, see “Visualize
Tuning Goals” on page 9-189.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the
specified loop-opening locations. The dynamics affected by this implicit constraint are the
stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

9 Control System Tuning

9-102

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Visualize Tuning Goals” on page 9-189
• “Manage Tuning Goals” on page 9-179

 See Also

9-103

Overshoot Goal
Purpose
Limit overshoot in the step response from specified inputs to specified outputs, when
using Control System Tuner.

Description
Overshoot Goal limits the overshoot in the step response between the specified signal
locations. The constraint is satisfied when the overshoot in the tuned response is less than
the target overshoot

The software maps the maximum overshoot to a peak gain constraint, assuming second-
order system characteristics. Therefore, for tuning higher-order systems, the overshoot
constraint is only approximate. In addition, the Overshoot Goal cannot reliably reduce the
overshoot below 5%.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The shaded area on the plot represents the region in the frequency domain where the
tuning goal is not satisfied.

9 Control System Tuning

9-104

Creation

In the Tuning tab of Control System Tuner, select New Goal > Maximum overshoot to
create an Overshoot Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Overshoot to
specify a step response goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for
evaluating the tuning goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step input. To
constrain a SISO response, select a single-valued input signal. For example, to
constrain the step response from a location named 'u' to a location named 'y', click

 Add signal to list and select 'u'. To constrain a MIMO response, select multiple
signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure the response to
the step input. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the step response from a location named 'u' to a location
named 'y', click Add signal to list and select 'y'. To constrain a MIMO
response, select multiple signals or a vector-valued signal. For MIMO systems, the
number of outputs must equal the number of outputs.

• Evaluate overshoot with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

 Overshoot Goal

9-105

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Options
Use this section of the dialog box to specify additional characteristics of the overshoot
goal.

• Limit % overshoot to

Enter the maximum percent overshoot. Overshoot Goal cannot reliably reduce the
overshoot below 5%

• Adjust for step amplitude

For a MIMO tuning goal, when the choice of units results in a mix of small and large
signals in different channels of the response, this option allows you to specify the
relative amplitude of each entry in the vector-valued step input. This information is
used to scale the off-diagonal terms in the transfer function from reference to tracking
error. This scaling ensures that cross-couplings are measured relative to the amplitude
of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track
reference signals 'r1'and 'r2'. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less
than 0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure
this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference
signal.

The default value, No , means no scaling is applied.
• Apply goal to

9 Control System Tuning

9-106

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Overshoot Goal, f(x) reflects the relative satisfaction or violation of the goal. The
percent deviation from f(x) = 1 roughly corresponds to the percent deviation from the
specified overshoot target. For example, f(x) = 1.2 means the actual overshoot exceeds
the target by roughly 20%, and f(x) = 0.8 means the actual overshoot is about 20% less
than the target.

Overshoot Goal uses T
•

 as a proxy for the overshoot, based on second-order model
characteristics. Here, T is the closed-loop transfer function that the requirement

constrains. The overshoot is tuned in the range from 5% (T
•

 = 1) to 100% (T
•

).
Overshoot Goal is ineffective at forcing the overshoot below 5%.

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the
specified loop-opening locations. The dynamics affected by this implicit constraint are the
stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

 Overshoot Goal

9-107

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-108

Disturbance Rejection Goal

Purpose
Attenuate disturbances at particular locations and in particular frequency bands, when
using Control System Tuner.

Description
Disturbance Rejection Goal specifies the minimum attenuation of a disturbance injected
at a specified location in a control system.

When you use this tuning goal, the software attempts to tune the system so that the
attenuation of a disturbance at the specified location exceeds the minimum attenuation
factor you specify. This attenuation factor is the ratio between the open- and closed-loop
sensitivities to the disturbance, and is a function of frequency.

The following diagram illustrates how the attenuation factor is calculated. Suppose you
specify a location in your control system, y, which is the output of a block A. In that case,
the software calculates the closed-loop sensitivity at out to a signal injected at in. The
software also calculates the sensitivity with the control loop opened at the location z.

zy
A

To specify a Disturbance Rejection Goal, you specify one or more locations at which to
attenuate disturbance. You also provide the frequency-dependent minimum attenuation
factor as a numeric LTI model. You can achieve disturbance attenuation only inside the
control bandwidth. The loop gain must be larger than one for the disturbance to be
attenuated (attenuation factor > 1).

 Disturbance Rejection Goal

9-109

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The dotted line shows the gain profile you specify. The shaded area on the plot represents
the region in the frequency domain where the tuning goal is not satisfied. The solid line is
the current corresponding response of your system.

If you prefer to specify sensitivity to disturbance at a location, rather than disturbance
attenuation, you can use “Sensitivity Goal” on page 9-114.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Disturbance rejection
to create a Disturbance Rejection Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Rejection to
specify a disturbance rejection goal.

Disturbance Scenario
Use this section of the dialog box to specify the signal locations at which to inject the
disturbance. You can also specify loop-opening locations for evaluating the tuning goal.

9 Control System Tuning

9-110

• Inject disturbances at the following locations

Select one or more signal locations in your model at which to measure the disturbance
attenuation. To constrain a SISO response, select a single-valued location. For
example, to attenuate disturbance at a location named 'y', click Add signal to
list and select 'y'. To constrain a MIMO response, select multiple signals or a vector-
valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Rejection Performance
Specify the minimum disturbance attenuation as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired attenuation
profile as a function of frequency. For example, you can specify a smooth transfer function
(tf, zpk, or ss model). Alternatively, you can sketch a piecewise minimum disturbance
rejection using an frd model. When you do so, the software automatically maps the
profile to a smooth transfer function that approximates the desired minimum disturbance
rejection. For example, to specify an attenuation factor of 100 (40 dB) below 1 rad/s, that
gradually drops to 1 (0 dB) past 10 rad/s, enter frd([100 100 1 1],[0 1 10 100]).

If you are tuning in discrete time, you can specify the attenuation profile as a discrete-
time model with the same sampling time as you use for tuning. If you specify the
attenuation profile in continuous time, the tuning software discretizes it. Specifying the
attenuation profile in discrete time gives you more control over the profile near the
Nyquist frequency.

 Disturbance Rejection Goal

9-111

Options
Use this section of the dialog box to specify additional characteristics of the disturbance
rejection goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

Regardless of the limits you enter, a disturbance rejection goal can only be enforced
within the control bandwidth.

• Equalize cross-channel effects

For multiloop or MIMO disturbance rejection requirements, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-
loop transfer function. Select Off to disable such scaling and shape the unscaled
open-loop response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.

9 Control System Tuning

9-112

The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Disturbance Rejection Goal, f(x) is given by:

f x W j S j xS() = () ()
Œ •

max , ,
w

w w
W

or its discrete-time equivalent. Here, S(jω,x) is the closed-loop sensitivity function
measured at the disturbance location. Ω is the frequency interval over which the
requirement is enforced, specified in the Enforce goal in frequency range field. WS is a
frequency weighting function derived from the attenuation profile you specify. The gains
of WS and the specified profile roughly match for gain values ranging from –20 dB to 60
dB. For numerical reasons, the weighting function levels off outside this range, unless the
specified gain profile changes slope outside this range. This adjustment is called
regularization. Because poles of WS close to s = 0 or s = Inf might lead to poor numeric
conditioning for tuning, it is not recommended to specify loop shapes with very low-
frequency or very high-frequency dynamics.For more information about regularization
and its effects, see “Visualize Tuning Goals” on page 9-189.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-113

Sensitivity Goal

Purpose
Limit sensitivity of feedback loops to disturbances, when using Control System Tuner.

Description
Sensitivity Goal limits the sensitivity of a feedback loop to disturbances. You specify the
maximum sensitivity as a function of frequency. Constrain the sensitivity to be smaller
than one at frequencies where you need good disturbance rejection.

To specify a Sensitivity Goal, you specify one or more locations at which to limit
sensitivity. You also provide the frequency-dependent maximum sensitivity as a numeric
LTI model whose magnitude represents the desired sensitivity as a function of frequency.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated.
The dotted line shows the gain profile you specify. The shaded area on the plot represents
the region in the frequency domain where the tuning goal is not satisfied.

9 Control System Tuning

9-114

If you prefer to specify disturbance attenuation at a particular location, rather than
sensitivity to disturbance, you can use “Disturbance Rejection Goal” on page 9-109.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Sensitivity of feedback
loops to create a Sensitivity Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Sensitivity to
specify a disturbance rejection goal.

Sensitivity Evaluation
Use this section of the dialog box to specify the signal locations at which to compute the
sensitivity to disturbance. You can also specify loop-opening locations for evaluating the
tuning goal.

• Measure sensitivity at the following locations

Select one or more signal locations in your model at which to measure the sensitivity
to disturbance. To constrain a SISO response, select a single-valued location. For
example, to limit sensitivity at a location named 'y', click Add signal to list and
select 'y'. To constrain a MIMO response, select multiple signals or a vector-valued
signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

 Sensitivity Goal

9-115

Sensitivity Bound
Specify the maximum sensitivity as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired sensitivity
bound as a function of frequency. For example, you can specify a smooth transfer function
(tf, zpk, or ss model). Alternatively, you can sketch a piecewise maximum sensitivity
using an frd model. When you do so, the software automatically maps the profile to a
smooth transfer function that approximates the desired sensitivity. For example, to specify
a sensitivity that rolls up at 20 dB per decade and levels off at unity above 1 rad/s, enter
frd([0.01 1 1],[0.001 0.1 100]).

If you are tuning in discrete time, you can specify the maximum sensitivity profile as a
discrete-time model with the same sampling time as you use for tuning. If you specify the
sensitivity profile in continuous time, the tuning software discretizes it. Specifying the
profile in discrete time gives you more control over the profile near the Nyquist
frequency.

Options
Use this section of the dialog box to specify additional characteristics of the sensitivity
goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Equalize cross-channel effects

For multiloop or MIMO sensitivity requirements, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-
loop transfer function. Select Off to disable such scaling and shape the unscaled
open-loop response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-

9 Control System Tuning

9-116

parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Sensitivity Goal, f(x) is given by:

f x W s S s xS() = () ()
•

, ,

or its discrete-time equivalent. Here, S(s,x) is the closed-loop sensitivity function

measured at the location specified in the tuning goal. ◊
•

 denotes the H∞ norm (see
norm). WS is a frequency weighting function derived from the sensitivity profile you
specify. The gain of WS roughly matches the inverse of the specified profile for gain values
ranging from –20 dB to 60 dB. For numerical reasons, the weighting function levels off
outside this range, unless the specified gain profile changes slope outside this range. This
adjustment is called regularization. Because poles of WS close to s = 0 or s = Inf might
lead to poor numeric conditioning for tuning, it is not recommended to specify sensitivity
profiles with very low-frequency or very high-frequency dynamics.For more information
about regularization and its effects, see “Visualize Tuning Goals” on page 9-189.

Implicit Constraint

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized

 Sensitivity Goal

9-117

dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-118

Weighted Gain Goal
Purpose
Frequency-weighted gain limit for tuning with Control System Tuner.

Description
Weighted Gain Goal limits the gain of the frequency-weighted transfer function
WL(s)H(s)WR(s), where H(s) is the transfer function between inputs and outputs you
specify. WL(s) and WR(s) are weighting functions that you can use to emphasize
particular frequency bands. Weighted Gain Goal constrains the peak gain of
WL(s)H(s)WR(s) to values less than 1. If H(s) is a MIMO transfer function, Weighted Gain
Goal constrains the largest singular value of H(s).

By default, Weighted Gain Goal constrains a closed-loop gain. To constrain a gain
computed with one or more loops open, specify loop-opening locations in the I/O
Transfer Selection section of the dialog box.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Frequency-weighted
gain limit to create a Weighted Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.WeightedGain to
specify a weighted gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer
function that the tuning goal constrains. Also specify any locations at which to open loops
for evaluating the tuning goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
input signal. For example, to constrain the gain from a location named 'u' to a

 Weighted Gain Goal

9-119

location named 'y', click Add signal to list and select 'u'. To constrain the
largest singular value of a MIMO response, select multiple signals or a vector-valued
signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
output signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain the
largest singular value of a MIMO response, select multiple signals or a vector-valued
signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-
weighting functions for the tuning goal. The tuning goal ensures that the gain H(s) from
the specified input to output satisfies the inequality:

||WL(s)H(s)WR(s)||∞ < 1.

WL provides the weighting for the output channels of H(s), and WR provides the
weighting for the input channels. You can specify scalar weights or frequency-dependent
weighting. To specify a frequency-dependent weighting, use a numeric LTI model whose

9 Control System Tuning

9-120

magnitude represents the desired weighting function. For example, enter tf(1,[1
0.01]) to specify a high weight at low frequencies that rolls off above 0.01 rad/s.

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting
functions automatically expand to any input or output dimension. You can specify different
weights for each channel by specifying matrices or MIMO weighting functions. The
dimensions H(s) must be commensurate with the dimensions of WL and WR. For example,
if the constrained transfer function has two inputs, you can specify diag([1 10]) as
WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time
models with the same sampling time as you use for tuning. If you specify the weighting
functions in continuous time, the tuning software discretizes them. Specifying the
weighting functions in discrete time gives you more control over the weighting functions
near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the weighted
gain goal.

• Stabilize I/O transfer

By default, the tuning goal imposes a stability requirement on the closed-loop transfer
function from the specified inputs to outputs, in addition to the gain constraint. If
stability is not required or cannot be achieved, select No to remove the stability
requirement. For example, if the gain constraint applies to an unstable open-loop
transfer function, select No.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To

 Weighted Gain Goal

9-121

enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Weighted Gain Goal, f(x) is given by:

f x WL H s x WR() = ()
•

, .

H(s,x) is the closed-loop transfer function between the specified inputs and outputs,

evaluated with parameter values x. Here, ◊
•

 denotes the H∞ norm (see getPeakGain).

This tuning goal also imposes an implicit stability constraint on the weighted closed-loop
transfer function between the specified inputs to outputs, evaluated with loops opened at
the specified loop-opening locations. The dynamics affected by this implicit constraint are
the stabilized dynamics for this tuning goal. The Minimum decay rate and Maximum
natural frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39

9 Control System Tuning

9-122

• “Visualize Tuning Goals” on page 9-189
• “Manage Tuning Goals” on page 9-179

 See Also

9-123

Weighted Variance Goal

Purpose
Frequency-weighted limit on noise impact on specified output signals for tuning with
Control System Tuner.

Description
Weighted Variance Goal limits the noise impact on the outputs of the frequency-weighted
transfer function WL(s)H(s)WR(s), where H(s) is the transfer function between inputs and
outputs you specify. WL(s) and WR(s) are weighting functions you can use to model a
noise spectrum or emphasize particular frequency bands. Thus, you can use Weighted
Variance Goal to tune the system response to stochastic inputs with a nonuniform
spectrum such as colored noise or wind gusts.

Weighted Variance minimizes the response to noise at the inputs by minimizing the H2
norm of the frequency-weighted transfer function. The H2 norm measures:

• The total energy of the impulse response, for deterministic inputs to the transfer
function.

• The square root of the output variance for a unit-variance white-noise input, for
stochastic inputs to the transfer function. Equivalently, the H2 norm measures the root-
mean-square of the output for such input.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Frequency-weighted
variance attenuation to create a Weighted Variance Goal.

Command-Line Equivalent

When tuning control systems at the command line, use
TuningGoal.WeightedVariance to specify a weighted gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response outputs.
Also specify any locations at which to open loops for evaluating the tuning goal.

9 Control System Tuning

9-124

• Specify stochastic inputs

Select one or more signal locations in your model as noise inputs. To constrain a SISO
response, select a single-valued input signal. For example, to constrain the gain from a
location named 'u' to a location named 'y', click Add signal to list and select
'u'. To constrain the noise amplification of a MIMO response, select multiple signals
or a vector-valued signal.

• Specify stochastic outputs

Select one or more signal locations in your model as outputs for computing response
to the noise inputs. To constrain a SISO response, select a single-valued output signal.
For example, to constrain the gain from a location named 'u' to a location named
'y', click Add signal to list and select 'y'. To constrain the noise amplification
of a MIMO response, select multiple signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-
weighting functions for the tuning goal.

WL provides the weighting for the output channels of H(s), and WR provides the
weighting for the input channels.

 Weighted Variance Goal

9-125

You can specify scalar weights or frequency-dependent weighting. To specify a frequency-
dependent weighting, use a numeric LTI model whose magnitude represents the desired
weighting as a function of frequency. For example, enter tf(1,[1 0.01]) to specify a
high weight at low frequencies that rolls off above 0.01 rad/s. To limit the response to a
nonuniform noise distribution, enter as WR an LTI model whose magnitude represents the
noise spectrum.

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting
functions automatically expand to any input or output dimension. You can specify different
weights for each channel by specifying MIMO weighting functions. The dimensions H(s)
must be commensurate with the dimensions of WL and WR. For example, if the
constrained transfer function has two inputs, you can specify diag([1 10]) as WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time
models with the same sampling time as you use for tuning. If you specify the weighting
functions in continuous time, the tuning software discretizes them. Specifying the
weighting functions in discrete time gives you more control over the weighting functions
near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the weighted
variance goal.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

9 Control System Tuning

9-126

Tips
• When you use this requirement to tune a control system, Control System Tuner

attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
of the tuning goal (see “Algorithms” on page 9-127), is infinite for continuous-time
systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable
parameters that contribute to the feedthrough term. Control System Tuner returns an
error when fixing these tunable parameters is insufficient to enforce zero feedthrough.
In such cases, you must modify the requirement or the control structure, or manually
fix some tunable parameters of your system to values that eliminate the feedthrough
term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall
feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough
term of one of the blocks. If you want to control which block has feedthrough fixed to
zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 9-26.

• This tuning goal also imposes an implicit stability constraint on the weighted closed-
loop transfer function between the specified inputs to outputs, evaluated with loops
opened at the specified loop-opening locations. The dynamics affected by this implicit
constraint are the stabilized dynamics for this tuning goal. The Minimum decay rate
and Maximum natural frequency tuning options control the lower and upper
bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the
Tuning tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Weighted Variance Goal, f(x) is given by:

 Weighted Variance Goal

9-127

f x WL H s x WR() = (), .
2

H(s,x) is the closed-loop transfer function between the specified inputs and outputs,

evaluated with parameter values x. ◊

2
 denotes the H2 norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

f x
T

WL z H z x WR z

s

() = () () ()
1

2
, .

Ts is the sample time of the discrete-time transfer function H(z,x).

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Visualize Tuning Goals” on page 9-189
• “Manage Tuning Goals” on page 9-179

9 Control System Tuning

9-128

Minimum Loop Gain Goal

Purpose
Boost gain of feedback loops at low frequency when using Control System Tuner.

Description
Minimum Loop Gain Goal enforces a minimum loop gain in a particular frequency band.
This tuning goal is useful, for example, for improving disturbance rejection at a particular
location.

Minimum Loop Gain Goal imposes a minimum gain on the open-loop frequency response
(L) at a specified location in your control system. You specify the minimum open-loop gain
as a function of frequency (a minimum gain profile). For MIMO feedback loops, the
specified gain profile is interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum
gain constraint on the inverse of the sensitivity function, inv(S) = (I + L).

The following figure shows a typical specified minimum gain profile (dashed line) and a
resulting tuned loop gain, L (blue line). The green region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much larger than
1, imposing a minimum gain on inv(S) is a good proxy for a minimum open-loop gain.

 Minimum Loop Gain Goal

9-129

Minimum Loop Gain Goal is a constraint on the open-loop gain of the specified control
loop. Thus, the loop gain is computed with the loop open at the specified location. To
compute the gain with loop openings at other points in the control system, use the
Compute response with the following loops open option in the Open-Loop
Response Selection section of the dialog box.

Minimum Loop Gain Goal and Maximum Loop Gain Goal specify only low-gain or high-
gain constraints in certain frequency bands. When you use these requirements, the
software determines the best loop shape near crossover. When the loop shape near
crossover is simple or well understood (such as integral action), you can use “Loop Shape
Goal” on page 9-141 to specify that target loop shape.

9 Control System Tuning

9-130

Creation

In the Tuning tab of Control System Tuner, select New Goal > Minimum gain for
open-loop response to create a Minimum Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.MinLoopGain to
specify a minimum loop gain goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the
open-loop gain. You can also specify additional loop-opening locations for evaluating the
tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain
the open-loop gain. To constrain a SISO response, select a single-valued location. For
example, to constrain the open-loop gain at a location named 'y', click Add signal
to list and select 'y'. To constrain a MIMO response, select multiple signals or a
vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

 Minimum Loop Gain Goal

9-131

Desired Loop Gain
Use this section of the dialog box to specify the target minimum loop gain.

• Pure integrator K/s

Check to specify a pure integrator shape for the target minimum loop gain. The
software chooses the integrator constant, K, based on the values you specify for a
target minimum gain and frequency. For example, to specify an integral gain profile
with crossover frequency 10 rad/s, enter 1 in the Choose K to keep gain above text
box. Then, enter 10 in the at the frequency text box. The software chooses the
integrator constant such that the minimum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the minimum gain profile as a function of frequency. Enter a SISO
numeric LTI model whose magnitude represents the desired gain profile. For example,
you can specify a smooth transfer function (tf, zpk, or ss model). Alternatively, you
can sketch a piecewise target loop gain using an frd model. When you do so, the
software automatically maps the profile to a smooth transfer function that
approximates the desired minimum loop gain. For example, to specify minimum gain
of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies,
enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the minimum gain profile as a
discrete-time model with the same sampling time as you use for tuning. If you specify
the gain profile in continuous time, the tuning software discretizes it. Specifying the
profile in discrete time gives you more control over the profile near the Nyquist
frequency.

Options
Use this section of the dialog box to specify additional characteristics of the minimum
loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

9 Control System Tuning

9-132

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer
function from the specified inputs to outputs, in addition to the gain constraint. If
stability is not required or cannot be achieved, select No to remove the stability
requirement. For example, if the gain constraint applies to an unstable open-loop
transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically
rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop transfer
function. Select Off to disable such scaling and shape the unscaled open-loop
response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Minimum Loop Gain Goal, f(x) is given by:

f x W D SDS() = ()-

•

1
.

 Minimum Loop Gain Goal

9-133

D is a diagonal scaling (for MIMO loops). S is the sensitivity function at Location. WS is
a frequency-weighting function derived from the minimum loop gain profile you specify.
The gain of this function roughly matches the specified loop gain for values ranging from
–20 dB to 60 dB. For numerical reasons, the weighting function levels off outside this
range, unless the specified gain profile changes slope outside this range. This adjustment
is called regularization. Because poles of WS close to s = 0 or s = Inf might lead to poor
numeric conditioning for tuning, it is not recommended to specify gain profiles with very
low-frequency or very high-frequency dynamics. For more information about
regularization and its effects, see “Visualize Tuning Goals” on page 9-189.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing a
lower bound on the open-loop transfer function, L, in a frequency band where the gain of
L is greater than 1. To see why, note that S = 1/(1 + L). For SISO loops, when |L| >> 1, |S
| ≈ 1/|L|. Therefore, enforcing the open-loop minimum gain requirement, |L| > |WS|, is
roughly equivalent to enforcing |WsS| < 1. For MIMO loops, similar reasoning applies,
with ||S|| ≈ 1/σmin(L), where σmin is the smallest singular value.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-134

Maximum Loop Gain Goal

Purpose
Suppress gain of feedback loops at high frequency when using Control System Tuner.

Description
Maximum Loop Gain Goal enforces a maximum loop gain in a particular frequency band.
This tuning goal is useful, for example, for increasing system robustness to unmodeled
dynamics.

Maximum Loop Gain Goal imposes a maximum gain on the open-loop frequency response
(L) at a specified location in your control system. You specify the maximum open-loop gain
as a function of frequency (a maximum gain profile). For MIMO feedback loops, the
specified gain profile is interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum
gain constraint on the complementary sensitivity function, T) = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed line) and a
resulting tuned loop gain, L (blue line). The shaded region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much smaller
than 1, imposing a maximum gain on T is a good proxy for a maximum open-loop gain.

 Maximum Loop Gain Goal

9-135

Maximum Loop Gain Goal is a constraint on the open-loop gain of the specified control
loop. Thus, the loop gain is computed with the loop open at the specified location. To
compute the gain with loop openings at other points in the control system, use the
Compute response with the following loops open option in the Open-Loop
Response Selection section of the dialog box.

Maximum Loop Gain Goal and Minimum Loop Gain Goal specify only high-gain or low-
gain constraints in certain frequency bands. When you use these requirements, the
software determines the best loop shape near crossover. When the loop shape near
crossover is simple or well understood (such as integral action), you can use “Loop Shape
Goal” on page 9-141 to specify that target loop shape.

9 Control System Tuning

9-136

Creation

In the Tuning tab of Control System Tuner, select New Goal > Maximum gain for
open-loop response to create a Maximum Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.MaxLoopGain to
specify a maximum loop gain goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the
open-loop gain. You can also specify additional loop-opening locations for evaluating the
tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain
the open-loop gain. To constrain a SISO response, select a single-valued location. For
example, to constrain the open-loop gain at a location named 'y', click Add signal
to list and select 'y'. To constrain a MIMO response, select multiple signals or a
vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

 Maximum Loop Gain Goal

9-137

Desired Loop Gain
Use this section of the dialog box to specify the target maximum loop gain.

• Pure integrator K/s

Check to specify a pure integrator shape for the target maximum loop gain. The
software chooses the integrator constant, K, based on the values you specify for a
target maximum gain and frequency. For example, to specify an integral gain profile
with crossover frequency 10 rad/s, enter 1 in the Choose K to keep gain below text
box. Then, enter 10 in the at the frequency text box. The software chooses the
integrator constant such that the maximum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the maximum gain profile as a function of frequency. Enter a SISO
numeric LTI model whose magnitude represents the desired gain profile. For example,
you can specify a smooth transfer function (tf, zpk, or ss model). Alternatively, you
can sketch a piecewise target loop gain using an frd model. When you do so, the
software automatically maps the profile to a smooth transfer function that
approximates the desired maximum loop gain. For example, to specify maximum gain
of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies,
enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the maximum gain profile as a
discrete-time model with the same sampling time as you use for tuning. If you specify
the gain profile in continuous time, the tuning software discretizes it. Specifying the
profile in discrete time gives you more control over the profile near the Nyquist
frequency.

Options
Use this section of the dialog box to specify additional characteristics of the maximum
loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

9 Control System Tuning

9-138

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer
function from the specified inputs to outputs, in addition to the gain constraint. If
stability is not required or cannot be achieved, select No to remove the stability
requirement. For example, if the gain constraint applies to an unstable open-loop
transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically
rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop transfer
function. Select Off to disable such scaling and shape the unscaled open-loop
response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Maximum Loop Gain Goal, f(x) is given by:

f x W D TDT() = ()-

•

1
.

 Maximum Loop Gain Goal

9-139

Here, D is a diagonal scaling (for MIMO loops). T is the complementary sensitivity
function at the specified location. WT is a frequency-weighting function derived from the
maximum loop gain profile you specify. The gain of this function roughly matches the
inverse of the specified loop gain for values ranging from –60 dB to 20 dB. For numerical
reasons, the weighting function levels off outside this range, unless the specified gain
profile changes slope outside this range. This adjustment is called regularization. Because
poles of WT close to s = 0 or s = Inf might lead to poor numeric conditioning for tuning,
it is not recommended to specify gain profiles with very low-frequency or very high-
frequency dynamics. For more information about regularization and its effects, see
“Visualize Tuning Goals” on page 9-189.

Although T is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing an
upper bound on the open-loop transfer, L, in a frequency band where the gain of L is less
than one. To see why, note that T = L/(I + L). For SISO loops, when |L| << 1, |T| ≈ |L|.
Therefore, enforcing the open-loop maximum gain requirement, |L| < 1/|WT|, is roughly
equivalent to enforcing |WTT| < 1. For MIMO loops, similar reasoning applies, with ||T|| ≈
σmax(L), where σmax is the largest singular value.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-140

Loop Shape Goal

Purpose
Shape open-loop response of feedback loops when using Control System Tuner.

Description
Loop Shape Goal specifies a target gain profile (gain as a function of frequency) of an
open-loop response. Loop Shape Goal constrains the open-loop, point-to-point response
(L) at a specified location in your control system.

When you tune a control system, the target open-loop gain profile is converted into
constraints on the inverse sensitivity function inv(S) = (I + L) and the complementary
sensitivity function T = 1–S. These constraints are illustrated for a representative tuned
system in the following figure.

 Loop Shape Goal

9-141

Where L is much greater than 1, a minimum gain constraint on inv(S) (green shaded
region) is equivalent to a minimum gain constraint on L. Similarly, where L is much
smaller than 1, a maximum gain constraint on T (red shaded region) is equivalent to a
maximum gain constraint on L. The gap between these two constraints is twice the
crossover tolerance, which specifies the frequency band where the loop gain can cross 0
dB.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater
than 1 are interpreted as minimum performance requirements. Such values are lower

9 Control System Tuning

9-142

bounds on the smallest singular value of the open-loop response. Gain profile values less
than one are interpreted as minimum roll-off requirements, which are upper bounds on
the largest singular value of the open-loop response. For more information about singular
values, see sigma.

Use Loop Shape Goal when the loop shape near crossover is simple or well understood
(such as integral action). To specify only high gain or low gain constraints in certain
frequency bands, use “Minimum Loop Gain Goal” on page 9-129 or “Maximum Loop Gain
Goal” on page 9-135. When you do so, the software determines the best loop shape near
crossover.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Target shape for open-
loop response to create a Loop Shape Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.LoopShape to
specify a loop-shape goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the
open-loop gain. You can also specify additional loop-opening locations for evaluating the
tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain
the open-loop gain. To constrain a SISO response, select a single-valued location. For
example, to constrain the open-loop gain at a location named 'y', click Add signal
to list and select 'y'. To constrain a MIMO response, select multiple signals or a
vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

 Loop Shape Goal

9-143

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Desired Loop Shape
Use this section of the dialog box to specify the target loop shape.

• Pure integrator wc/s

Check to specify a pure integrator and crossover frequency for the target loop shape.
For example, to specify an integral gain profile with crossover frequency 10 rad/s,
enter 10 in the Crossover frequency wc text box.

• Other gain profile

Check to specify the target loop shape as a function of frequency. Enter a SISO
numeric LTI model whose magnitude represents the desired gain profile. For example,
you can specify a smooth transfer function (tf, zpk, or ss model). Alternatively, you
can sketch a piecewise target loop shape using an frd model. When you do so, the
software automatically maps the profile to a smooth transfer function that
approximates the desired loop shape. For example, to specify a target loop shape of
100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/decade at higher
frequencies, enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the loop shape as a discrete-time
model with the same sample time that you are using for tuning. If you specify the loop
shape in continuous time, the tuning software discretizes it. Specifying the loop shape
in discrete time gives you more control over the loop shape near the Nyquist
frequency.

Options
Use this section of the dialog box to specify additional characteristics of the loop shape
goal.

• Enforce loop shape within

9 Control System Tuning

9-144

Specify the tolerance in the location of the crossover frequency, in decades. For
example, to allow gain crossovers within half a decade on either side of the target
crossover frequency, enter 0.5. Increase the crossover tolerance to increase the ability
of the tuning algorithm to enforce the target loop shape for all loops in a MIMO
control system.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer
function from the specified inputs to outputs, in addition to the gain constraint. If
stability is not required or cannot be achieved, select No to remove the stability
requirement. For example, if the gain constraint applies to an unstable open-loop
transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically
rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop transfer
function. Select Off to disable such scaling and shape the unscaled open-loop
response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

 Loop Shape Goal

9-145

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Loop Shape Goal, f(x) is given by:

f x
W S

W T

S

T

() =

•

.

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. (If Equalize loop interactions is set
to Off, then D = I.)

T = S – I is the complementary sensitivity function.

WS and WT are frequency weighting functions derived from the specified loop shape. The
gains of these functions roughly match your specified loop shape and its inverse,
respectively, for values ranging from –20 dB to 60 dB. For numerical reasons, the
weighting functions level off outside this range, unless the specified gain profile changes
slope outside this range. Because poles of WS or WT close to s = 0 or s = Inf might lead
to poor numeric conditioning for tuning, it is not recommended to specify loop shapes
with very low-frequency or very high-frequency dynamics. For more information about
regularization and its effects, see “Visualize Tuning Goals” on page 9-189.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the

9 Control System Tuning

9-146

default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-147

Margins Goal

Purpose
Enforce specified gain and phase margins when using Control System Tuner.

Description
Margins Goal enforces specified gain and phase margins on a SISO or MIMO feedback
loop. For MIMO feedback loops, the gain and phase margins are based on the notion of
disk margins, which guarantee stability for concurrent gain and phase variations in all
feedback channels. See loopmargin for more information about disk margins.

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain where the margins goal is not met. For more information about
interpreting this plot, see “Stability Margins in Control System Tuning” on page 9-218.

9 Control System Tuning

9-148

Creation

In the Tuning tab of Control System Tuner, select New Goal > Minimum stability
margins to create a Margins Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Margins to specify
a stability margin goal.

Feedback Loop Selection
Use this section of the dialog box to specify the signal locations at which to measure
stability margins. You can also specify additional loop-opening locations for evaluating the
tuning goal.

• Measure stability margins at the following locations

Select one or more signal locations in your model at which to compute and constrain
the stability margins. To constrain a SISO loop, select a single-valued location. For
example, to constrain the stability margins at a location named 'y', click Add
signal to list and select 'y'. To constrain a MIMO loop, select multiple signals or a
vector-valued signal.

• Measure stability margins with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

 Margins Goal

9-149

Desired Margins
Use this section of the dialog box to specify the minimum gain and phase margins for the
feedback loop.

• Gain margin (dB)

Enter the required minimum gain margin for the feedback loop as a scalar value
expressed in dB.

• Phase margin (degrees)

Enter the required minimum phase margin for the feedback loop as a scalar value
expressed in degrees.

For MIMO feedback loops, the gain and phase margins are based on the notion of disk
margins, which guarantee stability for concurrent gain and phase variations in all
feedback channels. See loopmargin for more information about disk margins.

Options
Use this section of the dialog box to specify additional characteristics of the stability
margin goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

For best results with stability margin requirements, pick a frequency band extending
about one decade on each side of the gain crossover frequencies.

• D scaling order

This value controls the order (number of states) of the scalings involved in computing
MIMO stability margins. Static scalings (scaling order 0) are used by default.
Increasing the order may improve results at the expense of increased computations. If
the stability margin plot shows a large gap between the optimized and actual margins,
consider increasing the scaling order. See “Stability Margins in Control System
Tuning” on page 9-218.

9 Control System Tuning

9-150

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Margins Goal, f(x) is given by:

f x S I() = -
•

2a a .

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor.

α is a scalar parameter computed from the specified gain and phase margin.

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity
function measured at the specified, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural
frequency tuning options control the lower and upper bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options
to change the defaults.

 Margins Goal

9-151

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

More About
• “Stability Margins in Control System Tuning” on page 9-218

9 Control System Tuning

9-152

Passivity Goal

Purpose
Enforce passivity of specific input/output map when using Control System Tuner.

Description
Passivity Goal enforces passivity of the response of the transfer function between the
specified signal locations. A system is passive if all its I/O trajectories (u(t),y(t)) satisfy:

y t u t dt
T

() () >Ú
T

0
0,

for all T > 0. Equivalently, a system is passive if its frequency response is positive real,
which means that for all ω > 0,

G j G j
H

w w() + () > 0

Passivity Goal creates a constraint that enforces:

y t u t dt u t u t dt y t y t dt
T T T

() () > () () + () ()Ú Ú ÚT T T

0 0 0
n r ,

for all T > 0. To enforce the overall passivity condition, set the minimum input passivity
index (ν) and the minimum output passivity index (ρ) to zero. To enforce an excess of
passivity at the inputs or outputs, set ν or ρ to a positive value. To permit a shortage of
passivity, set ν or ρ to a negative value. See “About Passivity and Passivity Indices”
(Control System Toolbox) for more information about these indices.

 Passivity Goal

9-153

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain in which the tuning goal is not met. The plot shows the value of the
index described in “Algorithms” on page 9-156.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Passivity Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Passivity to
specify a passivity constraint.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer
function that the tuning goal constrains. Also specify any locations at which to open loops
for evaluating the tuning goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued

9 Control System Tuning

9-154

input signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
output signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Options
Use this section of the dialog box to specify additional characteristics of the passivity
goal.

• Minimum input passivity index

Enter the target value of ν in the text box. To enforce an excess of passivity at the
specified inputs, set ν > 0. To permit a shortage of passivity, set ν < 0. By default, the
passivity goal enforces ν = 0, passive at the inputs with no required excess of
passivity.

• Minimum output passivity index

 Passivity Goal

9-155

Enter the target value of ρ in the text box. To enforce an excess of passivity at the
specified outputs, set ρ > 0. To permit a shortage of passivity, set ρ < 0. By default, the
passivity goal enforces ρ = 0, passive at the outputs with no required excess of
passivity.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Passivity Goal, for a closed-loop transfer function G(s,x) from the specified inputs to
the specified outputs, f(x) is given by:

f x
R

R R
R() =

+
=

1
10

6

max

max
, .

9 Control System Tuning

9-156

R is the relative sector index (see getSectorIndex) of [G(s,x); I], for the sector
represented by:

Q
I

I
=

-
-

Ê

Ë
Á

ˆ

¯
˜

2

2

r
n

,

where ρ is the minimum output passivity index and ν is the minimum input passivity index
specified in the dialog box. Rmax is fixed at 106, included to avoid numeric errors for very
large R.

This tuning goal imposes an implicit minimum-phase constraint on the transfer function G
+ I. The transmission zeros of G + I are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the
lower and upper bounds on these implicitly constrained dynamics. If the optimization fails
to meet the default bounds, or if the default bounds conflict with other requirements, on
the Tuning tab, use Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189
• “Passive Control of Water Tank Level” (Control System Toolbox)
• “About Passivity and Passivity Indices” (Control System Toolbox)

 See Also

9-157

Conic Sector Goal

Purpose
Enforce sector bound on specific input/output map when using Control System Tuner.

Description
Conic Sector Goal creates a constraint that restricts the output trajectories of a system. If
for all nonzero input trajectories u(t), the output trajectory z(t) = (Hu)(t) of a linear
system H satisfies:

z t Q z t dt
T

() () <Ú
T

0
0,

for all T ≥ 0, then the output trajectories of H lie in the conic sector described by the
symmetric indefinite matrix Q. Selecting different Q matrices imposes different conditions
on the system response. When you create a Conic Sector Goal, you specify the input
signals, output signals, and the sector geometry.

9 Control System Tuning

9-158

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain in which the tuning goal is not met. The plot shows the value of the R-
index described in “About Sector Bounds and Sector Indices” (Control System Toolbox).

Creation

In the Tuning tab of Control System Tuner, select New Goal > Conic Sector Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.ConicSector to
specify a step response goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer
function that the tuning goal constrains. Also specify any locations at which to open loops
for evaluating the tuning goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
input signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
output signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

 Conic Sector Goal

9-159

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Options
Specify additional characteristics of the conic sector goal using this section of the dialog
box.

• Conic Sector Matrix

Enter the sector geometry Q, specified as:

• A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny
on a side, where ny is the number of output signals you specify for the goal. The
matrix Q must be indefinite to describe a well-defined conic sector. An indefinite
matrix has both positive and negative eigenvalues. In particular, Q must have as
many negative eigenvalues as there are input signals specified for the tuning goal
(the size of the vector input signal u(t)).

• An LTI model, for frequency-dependent sector geometry. Q satisfies Q(s)’ = Q(–s). In
other words, Q(s) evaluates to a Hermitian matrix at each frequency.

For more information, see “About Sector Bounds and Sector Indices” (Control System
Toolbox).

• Regularization

Regularization parameter, specified as a real nonnegative scalar value. Regularization
keeps the evaluation of the tuning goal numerically tractable when other tuning goals
tend to make the sector bound ill-conditioned at some frequencies. When this
condition occurs, set Regularization to a small (but not negligible) fraction of the
typical norm of the feedthrough term in H. For example, if you anticipate the norm of
the feedthrough term of H to be of order 1 during tuning, try setting Regularization
to 0.001.

For more information about the conditions that require regularization, see the
Regularization property of TuningGoal.ConicSector.

9 Control System Tuning

9-160

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Tips
Constraining Input and Output Trajectories to Conic Sector

Consider the following control system.

−

C G ye+ ur

Suppose that the signal u is marked as an analysis point in the model you are tuning.
Suppose also that G is the closed-loop transfer function from u to y. A common application
is to create a tuning goal that constrains all the I/O trajectories {u(t),y(t)} of G to satisfy:

 Conic Sector Goal

9-161

y t

u t
Q

y t

u t
dt

T ()
()

Ê

Ë
ÁÁ

ˆ

¯
˜̃

()
()

Ê

Ë
ÁÁ

ˆ

¯
˜̃ <Ú0 0

T

,

for all T ≥ 0. Constraining the I/O trajectories of G is equivalent to restricting the output
trajectories z(t) of the system H = [G;I] to the sector defined by:

z t Q z t dt
T

() () <Ú
T

0
0.

(See “About Sector Bounds and Sector Indices” (Control System Toolbox) for more details
about this equivalence.) To specify a constraint of this type using Conic Sector Goal,
specify u as the input signal, and specify y and u as output signals. When you specify u as
both input and output, Conic Sector Goal sets the corresponding transfer function to the
identity. Therefore, the transfer function that the goal constrains is H = [G;I] as intended.
This treatment is specific to Conic Sector Goal. For other tuning goals, when the same
signal appears in both inputs and outputs, the resulting transfer function is zero in the
absence of feedback loops, or the complementary sensitivity at that location otherwise.
This result occurs because when the software processes analysis points, it assumes that
the input is injected after the output. See “Mark Signals of Interest for Control System
Analysis and Design” on page 2-51 for more information about how analysis points work.

Algorithms
Let

Q W W W W= -
1 1 2 2

T T

be an indefinite factorization of Q, where W W
1 2

0
T

= . If W H s
2

T () is square and minimum
phase, then the time-domain sector bound

z t Q z t dt
T

() () <Ú
T

0
0,

is equivalent to the frequency-domain sector condition,

H j QH j-() () <w w 0

9 Control System Tuning

9-162

for all frequencies. Conic Sector Goal uses this equivalence to convert the time-domain
characterization into a frequency-domain condition that Control System Tuner can handle
in the same way it handles gain constraints. To secure this equivalence, Conic Sector Goal

also makes W H s
2

T () minimum phase by making all its zeros stable. The transmission
zeros affected by this minimum-phase condition are the stabilized dynamics for this
tuning goal. The Minimum decay rate and Maximum natural frequency tuning
options control the lower and upper bounds on these implicitly constrained dynamics. If
the optimization fails to meet the default bounds, or if the default bounds conflict with
other requirements, on the Tuning tab, use Tuning Options to change the defaults.

For sector bounds, the R-index plays the same role as the peak gain does for gain
constraints (see “About Sector Bounds and Sector Indices” (Control System Toolbox)). The
condition

H j QH j-() () <w w 0

is satisfied at all frequencies if and only if the R-index is less than one. The plot that
Control System Tuner displays for Conic Sector Goal shows the R-index value as a
function of frequency (see sectorplot).

When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Conic Sector Goal, for a closed-loop transfer function H(s,x) from the specified
inputs to the specified outputs, f(x) is given by:

f x
R

R R
R() =

+
=

1
10

6

max

max
, .

R is the relative sector index (see getSectorIndex) of H(s,x), for the sector
represented by Q.

 Conic Sector Goal

9-163

See Also

Related Examples
• “About Sector Bounds and Sector Indices” (Control System Toolbox)
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-164

Weighted Passivity Goal

Purpose
Enforce passivity of a frequency-weighted transfer function when tuning in Control
System Tuner.

Description
Weighted Passivity Goal enforces the passivity of H(s) = WL(s)T(s)WR(s), where T(s) is the
transfer function from specified inputs to outputs. WL(s) and WR(s) are frequency weights
used to emphasize particular frequency bands. A system is passive if all its I/O
trajectories (u(t),y(t)) satisfy:

y t u t dt
T

() () >Ú
T

0
0,

for all T > 0. Weighted Passivity Goal creates a constraint that enforces:

y t u t dt u t u t dt y t y t dt
T T T

() () > () () + () ()Ú Ú ÚT T T

0 0 0
n r ,

for the trajectories of the weighted transfer function H(s), for all T > 0. To enforce the
overall passivity condition, set the minimum input passivity index (ν) and the minimum
output passivity index (ρ) to zero. To enforce an excess of passivity at the inputs or
outputs of the weighted transfer function, set ν or ρ to a positive value. To permit a
shortage of passivity, set ν or ρ to a negative value. See getPassiveIndex for more
information about these indices.

 Weighted Passivity Goal

9-165

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain in which the tuning goal is not met. The plot shows the value of the
index described in “Algorithms” on page 9-169.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Weighted Passivity
Goal.

Command-Line Equivalent

When tuning control systems at the command line, use
TuningGoal.WeightedPassivity to specify a step response goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer
function that the tuning goal constrains. Also specify any locations at which to open loops
for evaluating the tuning goal.

• Specify input signals

9 Control System Tuning

9-166

Select one or more signal locations in your model as inputs to the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
input signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function
that the tuning goal constrains. To constrain a SISO response, select a single-valued
output signal. For example, to constrain the gain from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain the
passivity of a MIMO response, select multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the
open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-
weighting functions for the tuning goal. H(s) = WL(s)T(s)WR(s), where T(s) is the transfer
function from specified inputs to outputs.

WL provides the weighting for the output channels of H(s), and WR provides the weighting
for the input channels. You can specify scalar weights or frequency-dependent weighting.
To specify a frequency-dependent weighting, use a numeric LTI model whose magnitude
represents the desired weighting function. For example, enter tf(1,[1 0.01]) to
specify a high weight at low frequencies that rolls off above 0.01 rad/s.

 Weighted Passivity Goal

9-167

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting
functions automatically expand to any input or output dimension. You can specify different
weights for each channel by specifying matrices or MIMO weighting functions. The
dimensions H(s) must be commensurate with the dimensions of WL and WR. For example,
if the constrained transfer function has two inputs, you can specify diag([1 10]) as
WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time
models with the same sampling time as you use for tuning. If you specify the weighting
functions in continuous time, the tuning software discretizes them. Specifying the
weighting functions in discrete time gives you more control over the weighting functions
near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the step response
goal.

• Minimum input passivity index

Enter the target value of ν in the text box. To enforce an excess of passivity at the
specified inputs, set ν > 0. To permit a shortage of passivity, set ν < 0. By default, the
passivity goal enforces ν = 0, passive at the inputs with no required excess of
passivity.

• Minimum output passivity index

Enter the target value of ρ in the text box. To enforce an excess of passivity at the
specified outputs, set ρ > 0. To permit a shortage of passivity, set ρ < 0. By default, the
passivity goal enforces ρ = 0, passive at the outputs with no required excess of
passivity.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-

9 Control System Tuning

9-168

parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Weighted Passivity Goal, for a closed-loop transfer function T(s,x) from the
specified inputs to the specified outputs, and the weighted transfer function H(s,x) =
WL(s)T(s,x)WR(s), f(x) is given by:

f x
R

R R
R() =

+
=

1
10

6

max

max
, .

R is the relative sector index (see getSectorIndex) of [H(s,x); I], for the sector
represented by:

Q
I

I
=

-
-

Ê

Ë
Á

ˆ

¯
˜

2

2

r
n

,

where ρ is the minimum output passivity index and ν is the minimum input passivity index
specified in the dialog box. Rmax is fixed at 106, included to avoid numeric errors for very
large R.

This tuning goal imposes an implicit minimum-phase constraint on the weighted transfer
function H + I. The transmission zeros of H + I are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options
control the lower and upper bounds on these implicitly constrained dynamics. If the

 Weighted Passivity Goal

9-169

optimization fails to meet the default bounds, or if the default bounds conflict with other
requirements, on the Tuning tab, use Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189
• “About Passivity and Passivity Indices” (Control System Toolbox)

9 Control System Tuning

9-170

Poles Goal

Purpose
Constrain the dynamics of the closed-loop system, specified feedback loops, or specified
open-loop configurations, when using Control System Tuner.

Description
Poles Goal constrains the dynamics of your entire control system or of specified feedback
loops of your control system. Constraining the dynamics of a feedback loop means
constraining the dynamics of the sensitivity function measured at a specified location in
the control system.

Using Poles Goal, you can specify finite minimum decay rate or minimum damping for the
poles in the control system or specified loop. You can specify a maximum natural
frequency for these poles, to eliminate fast dynamics in the tuned control system.

 Poles Goal

9-171

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain where the pole location constraints are not met.

To constrain dynamics or ensure stability of a single tunable component of the control
system, use “Controller Poles Goal” on page 9-176.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Constraint on closed-
loop dynamics to create a Poles Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Poles to specify a
disturbance rejection goal.

Feedback Configuration
Use this section of the dialog box to specify the portion of the control system for which
you want to constrain dynamics. You can also specify loop-opening locations for
evaluating the tuning goal.

• Entire system

Select this option to constrain the locations of closed-loop poles of the control system.
• Specific feedback loop(s)

Select this option to specify one or more feedback loops to constrain. Specify a
feedback loop by selecting a signal location in your control system. Poles Goal
constrains the dynamics of the sensitivity function measured at that location. (See
getSensitivity for information about sensitivity functions.)

To constrain the dynamics of a SISO loop, select a single-valued location. For example,
to constrain the dynamics of the sensitivity function measured at a location named
'y', click Add signal to list and select 'y'. To constrain the dynamics of a MIMO
loop, select multiple signals or a vector-valued signal.

• Compute poles with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for
the purpose of evaluating this tuning goal. The tuning goal is evaluated against the

9 Control System Tuning

9-172

open-loop configuration created by opening feedback loops at the locations you
identify. For example, to evaluate the tuning goal with an opening at a location named
'x', click Add signal to list and select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and . For more information on how to specify signal locations
for a tuning goal, see “Specify Goals for Interactive Tuning” on page 9-39.

Pole Location
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the target minimum decay rate for the system poles. Closed-loop system poles
that depend on the tunable parameters are constrained to satisfy Re(s) < -
MinDecay for continuous-time systems, or log(|z|) < -MinDecay*Ts for discrete-
time systems with sample time Ts. This constraint helps ensure stable dynamics in the
tuned system.

Enter 0 to impose no constraint on the decay rate.
• Minimum damping

Enter the target minimum damping of closed-loop poles of tuned system, as a value
between 0 and 1. Closed-loop system poles that depend on the tunable parameters are
constrained to satisfy Re(s) < -MinDamping*|s|. In discrete time, the damping
ratio is computed using s = log(z)/Ts.

Enter 0 to impose no constraint on the damping ratio.
• Maximum natural frequency

Enter the target maximum natural frequency of poles of tuned system, in the units of
the control system model you are tuning. When you tune the control system using this
requirement, closed-loop system poles that depend on the tunable parameters are
constrained to satisfy |s| < MaxFrequency for continuous-time systems, or |

 Poles Goal

9-173

log(z)| < MaxFrequency*Ts for discrete-time systems with sample time Ts. This
constraint prevents fast dynamics in the control system.

Enter Inf to impose no constraint on the natural frequency.

Options
Use this section of the dialog box to specify additional characteristics of the poles goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the
frequency band as a row vector of the form [min,max], expressed in frequency units
of your model. For example, to create a tuning goal that applies only between 1 and
100 rad/s, enter [1,100]. By default, the tuning goal applies at all frequencies for
continuous time, and up to the Nyquist frequency for discrete time.

The Poles Goal applies only to poles with natural frequency within the range you
specify.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models
obtained by linearizing a Simulink model at different operating points or block-
parameter values. By default, active tuning goals are enforced for all models. To
enforce a tuning requirement for a subset of models in an array, select Only Models.
Then, enter the array indices of the models for which the goal is enforced. For
example, suppose you want to apply the tuning goal to the second, third, and fourth
models in a model array. To restrict enforcement of the requirement, enter 2:4 in the
Only Models text box.

For more information about tuning for multiple models, see “Robust Tuning
Approaches” (Robust Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

9 Control System Tuning

9-174

For Poles Goal, f(x) reflects the relative satisfaction or violation of the goal. For example,
if your Poles Goal constrains the closed-loop poles of a feedback loop to a minimum
damping of ζ = 0.5, then:

• f(x) = 1 means the smallest damping among the constrained poles is ζ = 0.5 exactly.
• f(x) = 1.1 means the smallest damping ζ = 0.5/1.1 = 0.45, roughly 10% less than the

target.
• f(x) = 0.9 means the smallest damping ζ = 0.5/0.9 = 0.55, roughly 10% better than the

target.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

 See Also

9-175

Controller Poles Goal

Purpose
Constrain the dynamics of a specified tunable block in the tuned control system, when
using Control System Tuner.

Description
Controller Poles Goal constrains the dynamics of a tunable block in your control system
model. Controller Poles Goal can impose a stability constraint on the specified block. You
can also specify a finite minimum decay rate, a minimum damping rate, or a maximum
natural frequency for the poles of the block. These constraints allow you to eliminate fast
dynamics and control ringing in the response of the tunable block.

In Control System Tuner, the shaded area on the plot represents the region in the
frequency domain where the pole location constraints are not met. The constraint applies
to all poles in the block except fixed integrators, such as the I term of a PID controller.

9 Control System Tuning

9-176

To constrain dynamics or ensure stability of an entire control system or a feedback loop in
the control system, use “Poles Goal” on page 9-171.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Constraint on
controller dynamics to create a Controller Poles Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.ControllerPoles
to specify a controller poles goal.

Constrain Dynamics of Tuned Block
From the drop-down menu, select the tuned block in your control system to which to
apply the Controller Poles Goal.

If the block you want to constrain is not in the list, add it to the Tuned Blocks list. In
Control System Tuner, in the Tuning tab, click Select Blocks. For more information
about adding tuned blocks, see “Specify Blocks to Tune in Control System Tuner” on page
9-24.

Keep Poles Inside the Following Region
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the desired minimum decay rate for the poles of the tunable block. Poles of the
block are constrained to satisfy Re(s) < -MinDecay for continuous-time blocks, or
log(|z|) < -MinDecay*Ts for discrete-time blocks with sample time Ts.

Specify a nonnegative value to ensure that the block is stable. If you specify a negative
value, the tuned block can include unstable poles.

• Minimum damping

Enter the desired minimum damping ratio of poles of the tunable block, as a value
between 0 and 1. Poles of the block that depend on the tunable parameters are
constrained to satisfy Re(s) < -MinDamping*|s|. In discrete time, the damping
ratio is computed using s=log(z)/Ts.

 Controller Poles Goal

9-177

• Maximum natural frequency

Enter the target maximum natural frequency of poles of the tunable block, in the units
of the control system model you are tuning. Poles of the block are constrained to
satisfy |s| < MaxFrequency for continuous-time blocks, or |log(z)| <
MaxFrequency*Ts for discrete-time blocks with sample time Ts. This constraint
prevents fast dynamics in the tunable block.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized
scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if
the tuning goal is a hard constraint.

For Controller Poles Goal, f(x) reflects the relative satisfaction or violation of the goal.
For example, if your Controller Poles Goal constrains the pole of a tuned block to a
minimum damping of ζ = 0.5, then:

• f(x) = 1 means the damping of the pole is ζ = 0.5 exactly.
• f(x) = 1.1 means the damping is ζ = 0.5/1.1 = 0.45, roughly 10% less than the target.
• f(x) = 0.9 means the damping is ζ = 0.5/0.9 = 0.55, roughly 10% better than the

target.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 9-39
• “Manage Tuning Goals” on page 9-179
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-178

Manage Tuning Goals
Control System Tuner lets you designate one or more tuning goals as hard goals. This
designation gives you a way to differentiate must-have goals from nice-to-have goals.
Control System Tuner attempts to satisfy hard requirements by driving their associated
cost functions below 1. Subject to that constraint, the software comes as close as possible
to satisfying remaining (soft) requirements. For best results, make sure you can obtain a
reasonable design with all goals treated as soft goals before attempting to enforce any
goal as a hard constraint.

By default, new goals are designated soft goals. In the Tuning tab, click Manage
Goals to open the Manage tuning goals dialog box. Check Hard for any goal to
designate it a hard goal.

You can also designate any tuning goal as inactive for tuning. In this case the software
ignores the tuning goal entirely. Use this dialog box to select which tuning goals are
active when you tune the control system. Active is checked by default for any new goals.
Uncheck Active for any design goal that you do not want enforced.

For example, if you tune with the following configuration, Control System Tuner optimizes
StepRespGoal1, subject to MarginsGoal1. The tuning goal PolesGoal1 is ignored.

 Manage Tuning Goals

9-179

All tuning goals you have created in the Control System Tuner session are listed in the
dialog box. To edit an existing tuning goal, select it in the list and click Edit. To delete a
tuning goal from the list, select it and click Remove.

To add more tuning goals to the list, in Control System Tuner, in the Tuning tab, click
New Goal. For more information about creating tuning goals, see “Specify Goals for
Interactive Tuning” on page 9-39.

9 Control System Tuning

9-180

Generate MATLAB Code from Control System Tuner for
Command-Line Tuning

You can generate a MATLAB script in Control System Tuner for tuning a control system at
the command line. Generated scripts are useful when you want to programmatically
reproduce a result you obtained interactively. A generated MATLAB script also enables
you to programmatically perform multiple tuning operations with variations in tuning
goals, system parameters, or model conditions such as operating point.

Tip You can also save a Control System Tuner session to reproduce within Control

System Tuner. To do so, in the Control System tab, click Save Session.

To generate a MATLAB script in Control System Tuner, in the Tuning tab, click Tune .
Select Script with current values.

The MATLAB Editor displays the generated script, which script reproduces
programmatically the current tuning configuration of Control System Tuner.

 Generate MATLAB Code from Control System Tuner for Command-Line Tuning

9-181

For example, suppose you generate a MATLAB script after completing all steps in the
example “Control of a Linear Electric Actuator Using Control System Tuner” (Control
System Toolbox). The generated script computes the operating point used for tuning,
designates the blocks to tune, creates the tuning goals, and performs other operations to
reproduce the result at the command line.

The first section of the script creates the slTuner interface to the Simulinkmodel
(rct_linact in this example). The slTuner interface stores a linearization of the model
and parameterizations of the blocks to tune.
%% Create system data with slTuner interface
TunedBlocks = {'rct_linact/Current Controller/Current PID'; ...
 'rct_linact/Speed Controller/Speed PID'};
AnalysisPoints = {'rct_linact/Speed Demand (rpm)/1'; ...
 'rct_linact/Current Sensor/1'; ...
 'rct_linact/Hall Effect Sensor/1'; ...
 'rct_linact/Speed Controller/Speed PID/1'; ...
 'rct_linact/Current Controller/Current PID/1'};
OperatingPoints = 0.5;
% Specify the custom options
Options = slTunerOptions('AreParamsTunable',false);
% Create the slTuner object
CL0 = slTuner('rct_linact',TunedBlocks,AnalysisPoints,OperatingPoints,Options);

The slTuner interface also specifies the operating point at which the model is linearized,
and marks as analysis points all the signal locations required to specify the tuning goals
for the example. (See “Create and Configure slTuner Interface to Simulink Model” on
page 9-212.)

If you are tuning a control system modeled in MATLAB instead of Simulink, the first
section of the script constructs a genss model that has equivalent dynamics and
parameterization to the genss model of the control system that you specified Control
System Tuner.

Next, the script creates the three tuning goals specified in the example. The script uses
TuningGoal objects to capture these tuning goals. For instance, the script uses
TuningGoal.Tracking to capture the Tracking Goal of the example.
%% Create tuning goal to follow reference commands with prescribed performance
% Inputs and outputs
Inputs = {'rct_linact/Speed Demand (rpm)/1'};
Outputs = {'rct_linact/Hall Effect Sensor/1[rpm]'};
% Tuning goal specifications
ResponseTime = 0.1; % Approximately reciprocal of tracking bandwidth
DCError = 0.001; % Maximum steady-state error
PeakError = 1; % Peak error across frequency
% Create tuning goal for tracking
TR = TuningGoal.Tracking(Inputs,Outputs,ResponseTime,DCError,PeakError);
TR.Name = 'TR'; % Tuning goal name

9 Control System Tuning

9-182

After creating the tuning goals, the script sets any algorithm options you had set in
Control System Tuner. The script also designates tuning goals as soft or hard goals,
according to the configuration of tuning goals in Control System Tuner. (See “Manage
Tuning Goals” on page 9-179.)

%% Create option set for systune command
Options = systuneOptions();

%% Set soft and hard goals
SoftGoals = [TR ; ...
 MG1 ; ...
 MG2];
HardGoals = [];

In this example, all the goals are designated as soft goals when the script is generated.
Therefore, HardGoals is empty.

Finally, the script tunes the control system by calling systune on the slTuner interface
using the tuning goals and options.

%% Tune the parameters with soft and hard goals
[CL1,fSoft,gHard,Info] = systune(CL0,SoftGoals,HardGoals,Options);

The script also includes an optional call to viewGoal, which displays graphical
representations of the tuning goals to aid you in interpreting and validating the tuning
results. Uncomment this line of code to generate the plots.

%% View tuning results
% viewGoal([SoftGoals;HardGoals],CL1);

You can add calls to functions such getIOTransfer to make the script generate
additional analysis plots.

See Also

Related Examples
• “Create and Configure slTuner Interface to Simulink Model” on page 9-212
• “Tune Control System at the Command Line” on page 9-223
• “Validate Tuned Control System” on page 9-227

 See Also

9-183

Interpret Numeric Tuning Results
When you tune a control system with systune or Control System Tuner, the software
provides reports that give you an overview of how well the tuned control system meets
your design requirements. Interpreting these reports requires understanding how the
tuning algorithm optimizes the system to satisfy your tuning goals. (The software also
provides visualizations of the tuning goals and system responses to help you see where
and by how much your requirements are not satisfied. For information about using these
plots, see “Visualize Tuning Goals” on page 9-189.)

Tuning-Goal Scalar Values
The tuning software converts each tuning goal into a normalized scalar value which it
then constrains (hard goals) or minimizes (soft goals). Let fi(x) and gj(x) denote the scalar
values of the soft and hard goals, respectively. Here, x is the vector of tunable parameters
in the control system to tune. The tuning algorithm solves the minimization problem:

Minimize max

i
if x() subject to max

j
jg x() < 1 , for x x x

min max
< < .

xmin and xmax are the minimum and maximum values of the free parameters of the control
system. (For information about the specific functions used to evaluate each type of
requirement, see the reference pages for each tuning goal.)

When you use both soft and hard tuning goals, the software solves the optimization as a
sequence of subproblems of the form:

min max , .
x

f x g xa () ()()

The software adjusts the multiplier α so that the solution of the subproblems converges to
the solution of the original constrained optimization problem.

The tuning software reports the final scalar values for each tuning goal. When the final
value of fi(x) or gj(x) is less than 1, the corresponding tuning goal is satisfied. Values
greater than 1 indicate that the tuning goal is not satisfied for at least some conditions.
For instance, a tuning goal that describes a frequency-domain constraint might be
satisfied at some frequencies and not at others. The closer the value is to 1, the closer the
tuning goal is to being satisfied. Thus these values give you an overview of how
successfully the tuned system meets your requirements.

9 Control System Tuning

9-184

The form in which the software presents the optimized tuning-goal values depends on
whether you are tuning with Control System Tuner or at the command line.

Tuning Results at the Command Line
The systune command returns the control system model or slTuner interface with the
tuned parameter values. systune also returns the best achieved values of each fi(x) and
gj(x) as the vector-valued output arguments fSoft and gHard, respectively. See the
systune reference page for more information. (To obtain the final tuning goal values on
their own, use evalGoal.)

By default, systune displays the best achieved final values of the tuning goals in the
command window. For instance, in the example “PID Tuning for Setpoint Tracking vs.
Disturbance Rejection” (Control System Toolbox), systune is called with one soft
requirement, R1, and two hard requirements R2 and R3.

T1 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.12, Hard = 0.99988, Iterations = 143

This display indicates that the largest optimized value of the hard tuning goals is less than
1, so both hard goals are satisfied. The soft goal value is slightly greater than one,
indicating that the soft goal is nearly satisfied. You can use tuning-goal plots to see in
what regimes and by how much the tuning goals are violated. (See “Visualize Tuning
Goals” on page 9-189.)

You can obtain additional information about the optimization progress and values using
the info output of systune. To make systune display additional information during
tuning, use systuneOptions.

Tuning Results in Control System Tuner

In Control System Tuner, when you click , the app compiles a Tuning Report
summarizing the best achieved values of fi(x) and gj(x). To view the tuning report
immediately after tuning a control system, click Tuning Report at the bottom-right
corner of Control System Tuner.

 Interpret Numeric Tuning Results

9-185

The tuning report displays the final fi(x) and gj(x) values obtained by the algorithm.

The Hard Goals area shows the minimized gi(x) values and indicates which are satisfied.
The Soft Goals area highlights the largest of the minimized fi(x) values as Worst Value,
and lists the values for all the requirements. In this example, the hard goal is satisfied,
while the soft goals are nearly satisfied. As in the command-line case, you can use tuning-
goal plots to see where and by how much tuning goals are violated. (See “Visualize
Tuning Goals” on page 9-189.)

9 Control System Tuning

9-186

Tip You can view a report from the most recent tuning run at any time. In the Tuning
tab, click Tune , and select Tuning Report.

Improve Tuning Results
If the tuning results do not adequately meet your design requirements, adjust your set of
tuning goals to improve the results. For example:

• Designate tuning goals that are must-have requirements as hard goals. Or, relax
tuning goals that are not absolute requirements by designating them as soft goals.

• Limit the frequency range in which frequency-domain goals are enforced.

• In Control System Tuner, use the Enforce goal in frequency range field of the
tuning goal dialog box.

• At the command line, use the Focus property of the TuningGoal object.

If the tuning results do satisfy your design requirements, you can validate the tuned
control system as described in “Validate Tuned Control System” on page 9-227.

 Interpret Numeric Tuning Results

9-187

See Also
evalGoal | systune | systune (for slTuner) | viewGoal

Related Examples
• “Visualize Tuning Goals” on page 9-189
• “Validate Tuned Control System” on page 9-227

9 Control System Tuning

9-188

Visualize Tuning Goals
When you tune a control system with systune or Control System Tuner, use tuning-goal
plots to visualize your design requirements against the tuned control system responses.
Tuning-goal plots show graphically where and by how much tuning goals are satisfied or
violated. This visualization lets you examine how close your control system is to ideal
performance. It can also help you identify problems with tuning and provide clues on how
to improve your design.

Tuning-Goal Plots
How you obtain tuning-goal plots depends on your work environment.

• At the command line, use viewGoal.
• In Control System Tuner, each tuning goal that you create generates a tuning-goal

plot. When you tune the control system, these plots update to reflect the tuned design.

The form of the tuning-goal plot depends on the specific tuning goal you use. For
instance, for time-domain tuning goals, the tuning-goal plot is a time-domain plot of the
relevant system response. The following plot, adapted from the example “MIMO Control
of Diesel Engine” (Control System Toolbox), shows a typical tuning-goal plot for a time-
domain disturbance-rejection goal. The dashed lines represent the worst acceptable step
response specified in the tuning goal. The solid line shows the corresponding response of
the tuned system.

 Visualize Tuning Goals

9-189

Similarly, the plots for frequency-domain tuning goals show the target response and the
tuned response in the frequency domain. The following plot, adapted from the example
“Fixed-Structure Autopilot for a Passenger Jet” (Control System Toolbox), shows a plot for
a gain goal (TuningGoal.Gain at the command line). This tuning goal limits the gain
between a specified input and output to a frequency-dependent profile. In the plot, the
dashed line shows the gain profile specified in the tuning goal. If the tuned system
response (solid line) enters the shaded region, the tuning goal is violated. In this case, the
tuning goal is satisfied at all frequencies.

9 Control System Tuning

9-190

Difference Between Dashed Line and Shaded Region
With some frequency-domain tuning goals, there might be a difference between the gain
profile you specify in the tuning goal, and the profile the software uses for tuning. In this
case, the shaded region of the plot reflects the profile that the software uses for tuning.
The gain profile you specify and the gain profile used for tuning might differ if:

• You tune a control system in discrete time, but specify the gain profile in continuous
time.

• The software modifies the asymptotes of the specified gain profile to improve numeric
stability.

 Visualize Tuning Goals

9-191

Continuous-Time Gain Profile for Discrete-Time Tuning

When you tune a discrete-time control system, you can specify frequency-dependent
tuning goals using discrete-time or continuous-time transfer functions. If you use a
continuous-time transfer function, the tuning algorithm discretizes the transfer function
before tuning. For instance, suppose that you specify a tuning goal as follows.

W = zpk([],[0 -150 -150],1125000);
Req = TuningGoal.MaxLoopGain('Xloc',W);

Suppose further that you use the tuning goal with systune to tune a discrete-time genss
model or slTuner interface. CL is the resulting tuned control system. To examine the
result, generate a tuning-goal plot.

viewGoal(Req,CL)

9 Control System Tuning

9-192

The plot shows W, the continuous-time maximum loop gain that you specified, as a dashed
line. The shaded region shows the discretized version of W that systune uses for tuning.
The discretized maximum loop gain cuts off at the Nyquist frequency corresponding to
the sample time of CL. Near that cutoff, the shaded region diverges from the dashed line.

The plot highlights that sometimes it is preferable to specify tuning goals for discrete-
time tuning using discrete-time gain profiles. In particular, specifying a discrete-time
profile gives you more control over the behavior of the gain profile near the Nyquist
frequency.

 Visualize Tuning Goals

9-193

Modifications for Numeric Stability

When you use a tuning goal with a frequency-dependent specification, the tuning
algorithm uses a frequency-weighting function to compute the normalized value of the
tuning goal. This weighting function is derived from the gain profile that you specify. For
numeric tractability, weighting functions must be stable and proper. For numeric stability,
their dynamics must be in the same frequency range as the control system dynamics. For
these reasons, the software might adjust the specified gain profile to eliminate
undesirable low-frequency or high-frequency dynamics or asymptotes. The process of
modifying the tuning goal for better numeric conditioning is called regularization.

For example, consider the following tracking goal.

R1 = TuningGoal.Tracking('r','y',tf([1 0 0],[1 2 1]));
viewGoal(R1)

9 Control System Tuning

9-194

Here the control bandwidth is about 1 rad/s and the gain profile has two zeros at s = 0,
which become unstable poles in the weighting function (see TuningGoal.Tracking for
details). The regularization moves these zeros to about 0.01 rad/s, and the maximum
tracking error levels off at about 10–3 (0.1%). If you need better tracking accuracy, you
can explicitly specify the cutoff frequency in the error profile.

R2 = TuningGoal.Tracking('r','y',tf([1 0 5e-8],[1 2 1]));
viewGoal(R2)
set(gca,'Ylim',[1e-4,10])

 Visualize Tuning Goals

9-195

However, for numeric safety, the regularized weighting function always levels off at very
low and very high frequencies, regardless of the specified gain profile.

Access the Regularized Functions

When you are working at the command line, you can obtain the regularized gain profile
using the getWeight or getWeights commands. For details, see the reference pages for
the individual tuning goals for which the tuning algorithm performs regularization:

• TuningGoal.Gain
• TuningGoal.LoopShape
• TuningGoal.MaxLoopGain

9 Control System Tuning

9-196

• TuningGoal.MinLoopGain
• TuningGoal.Rejection
• TuningGoal.Sensitivity
• TuningGoal.StepRejection
• TuningGoal.Tracking

In Control System Tuner, you cannot view the regularized weighting functions directly.
Instead, use the tuning-goal commands to generate an equivalent tuning goal, and use
getWeight or getWeights to access the regularized functions.

Improve Tuning Results
If the tuning results do not adequately meet your design requirements, adjust your set of
tuning goals to improve the results. For example:

• Designate tuning goals that are must-have requirements as hard goals. Or, relax
tuning goals that are not absolute requirements by designating them as soft goals.

• Limit the frequency range in which frequency-domain goals are enforced.

• In Control System Tuner, use the Enforce goal in frequency range field of the
tuning goal dialog box.

• At the command line, use the Focus property of the TuningGoal object.

If the tuning results do satisfy your design requirements, you can validate the tuned
control system as described in “Validate Tuned Control System” on page 9-227.

See Also
viewGoal

Related Examples
• “Interpret Numeric Tuning Results” on page 9-184
• “Create Response Plots in Control System Tuner” on page 9-198
• “Validate Tuned Control System” on page 9-227

 See Also

9-197

Create Response Plots in Control System Tuner
This example shows how to create response plots for analyzing system performance in
Control System Tuner. Control System Tuner can generate many types of response plots
in the time and frequency domains. You can view responses of SISO or MIMO transfer
functions between inputs and outputs at any location in your model. When you tune your
control system, Control System Tuner updates the response plots to reflect the tuned
design. Use response plots to validate the performance of the tuned control system.

This example creates response plots for analyzing the sample model rct_helico.

Choose Response Plot Type

In Control System Tuner, in the Control System tab, click New Plot. Select the type
of plot you want to create.

A new plot dialog box opens in which you specify the inputs and outputs of the portion of
your control system whose response you want to plot. For example, select New step to
create a step response plot from specified inputs to specified outputs of your system.

9 Control System Tuning

9-198

Specify Transfer Function

Choose which transfer function associated with the specified inputs and outputs you want
to analyze.

For most response plots types, the Select Response to Plot menu lets you choose one of
the following transfer functions:

• New Input-Output Transfer Response — Transfer function between specified
inputs and outputs, computed with loops open at any additionally specified loop-
opening locations.

• New Sensitivity Transfer Response — Sensitivity function computed at the
specified location and with loops open at any specified loop-opening locations.

• New Open-Loop Response — Open loop point-to-point transfer function computed at
the specified location and with loops open at any additionally specified loop-opening
locations.

• Entire System Response — For Pole/Zero maps and I/O Pole/Zero maps only. Plot
the pole and zero locations for the entire closed-loop control system.

• Response of Tuned Block — For Pole/Zero maps and I/O Pole/Zero maps only. Plot
the pole and zero locations of tuned blocks.

Name the Response

Type a name for the response in the Response Name text box. Once you have specified
signal locations defining the response, Control System Tuner stores the response under
this name. When you create additional new response plots, the response appears by this
name in Select Response to Plot menu.

Choose Signal Locations for Evaluating System Response

Specify the signal locations in your control system at which to evaluate the selected
response. For example, the step response plot displays the response of the system at one

 Create Response Plots in Control System Tuner

9-199

or more output locations to a unit step applied at one or more input locations. Use the
Specify input signals and Specify output signals sections of the dialog box to specify
these locations. (Other tuning goal types, such as loop-shape or stability margins, require
you to specify only one location for evaluation. The procedure for specifying the location
is the same as illustrated here.)

Under Specify input signals, click Add signal to list. A list of available input
locations appears.

If the signal you want to designate as a step-response input is in the list, click the signal
to add it to the step-response inputs. If the signal you want to designate does not appear,
and you are tuning a Simulink model, click Select signal from model.

In the Select signals dialog box, build a list of the signals you want. To do so, click
signals in the Simulink model editor. The signals that you click appear in the Select
signals dialog box. Click one signal to create a SISO response, and click multiple signals
to create a MIMO response.

Click Add signal(s). The Select signals dialog box closes.

9 Control System Tuning

9-200

The signal or signals you selected now appear in the list of step-response inputs in the
new-plot dialog box.

Similarly, specify the locations at which the step response is measured to the step-
response outputs list. For example, the following configuration plots the MIMO response
to a step input applied at theta-ref and phi-ref and measured at theta and phi in
the Simulink model rct_helico.

 Create Response Plots in Control System Tuner

9-201

Tip To highlight any selected signal in the Simulink model, click . To remove a signal

from the input or output list, click . When you have selected multiple signals, you can

reorder them using and .

Specify Loop Openings

You can evaluate most system responses with loops open at one or more locations in the
control system. Click Add loop opening location to list to specify such locations for
the response.

Store and Plot the Response

When you have finished specifying the response, click Plot in the new plot dialog box. The
new response appears in the Responses section of the Data Browser. A new figure opens

9 Control System Tuning

9-202

displaying the response plot. When you tune your control system, you can refer to this
figure to evaluate the performance of the tuned system.

Tip To edit the specifications of the response, double-click the response in the Data
Browser. Any plots using that response update to reflect the edited response.

View response characteristics such as rise-times or peak values by right-clicking on the
plot. Other options for managing and organizing multiple plots are available in the View
tab.

 Create Response Plots in Control System Tuner

9-203

See Also

Related Examples
• “Compare Performance of Multiple Tuned Controllers” on page 9-207
• “Examine Tuned Controller Parameters in Control System Tuner” on page 9-205
• “Visualize Tuning Goals” on page 9-189

9 Control System Tuning

9-204

Examine Tuned Controller Parameters in Control System
Tuner

After you tune your control system, Control System Tuner gives you two ways to view the
current values of the tuned block parameters:

• In the Data Browser, in the Tuned Blocks area, select the block whose parameters
you want to view. A text summary of the block and its current parameter values
appears in the Data Browser in the Data Preview area.

• In the Data Browser, in the Tuned Blocks area, double-click the block whose
parameters you want to view. The Tuned Block Editor opens, displaying the current

values of the parameters. For array-valued parameters, click to open a variable
editor displaying values in the array.

 Examine Tuned Controller Parameters in Control System Tuner

9-205

Note To find a tuned block in the Simulink model, right-click the block name in the Data
Browser and select Highlight.

See Also

Related Examples
• “View and Change Block Parameterization in Control System Tuner” on page 9-26

9 Control System Tuning

9-206

Compare Performance of Multiple Tuned Controllers
Control System Tuner lets you compare the performance of a control system tuned with
two different sets of tuning goals. Such comparison is useful, for example, to see the
effect on performance of changing a tuning goal from hard goal to soft goal. Comparing
performance is also useful to see the effect of adding an additional tuning goal when an
initial design fails to satisfy all your performance requirements either in the linearized
system or when validated against a full nonlinear model.

This example compares tuning results for the sample model rct_linact.

Store First Design

After tuning a control system with a first set of design requirements, store the design in
Control System Tuner.

In the Control System tab, click Store. The stored design appears in the Data
Browser in the Designs area.

 Compare Performance of Multiple Tuned Controllers

9-207

Change the name of the stored design, if desired, by right-clicking on the data browser
entry.

9 Control System Tuning

9-208

Compute New Design

In the Tuning tab, make any desired changes to the tuning goals for the second design.
For example, add new tuning goals or edit existing tuning goals to change specifications.

Or, in Manage Goals, change which tuning goals are active and which are
designated hard constraints or soft requirements.

When you are ready, retune the control system with the new set of tuning goals. Click
Tune. Control System Tuner updates the current design (the current set of controller
parameters) with the new tuned design. All existing plots, which by default show the
current design, are updated to reflect the new current design.

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design. In the Control
System tab, click Compare. The Compare Designs dialog box opens.

In the Compare Designs dialog box, the current design is checked by default. Check the
box for the design you want to compare to the current design. All response plots and

 Compare Performance of Multiple Tuned Controllers

9-209

tuning goal plots update to reflect the checked designs. The solid trace corresponds to the
current design. Other designs are identified by name in the plot legend.

Use the same procedure save and compare as many designs as you need.

Restore Previously Saved Design

Under some conditions, it is useful to restore the tuned parameter values from a
previously saved design as the current design. For example, clicking Update Blocks
writes the current parameter values to the Simulink model. If you decide to test a stored
controller design in your full nonlinear model, you must first restore those stored values
as the current design.

9 Control System Tuning

9-210

To do so, click Retrieve. Select the stored design that you want to make the current
design.

See Also

Related Examples
• “Create Response Plots in Control System Tuner” on page 9-198

 See Also

9-211

Create and Configure slTuner Interface to Simulink
Model

This example shows how to create and configure an slTuner interface for a Simulink®
model. The slTuner interface parameterizes blocks in your model that you designate as
tunable and allows you to tune them using systune. The slTuner interface generates a
linearization of your Simulink model, and also allows you to extract linearized system
responses for analysis and validation of the tuned control system.

For this example, create and configure an slTuner interface for tuning the Simulink
model rct_helico, a multiloop controller for a rotorcraft. Open the model.

open_system('rct_helico');

The control system consists of two feedback loops. The inner loop (static output feedback)
provides stability augmentation and decoupling. The outer loop (PI controllers) provides
the desired setpoint tracking performance.

Suppose that you want to tune this model to meet the following control objectives:

9 Control System Tuning

9-212

• Track setpoint changes in theta, phi, and r with zero steady-state error, specified
rise times, minimal overshoot, and minimal cross-coupling.

• Limit the control bandwidth to guard against neglected high-frequency rotor dynamics
and measurement noise.

• Provide strong multivariable gain and phase margins (robustness to simultaneous
gain/phase variations at the plant inputs and outputs).

The systune command can jointly tune the controller blocks SOF and the PI controllers
to meet these design requirements. The slTuner interface sets up this tuning task.

Create the slTuner interface.

ST0 = slTuner('rct_helico',{'PI1','PI2','PI3','SOF'});

This command initializes the slTuner interface with the three PI controllers and the SOF
block designated as tunable. Each tunable block is automatically parameterized according
to its type and initialized with its value in the Simulink model.

To configure the slTuner interface, designate as analysis points any signal locations of
relevance to your design requirements. First, add the outputs and reference inputs for the
tracking requirements.

addPoint(ST0,{'theta-ref','theta','phi-ref','phi','r-ref','r'});

When you create a TuningGoal.Tracking object that captures the tracking
requirement, this object references the same signals.

Configure the slTuner interface for the stability margin requirements. Designate as
analysis points the plant inputs and outputs (control and measurement signals) where the
stability margins are measured.

addPoint(ST0,{'u','y'});

Display a summary of the slTuner interface configuration in the command window.

ST0

slTuner tuning interface for "rct_helico":

4 Tuned blocks: (Read-only TunedBlocks property)

Block 1: rct_helico/PI1

 Create and Configure slTuner Interface to Simulink Model

9-213

Block 2: rct_helico/PI2
Block 3: rct_helico/PI3
Block 4: rct_helico/SOF

8 Analysis points:

Point 1: Port 1 of rct_helico/theta-ref
Point 2: Signal "theta", located at port 1 of rct_helico/Demux1
Point 3: Port 1 of rct_helico/phi-ref
Point 4: Signal "phi", located at port 2 of rct_helico/Demux1
Point 5: Port 1 of rct_helico/r-ref
Point 6: Signal "r", located at port 3 of rct_helico/Demux1
Point 7: Signal "u", located at port 1 of rct_helico/Mux3
Point 8: Signal "y", located at port 1 of rct_helico/Helicopter

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.SlTunerOptions]
 Ts : 0

In the command window, click on any highlighted signal to see its location in the Simulink
model.

In addition to specifying design requirements, you can use analysis points for extracting
system responses. For example, extract and plot the step responses between the
reference signals and 'theta', 'phi', and 'r'.

T0 = getIOTransfer(ST0,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'});
stepplot(T0,1)

9 Control System Tuning

9-214

All the step responses are unstable, including the cross-couplings, because this model has
not yet been tuned.

After you tune the model, you can similarly use the designated analysis points to extract
system responses for validating the tuned system. If you want to examine system
responses at locations that are not needed to specify design requirements, add these
locations to the slTuner interface as well. For example, plot the sensitivity function
measured at the output of the block roll-off 2.

addPoint(ST0,'dc')
dcS0 = getSensitivity(ST0,'dc');
bodeplot(dcS0)

 Create and Configure slTuner Interface to Simulink Model

9-215

Suppose you want to change the parameterization of tunable blocks in the slTuner
interface. For example, suppose that after tuning the model, you want to test whether
changing from PI to PID controllers yields improved results. Change the parameterization
of the three PI controllers to PID controllers.

PID0 = pid(0,0.001,0.001,.01); % initial value for PID controllers
PID1 = tunablePID('C1',PID0);
PID2 = tunablePID('C2',PID0);
PID3 = tunablePID('C3',PID0);

setBlockParam(ST0,'PI1',PID1,'PI2',PID2,'PI3',PID3);

9 Control System Tuning

9-216

After you configure the slTuner interface to your Simulink model, you can create tuning
goals and tune the model using systune or looptune.

See Also
addBlock | addPoint | getIOTransfer | getSensitivity | setBlockParam |
slTuner

Related Examples
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-51
• “Multiloop Control of a Helicopter” (Control System Toolbox)
• “Control of a Linear Electric Actuator” (Control System Toolbox)

 See Also

9-217

Stability Margins in Control System Tuning
Control System Tuner and viewGoal display stability margins as a function of frequency.

Stability Margins Plot
The following plot shows a typical result of tuning a control system with systune or
Control System Tuner when you use a tuning goal that constrains stability margins.

. You obtain this plot in one of the following ways:

• Tuning in Control System Tuner using a “Margins Goal” on page 9-148 or “Quick Loop
Tuning” on page 9-58.

9 Control System Tuning

9-218

• Tuning at the command line using systune with TuningGoal.Margins. If S is the
control system model or slTuner interface, and Req is a TuningGoal.Margins goal,
obtain the stability-margin plot by entering:

viewGoal(Req,S)

Gain and Phase Margins
For SISO systems, the gain and phase margins at a frequency ω indicate how much the
gain or phase of the open-loop response L(jω) can change without loss of stability. For
example, a gain margin of 5dB at 2 rad/s indicates that closed-loop stability is maintained
when the loop gain increases or decreases by as much as 5dB at this frequency. Gain and
phase margins typically vary across frequencies.

For MIMO systems, gain and phase margins are interpreted as follows:

• Gain margin: Stability is preserved when the gain increases or decreases by up to the
gain margin value in each channel of the feedback loop.

• Phase margin: Stability is preserved when the phase increases or decreases by up to
the phase margin value in each channel of the feedback loop.

In MIMO systems, the gain or phase can change in all channels at once, and by a different
amount in each channel. The Margins Goal and TuningGoal.Margins rely on the notion
of disk margin for MIMO systems. (See “Algorithm” on page 9-222.) Like SISO stability
margins, gain and phase margins in MIMO systems typically vary across frequency.

Combined Gain and Phase Variations
To assess robustness to changes in both gain and phase, use the following chart.

 Stability Margins in Control System Tuning

9-219

For example, if the gain margin plot in Control System Tuner indicates a 10 dB margin at
a particular frequency, then trace the contour starting at (Gain,Phase) = (10,0) to
see how a given amount of phase variation reduces the allowable gain variation at that
frequency. For example, if the phase can vary by 30 degrees than the gain can only vary
by about 8.4 dB (red mark).

Interpreting the Gain and Phase Margin Plot
The stability-margin plot for Margins Goal or TuningGoal.Margins shows in shaded
yellow the region where the target margins are not met. The plot displays the current
gain and phase margins (computed using the current values of the tunable parameters in
the control system) as a blue trace.

9 Control System Tuning

9-220

These gain and phase margin curves are obtained using an exact calculation involving μ-
analysis. For computational efficiency, however, the tuning algorithm uses an approximate
calculation that can yield smaller margins in parts of the frequency range. To see the
lower bound used by the tuner, right-click on the plot, and select Systems > Tuned
Lower Bound.

If there is a significant gap between the true margins and the tuner approximation, try
increasing the D-scaling order. The default order is zero (static scaling). For tuning in
Control System Tuner, set the D-scaling order in the Margins Goal dialog box. For
command-line tuning, set this value using the ScalingOrder property of
TuningGoal.Margins.

 Stability Margins in Control System Tuning

9-221

Algorithm
The gain and phase margin values are both derived from the disk margin (see
loopmargin). The disk margin measures the radius of a circular exclusion region
centered near the critical point. This radius is a decreasing function of the scaled norm:

min .
D

D I L j I L j D
diagonal

- -
- ()() + ()()1 1

2
w w

Unlike the traditional gain and phase margins, the disk margins and associated gain and
phase margins guarantee that the open-loop response L(jω) stays at a safe distance from
the critical point at all frequencies.

See Also
TuningGoal.Margins | loopmargin

More About
• “Loop Shape and Stability Margin Specifications” (Control System Toolbox)
• “Margins Goal” on page 9-148

9 Control System Tuning

9-222

Tune Control System at the Command Line
After specifying your tuning goals using TuningGoal objects (see “Tuning Goals”), use
systune to tune the parameters of your model.

The systune command lets you designate one or more design goals as hard goals. This
designation gives you a way to differentiate must-have goals from nice-to-have tuning
goals.systune attempts to satisfy hard requirements by driving their associated cost
functions below 1. Subject to that constraint, the software comes as close as possible to
satisfying remaining (soft) requirements. For best results, make sure you can obtain a
reasonable design with all goals treated as soft goals before attempting to enforce any
goal as a hard constraint.

Organize your TuningGoal objects into a vector of soft requirements and a vector of
hard requirements. For example, suppose you have created a tracking requirement, a
rejection requirement, and stability margin requirements at the plant inputs and outputs.
The following commands tune the control system represented by T0, treating the stability
margins as hard goals, the tracking and rejection requirements as soft goals. (T0 is either
a genss model or an slTuner interface previously configured for tuning.)

SoftReqs = [Rtrack,Rreject];
HardReqs = [RmargIn,RmargOut];
[T,fSoft,gHard] = systune(T0,SoftReqs,HardReqs);

systune converts each tuning requirement into a normalized scalar value, f for the soft
constraints and g for the hard constraints. The command adjusts the tunable parameters
of T0 to minimize the f values, subject to the constraint that each g < 1. systune returns
the vectors fSoft and gHard that contain the final normalized values for each tuning
goal in SoftReqs and HardReqs.

Use systuneOptions to configure additional options for the systune algorithm, such as
the number of independent optimization runs, convergence tolerance, and output display
options.

See Also
systune | systune (for slTuner) | systuneOptions

 Tune Control System at the Command Line

9-223

More About
• “Interpret Numeric Tuning Results” on page 9-184

9 Control System Tuning

9-224

Speed Up Tuning with Parallel Computing Toolbox
Software

If you have the Parallel Computing Toolbox software installed, you can speed up the
tuning of fixed-structure control systems. When you run multiple randomized optimization
starts with systune, looptune, or hinfstruct, parallel computing speeds up tuning by
distributing the optimization runs among workers.

To distribute randomized optimization runs among workers:

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences (Parallel Computing Toolbox), manually start a parallel pool using
parpool. For example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not need
to manually start a pool.

Create a systuneOptions, looptuneOptions, or hinfstructOptions set that
specifies multiple random starts. For example, the following options set specifies 20
random restarts to run in parallel for tuning with looptune:

options = systuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the randomized
starts among available workers in the parallel pool.

Use the options set when you call the tuning command. For example, if you have already
created a tunable control system model, CL0, and tunable controller, and tuning
requirement vectors SoftReqs and HardReqs, the following command uses parallel
computing to tune the control system of CL0 with systune.

[CL,fSoft,gHard,info] = systune(CL0,SoftReq,Hardreq,options);

To learn more about configuring a parallel pool, see the Parallel Computing Toolbox
documentation.

See Also
parpool

 Speed Up Tuning with Parallel Computing Toolbox Software

9-225

Related Examples
• “Using Parallel Computing to Accelerate Tuning” (Control System Toolbox)

More About
• “Specify Your Parallel Preferences” (Parallel Computing Toolbox)

9 Control System Tuning

9-226

Validate Tuned Control System
When you tune a control system using systune or Control System Tuner, you must
validate the results of tuning. The tuning results provide numeric and graphical
indications of how well your tuning goals are satisfied. (See “Interpret Numeric Tuning
Results” on page 9-184 and “Visualize Tuning Goals” on page 9-189.) Often, you want to
examine other system responses using the tuned controller parameters. If you are tuning
a Simulink model, you must also validate the tuned controller against the full nonlinear
system. At the command line and in Control System Tuner, there are several tools to help
you validate the tuned control system.

Extract and Plot System Responses
In addition to the system responses corresponding to your tuning goals (see “Visualize
Tuning Goals” on page 9-189), you can evaluate the tuned system performance by plotting
other system responses. For instance, evaluate reference tracking or overshoot
performance by plotting the step response of transfer function from the reference input to
the controlled output. Or, evaluate stability margins by examining an open-loop transfer
function. You can extract any transfer function you need for analysis from the tuned
model of your control system.

Extract System Responses at the Command Line

The tuning tools include analysis functions that let you extract responses from your tuned
control system.

For generalized state-space (genss) models, use:

• getIOTransfer
• getLoopTransfer
• getSensitivity
• getCompSensitivity

For an slTuner interface, use:

• getIOTransfer (for slTuner)
• getLoopTransfer (for slTuner)
• getSensitivity (for slTuner)

 Validate Tuned Control System

9-227

• getCompSensitivity (for slTuner)

In either case, the extracted responses are represented by state-space (ss) models. You
can analyze these models using commands such as step, bode, sigma, or margin.

For instance, suppose that you are tuning the control system of the example “Multiloop
Control of a Helicopter” (Control System Toolbox). You have created an slTuner
interface ST0 for the Simulink model. You have also specified tuning goals TrackReq,
MarginReq1, MarginReq2, and PoleReq. You tune the control system using systune.

AllReqs = [TrackReq,MarginReq1,MarginReq2,PoleReq];
ST1 = systune(ST0,AllReqs);

Final: Soft = 1.11, Hard = -Inf, Iterations = 113

Suppose also that ST0 has analysis points that include signals named theta-ref, theta,
phi-ref, and phi. Use getIOTransfer to extract the tuned transfer functions from
theta-ref and phi-ref to theta and phi.

T1 = getIOTransfer(ST1,{'theta-ref','phi-ref'},{'theta','phi'});
step(T1,5)

9 Control System Tuning

9-228

The step plot shows that the extracted transfer function is the 2-input, 2-output response
from the specified reference inputs to the specified outputs.

For an example that shows how to extract responses from a tuned genss model, see
“Extract Responses from Tuned MATLAB Model at the Command Line” on page 9-232.

For additional examples, see “Validating Results” (Control System Toolbox).

System Responses in Control System Tuner

For information about extracting and plotting system responses in Control System Tuner,
see “Create Response Plots in Control System Tuner” on page 9-198.

 Validate Tuned Control System

9-229

Validate Design in Simulink Model
When you tune a Simulink model, the software evaluates tuning goals for a linearization
of the model. Similarly, analysis commands such as getIOTransfer extract linearized
system responses. Therefore, you must validate the tuned controller parameters by
simulating the full nonlinear model with the tuned controller parameters, even if the
tuned linear system meets all your design requirements. To do so, write the tuned
parameter values to the model.

Tip If you tune the Simulink model at an operating point other than the model initial
condition, initialize the model at the same operating point before validating the tuned
controller parameters. See “Simulate Simulink Model at Specific Operating Point” on
page 1-83.

Write Parameters at the Command Line

To write tuned block values from a tuned slTuner interface to the corresponding
Simulink model, use the writeBlockValue command. For example, suppose ST1 is the
tuned slTuner interface returned by systune. The following command writes the tuned
parameters from ST1 to the associated Simulink model.

writeBlockValue(ST1)

Simulate the Simulink model to evaluate system performance with the tuned parameter
values.

Write Parameters in Control System Tuner

To write tuned block parameters to a Simulink model, in the Control System tab, click
 Update Blocks.

9 Control System Tuning

9-230

Control System Tuner transfers the current values of the tuned block parameters to the
corresponding blocks in the Simulink model. Simulate the model to evaluate system
performance using the tuned parameter values.

To update Simulink model with parameter values from a previous design stored in Control
System Tuner, click Retrieve and select the stored design that you want to make the
current design. Then click Update Blocks.

See Also

Related Examples
• “Extract Responses from Tuned MATLAB Model at the Command Line” on page 9-

232
• “Create Response Plots in Control System Tuner” on page 9-198
• “Visualize Tuning Goals” on page 9-189

 See Also

9-231

Extract Responses from Tuned MATLAB Model at the
Command Line

This example shows how to analyze responses of a tuned control system by using
getIOTransfer to compute responses between various inputs and outputs of a closed-
loop model of the system. You can obtain other responses using similar functions such as
getLoopTransfer and getSensitivity.

Consider the following control system.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

d2

d1

Suppose you have used systune to tune a genss model of this control system. The result
is a genss model, T, which contains tunable blocks representing the controller elements
C1 and C2. The tuned model also contains AnalysisPoint blocks that represent the
analysis-point locations, X1 and X2.

Analyze the tuned system performance by examining various system responses extracted
from T. For example, examine the response at the output, y, to a disturbance injected at
the point d1.

H1 = getIOTransfer(T,'X1','y');

H1 represents the closed-loop response of the control system to a disturbance injected at
the implicit input associated with the AnalysisPoint block X1, which is the location of
d1:

9 Control System Tuning

9-232

H1 is a genss model that includes the tunable blocks of T. H1 allows you to validate the
disturbance response of your tuned system. For example, you can use analysis commands
such as bodeplot or stepplot to analyze H1. You can also use getValue to obtain the
current value of H1, in which all the tunable blocks are evaluated to their current numeric
values.

Similarly, examine the response at the output to a disturbance injected at the point d2.

H2 = getIOTransfer(T,'X2','y');

You can also generate a two-input, one-output model representing the response of the
control system to simultaneous disturbances at both d1 and d2. To do so, provide
getIOTransfer with a cell array that specifies the multiple input locations.

H = getIOTransfer(T,{'X1','X2'},'y');

See Also
AnalysisPoint | getCompSensitivity | getIOTransfer | getLoopTransfer |
getSensitivity

Related Examples
• “Interpret Numeric Tuning Results” on page 9-184

 See Also

9-233

Gain-Scheduled Controllers

10

Gain Scheduling Basics
Gain scheduling is an approach to control of nonlinear systems using a family of linear
controllers, each providing satisfactory control for a different operating point of the
system. Gain-scheduled control is typically implemented using a controller whose gains
are automatically adjusted as a function of scheduling variables that describe the current
operating point. Such variables can include time, external operating conditions, or system
states such as orientation or velocity.

Gain-scheduled control systems are often designed by choosing a small set of operating
points, the design points, and designing a suitable linear controller for each point. In
operation, the system switches or interpolates between these controllers according to the
current values of the scheduling variables.

Gain scheduling is most suitable when the scheduling variables are external parameters
that vary slowly compared to the control bandwidth, such as the ambient temperature of
a chemical reaction or the speed of a cruising aircraft. Gain scheduling is most
challenging when the scheduling variables depend on fast-varying states of the system.
Because local linear performance near operating points is no guarantee of global
performance in nonlinear systems, extensive simulation-based validation is required. See
[1] for an overview of gain scheduling and its challenges.

To design a gain-scheduled control system, you need:

• An operating range, defined as a set of ranges within which the values of relevant
system parameters remain during operation. For instance, if your system is a cruising
aircraft, then the operating range might be an incidence angle between –20° and 20°
and airspeed in the range 200-250 m/s.

• Some measurable variables that indicate where in the operating range the system is at
a given time. These signals are the scheduling variables. For the aircraft system, the
scheduling variables might be the incidence angle and the airspeed.

• A gain schedule, which comprises the formulas or data tables that return the
appropriate controller gains for given values of the scheduling variables. For the
aircraft system, the gain schedule gives appropriate controller gains for any
combination of incidence angle and airspeed within the operating range.

Gain Scheduling in Simulink
Control System Toolbox provides blocks that help you model gain-scheduled control
systems in Simulink. These blocks let you implement common control-system elements

10 Gain-Scheduled Controllers

10-2

with variable parameters. For instance, the Varying PID Controller block accepts PID
gains as inputs. In your model, you use blocks such as n-D Lookup Table or MATLAB
Function blocks to implement the gain schedule. For more information and examples, see
“Model Gain-Scheduled Control Systems in Simulink” on page 10-4.

Tune Gain Schedules
You can use systune to tune gain schedules to achieve a control system that meets
performance objectives across the entire operating range. For more information, see
“Tune Gain Schedules in Simulink” on page 10-15.

References
[1] Rugh, W.J., and J.S. Shamma, “Research on Gain Scheduling”, Automatica, 36 (2000),

pp. 1401-1425.

See Also

More About
• “Model Gain-Scheduled Control Systems in Simulink” on page 10-4
• “Tune Gain Schedules in Simulink” on page 10-15

 See Also

10-3

Model Gain-Scheduled Control Systems in Simulink
In Simulink, you can model gain-scheduled control systems in which controller gains or
coefficients depend on scheduling variables such as time, operating conditions, or model
parameters. The library of linear parameter-varying blocks in Control System Toolbox lets
you implement common control-system elements with variable gains. Use blocks such as
lookup tables or MATLAB Function blocks to implement the gain schedule, which gives
the dependence of these gains on the scheduling variables.

To model a gain-scheduled control system in Simulink:

1 Identify the scheduling variables and the signals that represent them in your model.
For instance, if your system is a cruising aircraft, then the scheduling variables might
be the incidence angle and the airspeed of the aircraft.

2 Use a lookup table block or a MATLAB Function block to implement a gain or
coefficient that depends on the scheduling variables. If you do not have lookup table
values or MATLAB expressions for gain schedules that meet your performance
requirements, you can use systune to tune them. See “Tune Gain Schedules in
Simulink” on page 10-15.

3 Replace ordinary control elements with gain-scheduled elements. For instance,
instead of a fixed-coefficient PID controller, use a Varying PID Controller block, in
which the gain schedules determine the PID gains.

4 Add scheduling logic and safeguards to your model as needed.

Model Scheduled Gains
A gain schedule converts the current values of the scheduling variables into controller
gains. There are several ways to implement a gain schedule in Simulink.

Available blocks for implementing lookup tables include:

• Lookup tables — A lookup table is a list of breakpoints and corresponding gain values.
When the scheduling variables fall between breakpoints, the lookup table interpolates
between the corresponding gains. Use the following blocks to implement gain
schedules as lookup tables.

• 1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table — For a scalar gain that
depends on one, two, or more scheduling variables.

• Matrix Interpolation — For a matrix-valued gain that depends on one, two, or three
scheduling variables. (This block is in the Simulink Extras library.)

10 Gain-Scheduled Controllers

10-4

• MATLAB Function block — When you have a functional expression relating the gains
to the scheduling variables, use a MATLAB Function block. If the expression is a
smooth function, using a MATLAB function can result in smoother gain variations than
a lookup table. Also, if you use a code-generation product such as Simulink Coderto
implement the controller in hardware, a MATLAB function can result in a more
memory-efficient implementation than a lookup table.

You can use systune to tune gain schedules implement as either lookup tables or
MATLAB functions. See “Tune Gain Schedules in Simulink” on page 10-15.

Scheduled Gain in Controller

As an example, The model rct_CSTR includes a PI controller and a lead compensator in
which the controller gains are implemented as lookup tables using 1-D Lookup Table
blocks. Open that model and examine the controllers.
open_system(fullfile(matlabroot,'examples','controls_id','rct_CSTR.slx'))

 Model Gain-Scheduled Control Systems in Simulink

10-5

Both the Concentration controller and Temperature controller blocks take the
CSTR plant output, Cr, as an input. This value is both the controlled variable of the system
and the scheduling variable on which the controller action depends. Double-click the
Concentration controller block.

10 Gain-Scheduled Controllers

10-6

This block is a PI controller in which the proportional gain Kp and integrator gain Ki are
determined by feeding the scheduling parameter Cr into a 1-D Lookup Table block.
Similarly, the Temperature controller block contains three gains implemented as
lookup tables.

Gain-Scheduled Equivalents for Commonly Used Control
Elements
Use the Linear Parameter Varying block library of Control System Toolbox to
implement common control elements with variable parameters or coefficients. These
blocks provide common elements in which the gains or parameters are available as
external inputs. The following table lists some applications of these blocks.

 Model Gain-Scheduled Control Systems in Simulink

10-7

Block Application
• Varying Lowpass Filter
• Discrete Varying Lowpass

Use these blocks to implement a
Butterworth lowpass filter in which the
cutoff frequency varies with scheduling
variables.

• Varying Notch Filter
• Discrete Varying Notch

Use these blocks to implement a notch filter
in which the notch frequency, width, and
depth vary with scheduling variables.

• Varying PID Controller
• Discrete Varying PID
• Varying 2DOF PID
• Discrete Varying 2DOF PID

These blocks are preconfigured versions of
the PID Controller and PID Controller
(2DOF) blocks. Use them to implement PID
controllers in which the PID gains vary with
scheduling variables.

• Varying Transfer Function
• Discrete Varying Transfer Function

Use these blocks to implement a transfer
function of any order in which the
polynomial coefficients of the numerator
and denominator vary with scheduling
variables.

• Varying State Space
• Discrete Varying State Space

Use these blocks to implement a state-
space controller in which the A, B, C, and D
matrices vary with the scheduling
variables.

• Varying Observer Form
• Discrete Varying Observer Form

Use these blocks to implement a gain-
scheduled observer-form state-space
controller, such as an LQG controller. In
such a controller, the A, B, C, D matrices
and the state-feedback and state-observer
gain matrices vary with the scheduling
variables.

Gain-Scheduled Notch Filter

For example, the subsystem in the following illustration uses a Varying Notch Filter block
to implement a filter whose notch frequency varies as a function of two scheduling
variables. The relationship between the notch frequency and the scheduling variables is
implemented in a MATLAB function.

10 Gain-Scheduled Controllers

10-8

Gain-Scheduled PI Controller

As another example, the following subsystem is a gain-scheduled discrete-time PI
controller in which both the proportional and integral gains depend on the same
scheduling variable. This controller uses 1-D Lookup Table blocks to implement the gain
schedules.

 Model Gain-Scheduled Control Systems in Simulink

10-9

Matrix-Valued Gain Schedules

You can also implement matrix-valued gain schedules Simulink. A matrix-valued gain
schedule takes one or more scheduling variables and returns a matrix rather than a scalar
value. For instance, suppose that you want to implement a time-varying LQG controller of
the form:

dx Ax Bu L y Cx Du

u Kx

e e e

e

= + + - -()

= - ,

where, in general, the state-space matrices A, B, C, and D, the state-feedback matrix K,
and the observer-gain matrix L all vary with time. In this case, time is the scheduling
variable, and the gain schedule determines the values of the matrices at a given time.

In your Simulink model, you can implement matrix-valued gain schedules using:

• MATLAB Function block — Specify a MATLAB function that takes scheduling variables
and returns matrix values.

• Matrix Interpolation block — Specify a lookup table to associate a matrix value with
each scheduling-variable breakpoint. Between breakpoints, the block interpolates the
matrix elements. (This block is in the Simulink Extras library.)

For the LQG controller, use either MATLAB Function blocks or Matrix Interpolation blocks
to implement the time-varying matrices as inputs to a Varying Observer Form block. For
example:

10 Gain-Scheduled Controllers

10-10

In this implementation, the time-varying matrices are each implemented as a MATLAB
Function block in which the associated function takes the simulation time and returns a
matrix of appropriate dimensions.

You can tune matrix-valued gain schedules implemented as either MATLAB Function
blocks or as Matrix Interpolation blocks. However, to tune a Matrix Interpolation block,
you must set Simulate using to Interpreted execution. See the Matrix
Interpolation block reference page for information about simulation modes.

 Model Gain-Scheduled Control Systems in Simulink

10-11

Custom Gain-Scheduled Control Structures
You can also use the scheduled gains to build your own control elements. For example,
the model rct_CSTR includes a gain-scheduled lead compensator with three coefficients
that depend on the scheduling variable, CR. To see how this compensator is implemented,
open the model and examine the Temperature controller subsystem.

Here, the overall gain Kt, the zero location a, and the pole location b are each
implemented as a 1-D lookup table that takes the scheduling variable as input. The lookup
tables feed directly into product blocks.

10 Gain-Scheduled Controllers

10-12

Tunability of Gain Schedules
For a lookup table or MATLAB Function block that implements a gain schedule to be
tunable with systune, it must ultimately feed into either:

• A block in the Linear Parameter Varying block library.
• A Product block that applies the gain to a given signal. For instance, if the Product

block takes as inputs a scheduled gain g(α) and a signal u(t), then the output signal of
the block is y(t) = g(α)u(t).

There can be one or more of the following blocks between the lookup table or MATLAB
Function block and the Product block or parameter-varying block:

• Gain
• Bias
• Blocks that are equivalent to a unit gain in the linear domain, including:

• Transport Delay, Variable Transport Delay
• Saturate, Deadzone
• Rate Limiter, Rate Transition
• Quantizer, Memory, Zero-Order Hold
• MinMax
• Data Type Conversion
• Signal Specification

• Switch blocks, including:

• Switch
• Multiport Switch
• Manual Switch

Inserting such blocks can be useful, for example, to constrain the gain value to a certain
range, or to specify how often the gain schedule is updated.

 Model Gain-Scheduled Control Systems in Simulink

10-13

See Also

Related Examples
• “Tune Gain Schedules in Simulink” on page 10-15
• “Gain-Scheduled Control of a Chemical Reactor” (Control System Toolbox)

10 Gain-Scheduled Controllers

10-14

Tune Gain Schedules in Simulink
Typically, gain-scheduled controllers are fixed single-loop or multiloop control structures
in which controller gains vary with operating condition. A gain schedule converts the
scheduling variables that describe the current operating condition into appropriate
controller gains. In Simulink, you can implement gain schedules using lookup tables or
MATLAB functions. (See “Model Gain-Scheduled Control Systems in Simulink” on page
10-4.)

You can use systune to tune these gain schedules so that the full nonlinear system meets
your design requirements. Tuning gain schedules amounts to identifying appropriate
values for lookup-table data or finding the right function to embed in a MATLAB Function
block. For systune, you parameterize the gain schedules as functions of the scheduling
variables with tunable coefficients.

Workflow for Tuning Gain Schedules
The general workflow for tuning gain-scheduled control systems is:

1 Select a set of design points that adequately covers the operating range over which
you are tuning. A design point is a set of scheduling-variable values that describe a
particular operating condition. The set of design points can be a regular grid of
values or a scattered set. Typically, you start with a few design points. If the
performance that your tuned system achieves at the design points is not maintained
between design points, add more design points and retune.

2 Obtain a collection of linear models describing the linearized plant dynamics at the
selected design points. Ways to obtain the array of linear models include:

• Linearize a Simulink model at each operating condition represented in the grid of
design points. For example, if each design point corresponds to a steady-state
operating condition, you can trim the plant at each design point and linearize at
the resulting operating point. Or, if your scheduling variable is time, you can
linearize at a series of simulation snapshots.

• Sample an LPV model of the plant at the design points.

For more information, see “Plant Models for Gain-Scheduled Controller Tuning” on
page 10-18.

3 Create an slTuner interface for tuning the Simulink. When you do so, you substitute
the array of linear models for the plant, so that the slTuner interface contains a set

 Tune Gain Schedules in Simulink

10-15

of closed-loop tunable models corresponding to each design point. For more
information, see “Multiple Design Points in slTuner Interface” on page 10-26.

4 Model the gain schedules as parametric gain surfaces. A parametric gain surface is a
basis-function expansion with tunable coefficients. For a vector σ of scheduling
variables, such expansion is of the form:

K K K F n K F nM Ms s s() = + ()() + + ()()0 1 1 … .

n(σ) is a normalization function. For tuning with systune, you use tunableSurface
to represent the parametric gain surface K(σ). In the slTuner interface you create
for tuning, use setBlockParam to associate the resulting gain surface with the block
that represents the gain schedule. systune tunes the coefficients K0,...,KM over all
the design points.

For more information, see “Parameterize Gain Schedules” on page 10-32.
5 Specify your tuning goals using TuningGoal objects. You can specify tuning goals

that apply at all design points or at a subset of design points. You can also specify
tuning goals that vary from design point to design point. For example, you might
define a minimum gain margin that becomes increasingly stringent as a particular
scheduling variable increases in magnitude.

For information about specifying tuning goals that vary with design point, see
“Change Requirements with Operating Condition” on page 10-42.

For information about specifying tuning goals generally, see “Tuning Goals”.
6 Use systune to tune the control system. systune tunes the set of parameters,

K0,...,KM, against all plant models in the design grid simultaneously (multimodel
tuning).

7 Validate the tuning results. You can examine the tuned gain surfaces and validate the
performance of the linearized system at each design point. However, local linear
performance does not guarantee global performance in nonlinear systems. Therefore,
it is important to perform simulation-based validation using the tuned gain schedules.

For more information, see “Validate Gain-Scheduled Control Systems” on page 10-
46.

10 Gain-Scheduled Controllers

10-16

See Also

More About
• “Model Gain-Scheduled Control Systems in Simulink” on page 10-4
• “Gain-Scheduled Control of a Chemical Reactor” (Control System Toolbox)
• “Tuning of Gain-Scheduled Three-Loop Autopilot” (Control System Toolbox)

 See Also

10-17

Plant Models for Gain-Scheduled Controller Tuning
Gain scheduling is a control approach for controlling a nonlinear plant. To tune a gain-
scheduled control system, you need a collection of linear models that approximate the
nonlinear dynamics near selected design points. Generally, the dynamics of the plant are
described by nonlinear differential equations of the form:

&x f x u

y g x u

= ()

= ()

, ,

, , .

s

s

Here, x is the state vector, u is the plant input, and y is the plant output. These nonlinear
differential equations can be known explicitly for a particular system. More commonly,
they are specified implicitly, such as by a Simulink model.

You can convert these nonlinear dynamics into a family of linear models that describe the
local behavior of the plant around a family of operating points (x(σ),u(σ)), parameterized
by the scheduling variables, σ. Deviations from the nominal operating condition are
defined as:

d s d sx x x u u u= - () = - (), .

These deviations are governed, to first order, by linear parameter-varying dynamics:

&d s d s d d s d s d

s s s s

x A x B u y C x D u

A
f

x
x u B

= () + () = () + ()

() =
∂

∂
() ()() (

, ,

,)) =
∂

∂
() ()()

() =
∂

∂
() ()() () =

∂

∂
() ()()

f

u
x u

C
g

x
x u D

g

u
x u

s s

s s s s s s

,

, , ..

This continuum of linear approximations to the nonlinear dynamics is called a linear
parameter-varying (LPV) model:

dx

dt
A x B u

y C x D u

= () + ()

= () + ()

s s

s s .

10 Gain-Scheduled Controllers

10-18

The LPV model describes how the linearized plant dynamics vary with time, operating
condition, or any other scheduling variable. For example, the pitch axis dynamics of an
aircraft can be approximated by an LPV model that depends on incidence angle, α, air
speed, V, and altitude, h.

In practice, you replace this continuum of plant models by a finite set of linear models
obtained for a suitable grid of σ values This replacement amounts to sampling the LPV
dynamics over the operating range and selecting a representative set of σ values, your
design points.

Gain-scheduled controllers yield best results when the plant dynamics vary smoothly
between design points.

Obtaining the Family of Linear Models
If you do not have this family of linear models, there are several approaches to obtaining
it, including:

 Plant Models for Gain-Scheduled Controller Tuning

10-19

• If you have a Simulink model, trim and linearize the model at the design points on
page 10-20.

• Linearize the Simulink model using parameter variation on page 10-23.
• If the scheduling variable is time, linearize the model at a series of simulation

snapshots on page 10-23.
• If you have nonlinear differential equations that describe the plant, linearize them at

the design points.

For tuning gain schedules, after you obtain the family of linear models, you must
associate it with an slTuner interface to build a family of tunable closed-loop models. To
do so, use block substitution, as described in “Multiple Design Points in slTuner
Interface” on page 10-26.

Set Up for Gain Scheduling by Linearizing at Design Points
This example shows how to linearize a plant model at a set of design points for tuning of a
gain-scheduled controller. The example then uses the resulting linearized models to
configure an slTuner interface for tuning the gain schedule.

Open the rct_CSTR model.

mdl = 'rct_CSTR';
open_system(mdl)

10 Gain-Scheduled Controllers

10-20

In this model, the Concentration controller and Temperature controller both
depend on the output concentration Cr. To set up this gain-scheduled system for tuning,
you linearize the plant at a set of steady-state operating points that correspond to
different values of the scheduling parameter Cr. Sometimes, it is convenient to use a
separate model of the plant for trimming and linearization under various operating
conditions. For example, in this case, the most straightforward way to obtain these
linearizations is to use a separate open-loop model of the plant, rct_CSTR_OL.

mdl_OL = 'rct_CSTR_OL';
open_system(mdl_OL)

 Plant Models for Gain-Scheduled Controller Tuning

10-21

Trim Plant at Design Points

Suppose that you want to control this plant at a range of Cr values from 4 to 8. Trim the
model to find steady-state operating points for a set of values in this range. These values
are the design points for tuning.

Cr = (4:8)'; % concentrations
for k=1:length(Cr)
 opspec = operspec(mdl_OL);
 % Set desired residual concentration
 opspec.Outputs(1).y = Cr(k);
 opspec.Outputs(1).Known = true;
 % Compute equilibrium condition
 [op(k),report(k)] = findop(mdl_OL,opspec,findopOptions('DisplayReport','off'));
end

op is an array of steady-state operating points. For more information about steady-state
operating points, see “About Operating Points” on page 1-2.

Linearize at Design Points

Linearizing the plant model using op returns an array of LTI models, each linearized at
the corresponding design point.

G = linearize(mdl_OL,'rct_CSTR_OL/CSTR',op);

10 Gain-Scheduled Controllers

10-22

Create slTuner Interface with Block Substitution

To tune the control system rct_CSTR, create an slTuner interface that linearizes the
system at those design points. Use block substitution to replace the plant in rct_CSTR
with the linearized plant-model array G.

blocksub.Name = 'rct_CSTR/CSTR';
blocksub.Value = G;
tunedblocks = {'Kp','Ki'};
ST0 = slTuner(mdl,tunedblocks,blocksub);

For this example, only the PI coefficients in the Concentration controller are
designated as tuned blocks. In general, however, tunedblocks lists all the blocks to
tune.

For more information about using block substitution to configure an slTuner interface
for gain-scheduled controller tuning, see “Multiple Design Points in slTuner Interface”
(Control System Toolbox).

For another example that illustrates using trimming and linearization to generate a family
of linear models for gain-scheduled controller tuning, see “Trimming and Linearization of
the HL-20 Airframe” (Control System Toolbox).

Sample System at Simulation Snapshots
If you are controlling the system around a reference trajectory (x(σ),u(σ)), use snapshot
linearization to sample the system at various points along the σ trajectory. Use this
approach for time-varying systems where the scheduling variable is time.

To linearize a system at a set of simulation snapshots, use a vector of positive scalars as
the op input argument of linearize, slLinearizer, or slTuner. These scalars are the
simulation times at which to linearize the model. Use the same set of time values as the
design points in tunable surfaces for the system.

Sample System at Varying Parameter Values
If the scheduling variable is a parameter in the Simulink model, you can use parameter
variation to sample the control system over a parameter grid. For example, suppose that
you want to tune a model named suspension_gs that contains two parameters, Ks and
Bs. These parameters each can vary over some known range, and a controller gain in the
model varies as a function of both parameters.

 Plant Models for Gain-Scheduled Controller Tuning

10-23

To set up such a model for tuning, create a grid of parameter values. For this example, let
Ks vary from 1 – 5, and let Bs vary from 0.6 – 0.9.

Ks = 1:5;
Bs = [0.6:0.1:0.9];
[Ksgrid,Bsgrid] = ndgrid(Ks,Bs);

These values are the design points at which to sample and tune the system. For example,
create an slTuner interface to the model, assuming one tunable block, a Lookup Table
block named K that models the parameter-dependent gain.

params(1) = struct('Name','Ks','Value',Ksgrid);
params(2) = struct('Name','Bs','Value',Bsgrid);
STO = slTuner('suspension_gs','K',params);

slTuner samples the model at all (Ksgrid,Bsgrid) values specified in params.

Next, use the same design points to create a tunable gain surface for parameterizing K.

design = struct('Ks',Ksgrid,'Bs',Bsgrid);
shapefcn = @(Ks,Bs)[Ks,Bs,Ks*Bs];
K = tunableSurface('K',1,design,shapefcn);
setBlockParam(ST0,'K',K);

After you parameterize all the scheduled gains, you can create your tuning goals and tune
the system with systune.

Eliminate Samples at Unneeded Design Points
Sometimes, your sampling grid includes points that represent irrelevant or unphysical
design points. You can eliminate such design points from the model grid entirely, so that
they do not contribute to any stage of tuning or analysis. To do so, use voidModel, which
replaces specified models in a model array with NaN. voidModel replaces specified
models in a model array with NaN. Using voidModel lets your design over a grid of
design points that is almost regular.

There are other tools for controlling which models contribute to design and analysis. For
instance, you might want to:

• Keep a model in the grid for analysis, but exclude it from tuning.
• Keep a model in the grid for tuning, but exclude it from a particular design goal.

10 Gain-Scheduled Controllers

10-24

For more information, see “Change Requirements with Operating Condition” on page 10-
42.

LPV Plants in MATLAB
In MATLAB, you can use an array of LTI plant models to represent an LPV system
sampled at varying values of σ. To associate each linear model in the set with the
underlying design points, use the SamplingGrid property of the LTI model array σ. One
way to obtain such an array is to create a parametric generalized state-space (genss)
model of the system and sample the model with parameter variation to generate the
array. For an example, see “Study Parameter Variation by Sampling Tunable Model”
(Control System Toolbox).

See Also
findop | slTuner | voidModel

Related Examples
• “Parameterize Gain Schedules” on page 10-32
• “Tune Gain Schedules in Simulink” on page 10-15
• “Multiple Design Points in slTuner Interface” on page 10-26

 See Also

10-25

Multiple Design Points in slTuner Interface
For tuning a gain-scheduled control system, you must make your Simulink model linearize
to an array of LTI models corresponding to the various operating conditions that are your
design points. Thus, after you obtain a family of linear plant models as described in “Plant
Models for Gain-Scheduled Controller Tuning” on page 10-18, you must associate it with
the slTuner interface to your Simulink model. To do so, you use block substitution to
cause slTuner replace the plant subsystem of the model with the array of linear models.
This process builds a family of tunable closed-loop models within the slTuner interface.

Block Substitution for Plant
Suppose that you have an array of linear plant models obtained at each operating point in
your design grid. In the most straightforward case, the following conditions are met:

• The linear models in the array correspond exactly to the plant subsystem in your
model.

• Other than the elements you want to tune, nothing else in the model varies with the
scheduling variables.

For a Simulink model mdl containing plant subsystem G, and a linear model array Garr
that represents the plant at a grid of design points, the following commands create an
slTuner interface:

BlockSubs = struct('Name','mdl/G','Value',Garr);
st0 = slTuner('mdl',{'Kp','Ki'},BlockSubs);

st0 contains a family of closed-loop linear models, each linearized at a design point, and
each with the corresponding linear plant inserted for G. If 'Kp'and 'Ki' are the gain
schedules you want to tune (such as lookup tables), you can parameterize them with
tunable gain surfaces, as described in “Parameterize Gain Schedules” on page 10-32,
and tune them.

Multiple Block Substitutions
In other cases, the linearized array of plant models you have might not correspond exactly
to the plant subsystem in your Simulink model. Or, you might need to replace other parts
of the model that vary with operating condition. In such cases, more care is needed in
constructing the correct block substitution. The following sections highlight several such
cases.

10 Gain-Scheduled Controllers

10-26

For instance, consider the model of the following illustration.

This model has an inner loop with a proportional-only gain-scheduled controller. The
controller is represented by the lookup table Kp_in and the product block prod. The
outer loop includes a PI controller with gain-scheduled proportional and integral
coefficients represented by the lookup tables Kp and Ki. All the gain schedules depend on
the same scheduling variable alpha.

Suppose you want to tune the inner-loop gain schedule Kp_in with the outer loop open.
To that end, you obtain an array of linear models G_in from input u to outputs
{q,alpha}. This model array has the wrong I/O dimensions to use as a block substitution
for G. Therefore, you must "pad" G_in with an extra output dimension.

Garr = [0; G_in];
BlockSubs1 = struct('Name','mdl/G','Value',Garr);

In addition, you can remove all effect of the outer loop by replacing the Varying PID
Controller block with a system that linearizes to zero at all operating conditions. Because
this block has three inputs, replace it with a 3-input, one-output zero system.

BlockSubs2 = struct('Name','mdl/Varying PID Controller','Value',ss([0 0 0]));

 Multiple Design Points in slTuner Interface

10-27

With those block substitutions, the following commands create an slTuner interface that
you might use to tune the inner-loop gain schedule.

st0 = slTuner('mdl','Kp_in');
st0.BlockSubstitutions = [BlockSubs1; BlockSubs2];

See the example “Angular Rate Control in the HL-20 Autopilot” (Control System Toolbox)
for a another case in which several elements other than the plant itself are replaced by
block substitution.

Substituting Blocks that Depend on the Scheduling Variables
Next, suppose that you have already tuned the inner-loop gain schedule, and have
obtained an array Kp_in_tuned, of values of Kp_in that correspond to each design point
(each value of alpha at which you linearized the plant). Suppose also that you have a new
Garr that is the full plant from u to {y,q,alpha} linearized with the tuned inner loop
closed. To tune the outer-loop gain schedules, you must replace the product block with
the array Kp_in_tuned. It is important to note that you replace the injection point, the
product block prod, rather than the lookup table Kp_in. Replacing the product block
effectively converts it to a varying gain. Also, you must zero out the first input of the
product block to remove the effect of the lookup table Kp_in.

prodsub = [0 ss(Kp_in_tuned)];
BlockSubs1 = struct('Name','mdl/prod','Value',prodsub);
BlockSubs2 = struct('Name','mdl/G','Value',Garr);

st0 = slTuner('mdl',{'Kp','Ki'});
st0.BlockSubstitutions = [BlockSubs1; BlockSubs2];

For another example that shows this kind of substitution for a previously-tuned lookup
table, see “Attitude Control in the HL-20 Autopilot - SISO Design” (Control System
Toolbox).

The following illustration of a portion of a model highlights another scenario in which you
might need to replace blocks that vary with the scheduling variable. Suppose the
scheduling variable is alpha, and somewhere in your model, an signal u gets divided by
alpha.

10 Gain-Scheduled Controllers

10-28

To ensure that slTuner linearizes this block correctly at all values of alpha in the design
grid, you must replace it by an array of linear models, one for each alpha value. This
block is equivalent to sending u through a gain of 1/alpha:

Therefore, you can use the following block substitution in your slTuner interface, where
alphagrid is an array of alpha values at your design points.

divsub = ss[(1/alphagrid), 0]
BlockSubs = struct('Name','mdl/div-by-alpha','Value',divsub);
st0.BlockSubstitutions = [st0.BlockSubstitutions; BlockSubs]

Each entry in model array divsub divides its first input by the corresponding entry in
alphagrid, and zeros out its second input. Thus, this substitution gives the desired
result y = u/alpha.

Resolving Mismatches Between a Block and its Substitution
Sometimes, the linear model array you have is not an exact replacement for the part of
the model you want to replace. For example, consider the following illustration of a three-
input, one-output subsystem.

 Multiple Design Points in slTuner Interface

10-29

Suppose you have an array of linearized models Garr corresponding to G. You can
configure a block substitution for the entire subsystem G_full by constructing a
substitution model that reproduces the effect of averaging the three inputs, as follows:

Gsub = Garr*[1/3 1/3 1/3];
BlockSubs = struct('Name','mdl/G_full','Value',Gsub);

Sometimes, you can resolve a mismatch in I/O dimensions by padding inputs or outputs
with zeros, as shown in “Multiple Block Substitutions” on page 10-26. In still other cases,
you might need to perform other model arithmetic, using commands like series,
feedback, or connect to build a suitable replacement.

Block Substitution for LPV Blocks
If the plant in your Simulink model is represented by an LPV System , you must still
perform block substitution when creating the slTuner interface for tuning gain
schedules. slTuner cannot read the linear model array directly from the LPV System
block. However, you can use the linear model array specified in the block for the block
substitution, if it corresponds to the design points for which you are tuning. For instance,
suppose your plant is an LPV System block, LPVPlant, that specifies a model array
PlantArray. You can configure a block substitution for LPVPlant as follows:

BlockSubs = struct('Name','mdl/LPVPlant','Value',PlantArray);

See Also
slTuner

10 Gain-Scheduled Controllers

10-30

More About
• “Tune Gain Schedules in Simulink” on page 10-15
• “Plant Models for Gain-Scheduled Controller Tuning” on page 10-18
• “Parameterize Gain Schedules” on page 10-32

 See Also

10-31

Parameterize Gain Schedules
Typically, gain-scheduled control systems in Simulink use lookup tables or MATLAB
Function blocks to specify gain values as a function of the scheduling variables. For
tuning, you replace these blocks by parametric gain surfaces. A parametric gain surface
is a basis-function expansion whose coefficients are tunable. For example, you can model
a time-varying gain k(t) as a cubic polynomial in t:

k(t) = k0 + k1t + k2t2 + k3t3.

Here, k0,...,k3 are tunable coefficients. When you parameterize scheduled gains in this
way, systune can tune the gain-surface coefficients to meet your control objectives at a
representative set of operating conditions. For applications where gains vary smoothly
with the scheduling variables, this approach provides explicit formulas for the gains,
which the software can write directly to MATLAB Function blocks. When you use lookup
tables, this approach lets you tune a few coefficients rather than many individual lookup-
table entries, drastically reducing the number of parameters and ensuring smooth
transitions between operating points.

Basis Function Parameterization
In a gain-scheduled controller, the scheduled gains are functions of the scheduling
variables, σ. For example, a gain-scheduled PI controller has the form:

C s K
K

s
p

i
, .s s

s
() = () +

()

Tuning this controller requires determining the functional forms Kp(σ) and Ki(σ) that yield
the best system performance over the operating range of σ values. However, tuning
arbitrary functions is difficult. Therefore, it is necessary either to consider the function
values at only a finite set of points, or restrict the generality of the functions themselves.

In the first approach, you choose a collection of design points, σ, and tune the gains Kp
and Ki independently at each design point. The resulting set of gain values is stored in a
lookup table driven by the scheduling variables, σ. A drawback of this approach is that
tuning might yield substantially different values for neighboring design points, causing
undesirable jumps when transitioning from one operating point to another.

Alternatively, you can model the gains as smooth functions of σ, but restrict the generality
of such functions by using specific basis function expansions. For example, suppose σ is a
scalar variable. You can model Kp(σ) as a quadratic function of σ:

10 Gain-Scheduled Controllers

10-32

K k k kp s s s() = + +0 1 2
2
.

After tuning, this parametric gain might have a profile such as the following (the specific
shape of the curve depends on the tuned coefficient values and range of σ):

Or, suppose that σ consists of two scheduling variables, α and V. Then, you can model
Kp(σ) as a bilinear function of α and V:

K V k k k V k Vp a a a, .() = + + +0 1 2 3

 Parameterize Gain Schedules

10-33

After tuning, this parametric gain might have a profile such as the following. Here too,
the specific shape of the curve depends on the tuned coefficient values and ranges of σ
values:

For tuning gain schedules with systune, you use a parametric gain surface that is a
particular expansion of the gain in basis functions of σ:

K K K F n K F nM Ms s s() = + ()() + + ()()0 1 1 … .

The basis functions F1,...,FM are user-selected and fixed. These functions operate on n(σ),
where n is a function that scales and normalizes the scheduling variables to the interval [–
1,1] (or an interval you specify). The coefficients of the expansion, K0,...,KM, are the

10 Gain-Scheduled Controllers

10-34

tunable parameters of the gain surface. K0,...,KM can be scalar or matrix-valued,
depending on the I/O size of the gain K(σ). The choice of basis function is problem-
dependent, but in general, try low-order polynomial expansions first.

Tunable Gain Surfaces
Use the tunableSurface command to construct a tunable model of a gain surface
sampled over a grid of design points (σ values). For example, consider the gain with
bilinear dependence on two scheduling variables, α and V:

K V K K K V K Vp a a a, .() = + + +0 1 2 3

Suppose that α is an angle of incidence that ranges from 0° to 15°, and V is a speed that
ranges from 300 m/s to 700 m/s. Create a grid of design points that span these ranges.
These design points must match the parameter values at which you sample your varying
or nonlinear plant. (See “Plant Models for Gain-Scheduled Controller Tuning” on page 10-
18.)

[alpha,V] = ndgrid(0:5:15,300:100:700);
domain = struct('alpha',alpha,'V',V);

Specify the basis functions for the parameterization of this surface, α, V, and αV. The
tunableSurface command expects the basis functions to be arranged as a vector of
functions of two input variables. You can use an anonymous function to express the basis
functions.

shapefcn = @(alpha,V)[alpha,V,alpha*V];

Alternatively, use polyBasis, fourierBasis, or ndBasis to generate basis functions of
as many scheduling variables as you need.

Create the tunable surface using the design points and basis functions.

Kp = tunableSurface('Kp',1,domain,shapefcn);

Kp is a tunable model of the gain surface. tunableSurface parameterizes the surface
as:

K V K K K V K Vp a a a, ,() = + + +0 1 2 3

where

 Parameterize Gain Schedules

10-35

a
a

=
-

=
-7 5

7 5

500

200

.

.
, .V

V

The surface is expressed in terms of the normalized variables, a , ,V Œ -[]1 1
2 rather than

in terms of α and V. This normalization, which tunableSurface performs by default,
improves the conditioning of the optimization performed by systune. If needed, you can
change the default scaling and normalization. (See tunableSurface).

The second input argument to tunableSurface specifies the initial value of the constant
coefficient, K0. By default, K0 is the gain when all the scheduling variables are at the
center of their ranges. tunableSurface takes the I/O dimensions of the gain surface
from K0. Therefore, you can create array-valued tunable gains by providing an array for
that input.

Karr = tunableSurface('Karr',ones(2),domain,shapefcn);

Karr is a 2-by-2 matrix in which each entry is a bilinear function of the scheduling
variables with independent coefficients.

Tunable Gain With Two Independent Scheduling Variables
This example shows how to model a scalar gain K with a bilinear dependence on two
scheduling variables, and V. Suppose that is an angle of incidence that ranges from 0
to 15 degrees, and V is a speed that ranges from 300 to 600 m/s. By default, the
normalized variables are:

The gain surface is modeled as:

where are the tunable parameters.

Create a grid of design points, , that are linearly spaced in and V. These design
points are the scheduling-variable values used for tuning the gain-surface coefficients.
They must correspond to parameter values at which you have sampled the plant.

10 Gain-Scheduled Controllers

10-36

[alpha,V] = ndgrid(0:3:15,300:50:600);

These arrays, alpha and V, represent the independent variation of the two scheduling
variables, each across its full range. Put them into a structure to define the design points
for the tunable surface.

domain = struct('alpha',alpha,'V',V);

Create the basis functions that describe the bilinear expansion.

shapefcn = @(x,y) [x,y,x*y]; % or use polyBasis('canonical',1,2)

In the array returned by shapefcn, the basis functions are:

Create the tunable gain surface.

K = tunableSurface('K',1,domain,shapefcn);

You can use the tunable surface as the parameterization for a lookup table block or a
MATLAB Function block in a Simulink model. Or, use model interconnection commands to
incorporate it as a tunable element in a control system modeled in MATLAB. After you
tune the coefficients, you can examine the resulting gain surface using the viewSurf
command. For this example, instead of tuning, manually set the coefficients to non-zero
values and view the resulting gain.

Ktuned = setData(K,[100,28,40,10]);
viewSurf(Ktuned)

 Parameterize Gain Schedules

10-37

viewSurf displays the gain surface as a function of the scheduling variables, for the
ranges of values specified by domain and stored in the SamplingGrid property of the
gain surface.

Tunable Surfaces in Simulink
In your Simulink model, you model gain schedules using lookup table blocks, MATLAB
Function blocks, or Matrix Interpolation blocks, as described in “Model Gain-Scheduled
Control Systems in Simulink” on page 10-4. To tune these gain surfaces, use
tunableSurface to create a gain surface for each block. In the slTuner interface to
the model, designate each gain schedule as a block to tune, and set its parameterization
to the corresponding gain surface. For instance, the rct_CSTR model includes a gain-

10 Gain-Scheduled Controllers

10-38

scheduled PI controller, the Concentration controller subsystem, in which the gains
Kp and Ki vary with the scheduling variable Cr.

To tune the lookup tables Kp and Ki, create a tunable surface for each one. Suppose that
CrEQ is the vector of design points, and that you expect the gains to vary quadratically
with Cr.

TuningGrid = struct('Cr',CrEQ);
ShapeFcn = @(Cr) [Cr , Cr^2];

Kp = tunableSurface('Kp',0,TuningGrid,ShapeFcn);
Ki = tunableSurface('Ki',-2,TuningGrid,ShapeFcn);

Suppose that you have an array Gd of linearizations of the plant subsystem, CSTR, at each
of the design points in CrEQ. (See “Plant Models for Gain-Scheduled Controller Tuning”
on page 10-18). Create an slTuner interface that substitutes this array for the plant
subsystem and designates the two lookup-table blocks for tuning.

 Parameterize Gain Schedules

10-39

BlockSubs = struct('Name','rct_CSTR/CSTR','Value',Gd);
ST0 = slTuner('rct_CSTR',{'Kp','Ki'},BlockSubs);

Finally, use the tunable surfaces to parameterize the lookup tables.

ST0.setBlockParam('Kp',Kp);
ST0.setBlockParam('Ki',Ki);

When you tune STO, systune tunes the coefficients of the tunable surfaces Kp and Ki, so
that each tunable surface represents the tuned relationship between Cr and the gain.
When you write the tuned values back to the block for validation, setBlockParam
automatically generates tuned lookup-table data by evaluating the tunable surfaces at the
breakpoints you specify in the corresponding blocks.

For more details about this example, see “Gain-Scheduled Control of a Chemical Reactor”
(Control System Toolbox).

Tunable Surfaces in MATLAB
For a control system modeled in MATLAB, use tunable surfaces to construct more
complex gain-scheduled control elements, such as gain-scheduled PID controllers, filters,
or state-space controllers. For example, suppose that you create two gain surfaces Kp and
Ki using tunableSurface. The following command constructs a tunable gain-scheduled
PI controller.

C0 = pid(Kp,Ki);

Similarly, suppose that you create four matrix-valued gain surfaces A, B, C, D. The
following command constructs a tunable gain-scheduled state-space controller.

C1 = ss(A,B,C,D);

You then incorporate the gain-scheduled controller into a generalized model of your
entire control system. For example, suppose G is an array of models of your plant sampled
at the design points that are specified in Kp and Ki. Then, the following command builds
a tunable model of a gain-scheduled single-loop PID control system.

T0 = feedback(G*C0,1);

When you interconnect a tunable surface with other LTI models, the resulting model is an
array of tunable generalized genss models. The design points in the tunable surface
determine the dimensions of the array. Thus, each entry in the array represents the

10 Gain-Scheduled Controllers

10-40

system at the corresponding scheduling variable value. The SamplingGrid property of
the array stores those design points.

T0 = feedback(G*Kp,1)

T0 =

 4x5 array of generalized continuous-time state-space models.
 Each model has 1 outputs, 1 inputs, 3 states, and the following blocks:
 Kp: Parametric 1x4 matrix, 1 occurrences.

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, and
"T0.Blocks" to interact with the blocks.

The resulting generalized model has tunable blocks corresponding to the gain surfaces
used to create the model. In this example, the system has one gain surface, Kp, which has
the four tunable coefficients corresponding to K0, K1, K2, and K3. Therefore, the tunable
block is a vector-valued realp parameter with four entries.

When you tune the control system with systune, the software tunes the coefficients for
each of the design points specified in the tunable surface.

For an example illustrating the entire workflow in MATLAB, see the section “Controller
Tuning in MATLAB” in “Gain-Scheduled Control of a Chemical Reactor” (Control System
Toolbox).

See Also
tunableSurface

Related Examples
• “Model Gain-Scheduled Control Systems in Simulink” on page 10-4
• “Multiple Design Points in slTuner Interface” on page 10-26
• “Tune Gain Schedules in Simulink” on page 10-15

 See Also

10-41

Change Requirements with Operating Condition
When tuning a gain-scheduled control system, it is sometimes useful to enforce different
design requirements at different points in the design grid. For instance, you might want
to:

• Specify a variable tuning goal that depends explicitly or implicitly on the design point.
• Enforce a tuning goal at a subset of design points, but ignore it at other design points.
• Exclude a design point from a particular run of systune, but retain it for analysis or

other tuning operations.
• Eliminate a design point from all stages of design and analysis.

Define Variable Tuning Goal
There are several ways to define a tuning goal that changes across design points.

Create Varying Goals

The varyingGoal command lets you construct tuning goals that depend implicitly or
explicitly on the design point.

For example, create a tuning goal that specifies variable gain and phase margins across a
grid of design points. Suppose that you use the following 5-by-5 grid of design points to
tune your controller.

[alpha,V] = ndgrid(linspace(0,20,5),linspace(700,1300,5));

Suppose further that you have 5-by-5 arrays of target gain margins and target phase
margins corresponding to each of the design points, such as the following.

[GM,PM] = ndgrid(linspace(7,20,5),linspace(45,70,5));

To enforce the specified margins at each design point, first create a template for the
margins goal. The template is a function that takes gain and phase margin values and
returns a TuningGoal.Margins object with those margins.

FH = @(gm,pm) TuningGoal.Margins('u',gm,pm);

Use the template and the margin arrays to create the varying goal.

VG = varyingGoal(FH,GM,PM);

10 Gain-Scheduled Controllers

10-42

To make it easier to trace which goal applies to which design point, use the
SamplingGrid property to attach the design-point information to VG.

VG.SamplingGrid = struct('alpha',alpha,'V',V);

Use VG with systune as you would use any other tuning goal. Use viewGoal to visualize
the tuning goal and identify design points that fail to meet the target margins. For varying
tuning goals, the viewGoal plot includes sliders that let you examine the goal and system
performance for particular design points. See “Validate Gain-Scheduled Control Systems”
on page 10-46.

The template function allows great flexibility in constructing the design goals. For
example, you can write a function, goalspec(a,b), that constructs the target overshoot
as a nontrivial function of the parameters (a,b), and save the function in a MATLAB file.
Your template function then calls goalspec:

FH = @(a,b) TuningGoal.Overshoot('r',y',goalspec(a,b));

For more information about configuring varying goals, see the varyingGoal reference
page.

Create Separate Requirement for Each Design Point

Another way to enforce a requirement that varies with design point is to create a separate
instance of the requirement for each design point. This approach can be useful when you
have a goal that only applies to a few of models in the design array. For example, suppose
that you want to enforce a 1/s loop shape on the first five design points only, with a
crossover frequency that depends on the scheduling variables. Suppose also that you
have created a vector, wc, that contains the target bandwidth for each design point. Then
you can construct one TuningGoal.LoopShape requirement for each design point.
Associate each TuningGoal.LoopShape requirement with the corresponding design
point using the Models property of the requirement.

for ct = 1:length(wc)
 R(ct) = TuningGoal.LoopShape('u',wc(ct));
 R(ct).Model = ct;
end

If wc covers all the design points in your grid, this approach is equivalent to using a
varyingGoal object. It is a useful alternative to varyingGoal when you only want to
constrain a few design points.

 Change Requirements with Operating Condition

10-43

Build Variation into the Model

Instead of creating varying requirements, you can incorporate the varying portion of the
requirement into the closed-loop model of the control system. This approach is a form of
goal normalization that makes it possible to cover all design points with a single uniform
goal.

For example, suppose that you want to limit the gain from d to y to a quantity that
depends on the scheduling variables. Suppose that T0 is an array of models of the closed-
loop system at each design point. Suppose further that you have created a table, gmax, of
the maximum gain values for each design point, σ. Then you can add another output ys =
y/gmax to the closed-loop model, as follows.

% Create array of scalar gains 1/gmax
yScaling = reshape(1./gmax,[1 1 size(gmax)]);
yScaling = ss(yScaling,'InputName','y','OutputName','ys');

% Connect these gains in series to y output of T0
T0 = connect(T0,yScaling,T0.InputName,[T0.OutputName ; {'ys'}]);

The maximum gain changes at each design point according to the table gmax. You can
then use a single requirement that limits to 1 the gain from d to the scaled output ys.

R = TuningGoal.Gain('d','ys',1);

Such effective normalization of requirements moves the requirement variability from the
requirement object, R, to the closed-loop model, T0.

In Simulink, you can use a similar approach by feeding the relevant model inputs and
outputs through a gain block. Then, when you linearize the model, change the gain value
of the block with the operating condition. For example, set the gain to a MATLAB
variable, and use the Parameters property in slLinearizer to change the variable
value with each linearization condition.

Enforce Tuning Goal at Subset of Design Points
You can restrict application of a tuning goal to a subset of models in the design grid using
the Models property of the tuning goal. Specify models by their linear index in the model
array. For instance, suppose that you have a tuning goal, Req. Configure Req to apply to
the first and last models in a 3-by-3 design grid.

Req.Models = [1,9];

10 Gain-Scheduled Controllers

10-44

When you call systune with Req as a hard or soft goal, systune enforces Req for these
models and ignores it for the rest of the grid.

Exclude Design Points from systune Run
You can exclude one or more design points from tuning without removing the
corresponding model from the array or reconfiguring your tuning goals. Doing so can be
useful, for example, to identify problematic design points when tuning over the entire
design grid fails to meet your design requirements. It can also be useful when there are
design points that you want to exclude from a particular tuning run, but preserve for
performance analysis or further tuning.

The SkipModels option of systuneOptions lets you specify models in the design grid
to exclude from tuning. Specify models by their linear index in the model array. For
instance, configure systuneOptions to skip the first and last models in a 3-by-3 design
grid.

opt = systuneOptions;
opt.SkipModels = [1,9];

When you call systune with opt, the tuning algorithm ignores these models.

As an alternative, you can eliminate design points from the model grid entirely, so that
they do not contribute to any stage of tuning or analysis. To do so, use voidModel, which
replaces specified models in a model array with NaN. This option is useful when your
sampling grid includes points that represent irrelevant or unphysical design points. Using
voidModel lets you design over a grid of design points that is almost regular.

See Also
systuneOptions | varyingGoal | viewGoal

More About
• “Validate Gain-Scheduled Control Systems” on page 10-46
• “Tune Gain Schedules in Simulink” on page 10-15

 See Also

10-45

Validate Gain-Scheduled Control Systems
Tuned gain schedules require careful validation. The tuning process guarantees suitable
performance only near each design point. In addition, the tuning ignores dynamic
couplings between the plant state variables and the scheduling variables (see Section 4.3,
“Hidden Coupling”, in [1]). Best practices for validation include:

• Examine tuned gain surfaces to make sure that they are smooth and well-behaved.
• Visualize tuning goals against system responses at all design points.
• Check linear performance of the tuned control system between design points.
• Validate gain schedules in simulation of the full nonlinear system.

Check linear performance on a denser grid of σ values than you used for design. If
adequate linear performance is not maintained between design points, you can add more
design points and retune.

Perform nonlinear simulations that drive the closed-loop system through its entire
operating range. Pay special attention to maneuvers that cause rapid variations of the
scheduling variables.

Examine Tuned Gain Surfaces
After tuning, examine the tuned gains as a function of the scheduling variables to make
sure that they are smooth and well-behaved over the operating range. Visualize tuned
gain surfaces using the viewSurf command.

Visualize Tuning Goals
Use tuning-goal plots to visualize your design requirements against the linear response of
the tuned control system. Tuning-goal plots show graphically where and by how much
tuning goals are satisfied or violated. This visualization lets you examine how close your
control system is to ideal performance. It can also help you identify problems with tuning
and provide clues on how to improve your design.

For general information about using tuning-goal plots, see “Visualize Tuning Goals” on
page 9-189. For gain-scheduled control systems, the tuning-goal plots you generate with
viewGoal provide additional information that helps you evaluate how each tuning goal
contributes to the result.

10 Gain-Scheduled Controllers

10-46

Fixed Tuning Goals

For fixed tuning goals that apply to multiple design points, viewGoal plots the relevant
system response at all those design points. For instance, suppose that you tune an
slTuner interface, ST, for the rct_CSTR model described in “Gain-Scheduled Control of
a Chemical Reactor” (Control System Toolbox). You can use viewGoal to see how well
each of the five design points of that example satisfies the gain goal R3. The resulting plot
shows the relevant gain profile at all five design points. Click any of the gain lines for a
display that shows the corresponding value of the scheduling variable Cr.

viewGoal(R3,ST)

 Validate Gain-Scheduled Control Systems

10-47

Varying Tuning Goals

Varying goals that you create using varyingGoal apply a different target response at
each design point. When you use viewGoal to examine a varying goal, the plot initially
displays the target and tuned responses at the first design point in the design grid. For
instance, suppose that you tune a control system ST over a design grid of two scheduling
variables, using a varying goal Rv that varies across the entire grid. After tuning, examine
Rv.

viewGoal(Rv,ST)

Click CHANGE to open sliders that let you select a design point at which to view the
target and tuned responses.

10 Gain-Scheduled Controllers

10-48

Check Linear Performance
In addition to examining linear responses associated with tuning goals, check other linear
responses of the system to make sure that the behavior is suitable. You can do so by
extracting and plotting system responses as described generally in “Validate Tuned
Control System” on page 9-227.

For gain-scheduled systems, it is good practice to check linear performance on a denser
grid of operating points than you used for design. If the system does not maintain
adequate linear performance between design points, then you can add more design points
and retune.

 Validate Gain-Scheduled Control Systems

10-49

Validate Gain Schedules in Nonlinear System
Because systune tunes gain schedules against a linearization obtained at each design
point, it is important to test the tuning results in simulation of the full nonlinear system.
Perform nonlinear simulations that drive the closed-loop system through its entire
operating range. Pay special attention to maneuvers that cause rapid variations of the
scheduling variables.

After tuning an slTuner interface, use writeBlockValue to write tuned controller
parameters to the Simulink model for such simulation. This command can write tuned
gain schedules to lookup table blocks, Matrix Interpolation blocks, and MATLAB Function
blocks for which you have specified a tunableSurface parameterization.

Lookup Tables

For lookup table blocks and Matrix Interpolation blocks, writeBlockValue
automatically evaluates the tuned gain surface at the breakpoints specified in the block.
These breakpoints do not need to be the same as the design points used for tuning.
Because the tunableSurface describes the gain schedule in parametric form,
writeBlockValue can evaluate the gain at any scheduling-variable value.

If you have retuned a subset of design points, you can use writeLookupTableData to
update a portion of the lookup-table data while leaving the rest intact.

MATLAB Function Blocks

For gain schedules implemented as MATLAB Function blocks, writeBlockValue
automatically generates MATLABcode and pushes it to the block. The generated MATLAB
function takes the scheduling variables and returns the gain value given by the tuned
parametric expression of the tunableSurface. To see this MATLAB code for a particular
gain surface, use the codegen command.

References
[1] Rugh, W.J., and J.S. Shamma, “Research on Gain Scheduling”, Automatica, 36 (2000),

pp. 1401-1425.

See Also
codegen | viewGoal | viewSurf | writeBlockValue | writeLookupTableData

10 Gain-Scheduled Controllers

10-50

Related Examples
• “Tuning of Gain-Scheduled Three-Loop Autopilot” (Control System Toolbox)
• “Gain-Scheduled Control of a Chemical Reactor” (Control System Toolbox)
• “Validate Tuned Control System” on page 9-227

 See Also

10-51

Loop-Shaping Design

• “Structure of Control System for Tuning With looptune” on page 11-2
• “Set Up Your Control System for Tuning with looptune” on page 11-4
• “Tune MIMO Control System for Specified Bandwidth” on page 11-6

11

Structure of Control System for Tuning With looptune
looptune tunes the feedback loop illustrated below to meet default requirements or
requirements that you specify.

G

C

u y

C represents the controller and G represents the plant. The sensor outputsy
(measurement signals) and actuator outputs u (control signals) define the boundary
between plant and controller. The controller is the portion of your control system whose
inputs are measurements, and whose outputs are control signals. Conversely, the plant is
the remainder—the portion of your control system that receives control signals as inputs,
and produces measurements as outputs.

For example, in the control system of the following illustration, the controller C receives
the measurement y, and the reference signal r. The controller produces the controls qL
and qV as outputs.

PIL

PIV

D yr
+

-

G

q
L

q
V

p
L

p
V

e

C

The controller C has a fixed internal structure. C includes a gain matrix D , the PI
controllers PI_L and PI_V, and a summing junction. The looptune command tunes free

11 Loop-Shaping Design

11-2

parameters of C such as the gains in D and the proportional and integral gains of PI_L
and PI_V. You can also use looptune to co-tune free parameters in both C and G.

 Structure of Control System for Tuning With looptune

11-3

Set Up Your Control System for Tuning with looptune

Set Up Your Control System for looptunein MATLAB
To set up your control system in MATLAB for tuning with looptune:

1 Parameterize the tunable elements of your controller. You can use predefined
structures such as tunablePID, tunableGain, and tunableTF. Or, you can create
your own structure from elementary tunable parameters (realp).

2 Use model interconnection commands such as series and connect to build a
tunable genss model representing the controller C0.

3 Create a Numeric LTI model (Control System Toolbox) representing the plant G. For
co-tuning the plant and controller, represent the plant as a tunable genss model.

Set Up Your Control System for looptune in Simulink
To set up your control system in Simulink for tuning with systune (requires Simulink
Control Design software):

1 Use slTuner to create an interface to the Simulink model of your control system.
When you create the interface, you specify which blocks to tune in your model.

2 Use addPoint to specify the control and measurement signals that define the
boundaries between plant and controller. Use addOpening to mark optional loop-
opening or signal injection sites for specifying and assessing open-loop requirements.

The slTuner interface automatically linearizes your Simulink model. The slTuner
interface also automatically parametrizes the blocks that you specify as tunable blocks.
For more information about this linearization, see the slTuner reference page and “How
Tuned Simulink Blocks Are Parameterized” on page 9-36.

See Also

Related Examples
• “Tune MIMO Control System for Specified Bandwidth” on page 11-6
• “Tuning Feedback Loops with LOOPTUNE” (Control System Toolbox)

11 Loop-Shaping Design

11-4

More About
• “Structure of Control System for Tuning With looptune” on page 11-2

 See Also

11-5

Tune MIMO Control System for Specified Bandwidth
This example shows how to tune the following control system to achieve a loop crossover
frequency between 0.1 and 1 rad/s, using looptune.

The plant, G, is a two-input, two-output model (y is a two-element vector signal). For this
example, the transfer function of G is given by:

This sample plant is based on the distillation column described in more detail in the
example “Decoupling Controller for a Distillation Column” (Control System Toolbox).

To tune this control system, you first create a numeric model of the plant. Then you create
tunable models of the controller elements and interconnect them to build a controller
model. Then you use looptune to tune the free parameters of the controller model.
Finally, examine the performance of the tuned system to confirm that the tuned controller
yields desirable performance.

Create a model of the plant.

s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';

When you tune the control system, looptune uses the channel names G.InputName and
G.OutputName to interconnect the plant and controller. Therefore, assign these channel
names to match the illustration. When you set G.OutputName = 'y', the
G.OutputName is automatically expanded to {'y(1)';'y(2)'}. This expansion occurs
because G is a two-output system.

Represent the components of the controller.

11 Loop-Shaping Design

11-6

D = tunableGain('Decoupler',eye(2));
D.InputName = 'e';
D.OutputName = {'pL','pV'};

PI_L = tunablePID('PI_L','pi');
PI_L.InputName = 'pL';
PI_L.OutputName = 'qL';

PI_V = tunablePID('PI_V','pi');
PI_V.InputName = 'pV';
PI_V.OutputName = 'qV';

sum1 = sumblk('e = r - y',2);

The control system includes several tunable control elements. PI_L and PI_V are tunable
PI controllers. These elements represented by tunablePID models. The fixed control
structure also includes a decoupling gain matrix D, represented by a tunable
tunableGain model. When the control system is tuned, D ensures that each output of G
tracks the corresponding reference signal r with minimal crosstalk.

Assigning InputName and OutputName values to these control elements allows you to
interconnect them to create a tunable model of the entire controller C as shown.

When you tune the control system, looptune uses these channel names to interconnect C
and G. The controller C also includes the summing junction sum1. This a two-channel
summing junction, because r and y are vector-valued signals of dimension 2.

Connect the controller components.

C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});

C0 is a tunable genss model that represents the entire controller structure. C0 stores the
tunable controller parameters and contains the initial values of those parameters.

Tune the control system.

The inputs to looptune are G and C0, the plant and initial controller models that you
created. The input wc = [0.1,1] sets the target range for the loop bandwidth. This

 Tune MIMO Control System for Specified Bandwidth

11-7

input specifies that the crossover frequency of each loop in the tuned system fall between
0.1 and 1 rad/min.

wc = [0.1,1];
[G,C,gam,Info] = looptune(G,C0,wc);

Final: Peak gain = 0.974, Iterations = 19
Achieved target gain value TargetGain=1.

The displayed Peak Gain = 0.949 indicates that looptune has found parameter
values that achieve the target loop bandwidth. looptune displays the final peak gain
value of the optimization run, which is also the output gam. If gam is less than 1, all tuning
requirements are satisfied. A value greater than 1 indicates failure to meet some
requirement. If gam exceeds 1, you can increase the target bandwidth range or relax
another tuning requirement.

looptune also returns the tuned controller model C. This model is the tuned version of
C0. It contains the PI coefficients and the decoupling matrix gain values that yield the
optimized peak gain value.

Display the tuned controller parameters.

showTunable(C)

Decoupler =

 D =
 u1 u2
 y1 2.138 -1.302
 y2 -1.585 1.296

Name: Decoupler
Static gain.

PI_L =

 1
 Kp + Ki * ---
 s

 with Kp = 1.5, Ki = 0.0435

Name: PI_L
Continuous-time PI controller in parallel form.

11 Loop-Shaping Design

11-8

PI_V =

 1
 Kp + Ki * ---
 s

 with Kp = -1.74, Ki = -0.0533

Name: PI_V
Continuous-time PI controller in parallel form.

Check the time-domain response for the control system with the tuned coefficients. To
produce a plot, construct a closed-loop model of the tuned control system. Plot the step
response from reference to output.

T = connect(G,C,'r','y');
step(T)

 Tune MIMO Control System for Specified Bandwidth

11-9

The decoupling matrix in the controller permits each channel of the two-channel output
signal y to track the corresponding channel of the reference signal r, with minimal
crosstalk. From the plot, you can how well this requirement is achieved when you tune
the control system for bandwidth alone. If the crosstalk still exceeds your design
requirements, you can use a TuningGoal.Gain requirement object to impose further
restrictions on tuning.

Examine the frequency-domain response of the tuned result as an alternative method for
validating the tuned controller.

figure('Position',[100,100,520,1000])
loopview(G,C,Info)

11 Loop-Shaping Design

11-10

 Tune MIMO Control System for Specified Bandwidth

11-11

The first plot shows that the open-loop gain crossovers fall within the specified interval
[0.1,1]. This plot also includes the maximum and tuned values of the sensitivity

function and complementary sensitivity . The second and third
plots show that the MIMO stability margins of the tuned system (blue curve) do not
exceed the upper limit (yellow curve).

See Also

Related Examples
• “Decoupling Controller for a Distillation Column” (Control System Toolbox)

More About
• “Structure of Control System for Tuning With looptune” on page 11-2

11 Loop-Shaping Design

11-12

Model Verification

• “Monitor Linear System Characteristics in Simulink Models” on page 12-2
• “Define Linear System for Model Verification Blocks” on page 12-4
• “Verifiable Linear System Characteristics” on page 12-5
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks”

on page 12-25

12

Monitor Linear System Characteristics in Simulink
Models

Simulink Control Design software provides Model Verification blocks to monitor time- and
frequency-domain characteristics of a linear system on page 12-4 computed from a
nonlinear Simulink model during simulation.

Use these blocks to:

• Verify that the linear system characteristics of any nonlinear Simulink model,
including the following, remain within specified bounds during simulation:

• Continuous- or discrete-time models
• Multi-rate models
• Models with time delays, represented using exact delay or Padé approximation
• Discretized linear models computed from continuous-time models
• Continuous-time models computed from discrete-time models
• Resampled discrete-time models

The linear system can be Single-Input Single-Output (SISO) or Multi-Input Multi-
Output (MIMO).

• View specified bounds and bound violations on linear analysis plots.

Tip These blocks are same as the Linear Analysis Plots blocks except for different
default settings of the bound parameters.

• Save the computed linear system to the MATLAB workspace.

The verification blocks assert when the linear system characteristic does not satisfy a
specified bound, i.e., assertion fails. A warning message, reporting the assertion failure,
appears at the MATLAB prompt. When assertion fails, you can:

• Stop the simulation and bring that block into focus.
• Evaluate a MATLAB expression.

You can use these blocks with the Simulink Model Verification blocks to design complex
logic for assertion. For an example, see “Verify Model Using Simulink Control Design and
Simulink Verification Blocks” on page 12-25.

12 Model Verification

12-2

You can use the Verification Manager tool in the Signal Builder to construct simulation
tests for your model. For an example, see “Verifying Frequency-Domain Characteristics of
an Aircraft”.

Note These blocks do not support code generation and can only be used in Normal
simulation mode.

 Monitor Linear System Characteristics in Simulink Models

12-3

Define Linear System for Model Verification Blocks
To assert that the linear system characteristics satisfy specified bounds, the Model
Verification blocks compute a linear system from a nonlinear Simulink model.

For the software to compute a linear system, you must specify:

• Linearization inputs and outputs on page 14-5

Linearization inputs and outputs define the portion of the model to linearize. A
linearization input defines an input while a linearization output defines an output of
the linearized model. To compute a MIMO linear system, specify multiple inputs and
outputs.

• When to compute the linear system on page 14-10

You can compute the linear system and assert bounds at:

• Default simulation snapshot time. Typically, simulation snapshots are the times
when your model reaches steady state.

• Multiple simulation snapshots.
• Trigger-based simulation events

For more information, see the following examples:

• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15

12 Model Verification

12-4

Verifiable Linear System Characteristics
The following table summarizes the linear system characteristics you can specify bounds
on and assert that the bounds are satisfied during simulation.

Block Plot Type Bounds on…
Check Bode Characteristics Bode Upper and lower Bode

magnitude
Check Gain and Phase
Margins

• Bode
• Nichols
• Nyquist
• Table

Gain and phase margins

Check Nichols
Characteristics

Nichols • Open-loop gain and
phase

• Closed-loop peak gain
Check Pole-Zero
Characteristics

Pole-Zero Approximate second-order
characteristics, such as
settling time, percent
overshoot, damping ratio
and natural frequency, on
the pole locations

Check Singular Value
Characteristics

Singular Value Upper and lower singular
values

Check Linear Step Response
Characteristics

Step Response Step response
characteristics

Specify the bounds in the Bounds tab of the block's Block Parameters dialog box or
programmatically. For more information, see the corresponding block reference pages.

 Verifiable Linear System Characteristics

12-5

Verify Model at Default Simulation Snapshot Time
This example shows how to assert that bounds on the linear system characteristics of a
nonlinear Simulink model, computed at the default simulation snapshot time of 0, are
satisfied during simulation.

1 Open a nonlinear Simulink model. For example:

watertank
2 Open the Simulink Library Browser by selecting View > Library Browser in the

Simulink Editor.
3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.
b Drag and drop a block, such as the Check Pole-Zero Characteristics block, into

the Simulink Editor.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

12 Model Verification

12-6

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization input and output to compute the closed-loop poles and zeros.

 Verify Model at Default Simulation Snapshot Time

12-7

Tip If you have defined the linearization input and output in your Simulink model,

click to automatically populate the Linearization inputs/outputs table with
I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

ii In the Simulink model, click the output signal of the Desired Water
Level block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

12 Model Verification

12-8

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

 Verify Model at Default Simulation Snapshot Time

12-9

ii
Click to add the signal to the Linearization inputs/outputs table.

Note To find the location in the Simulink model corresponding to a signal in
the Linearization inputs/outputs table, select the signal in the table and

click .
iii In the Configuration drop-down list of the Linearization inputs/outputs

table, select Output Measurement for watertank/Water-Tank System: 1.

Note The I/Os include the feedback loop in the Simulink model. The
software computes the poles and zeros of the closed-loop system.

12 Model Verification

12-10

iv
Click to collapse the Click a signal in the model to select it area.

6 Specify bounds for assertion. In this example, you use the default approximate
second-order bounds, specified in Bounds tab of the Block Parameters dialog box.

View the bounds on the pole-zero map by clicking Show Plot to open a plot window.

 Verify Model at Default Simulation Snapshot Time

12-11

7 Stop the simulation if assertion fails by selecting Stop simulation when assertion
fails in the Assertion tab.

12 Model Verification

12-12

8 Click Apply to apply all changed settings to the block.
9

Simulate the model by clicking in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input and
output at the default simulation time of 0, specified in Snapshot times block
parameter. When the software detects that a pole violates a specified bound, the
simulation stops. The Diagnostics Viewer opens reporting the block that asserts.

Click Open to highlight the block that asserts in the Simulink model.

 Verify Model at Default Simulation Snapshot Time

12-13

The closed-loop pole and zero locations of the computed linear system appear as x
and o markings in the plot window. You can also view the bound violation in the plot.

12 Model Verification

12-14

Verify Model at Multiple Simulation Snapshots
This example shows how to:

• Add multiple bounds.
• Check that the linear system characteristics of a nonlinear Simulink model satisfy the

bounds at multiple simulation snapshots
• Modify bounds graphically
• Disable bounds during simulation

1 Open a nonlinear Simulink model. For example:

watertank
2 Open the Simulink Library Browser by selecting View > Library Browser in the

Simulink Editor.
3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.

b Drag and drop a block, such as the Check Bode Characteristics block, into the
Simulink Editor.

The model now resembles the following figure.

 Verify Model at Multiple Simulation Snapshots

12-15

4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click at any time to update the Linearization inputs/
outputs table with I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

12 Model Verification

12-16

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

ii In the Simulink model, click the output signal of the PID Controller block
to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

iii
Click to add the signal to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the

signal and click .

 Verify Model at Multiple Simulation Snapshots

12-17

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

ii
Click to add the signal to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the

signal and click .

12 Model Verification

12-18

Note To find the location in the Simulink model corresponding to a signal in
the Linearization inputs/outputs table, select the signal in the table and

click .
iii In the Configuration drop-down list of the Linearization inputs/outputs

table, select Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the
signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization I/O
annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in
Linearize on.

b In the Snapshot times field, type [0 1 5 10].

 Verify Model at Multiple Simulation Snapshots

12-19

7 Specify multiple bound segments for assertion in the Bounds tab of the Block
Parameters dialog box. In this example, enter the following lower magnitude bounds:

• Frequencies (rad/s) — {[0.001 0.003],[0.01 0.04]}
• Magnitudes (dB) — {[20 20],[15 15]}

Click Apply to apply the parameter changes to the block.

Click Show Plot to view the bounds on the Bode magnitude plot.

12 Model Verification

12-20

8
Simulate the model by clicking in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input and
output at the simulation times of 0,1, 5 and 10. When the software detects that the
linear system computed at times 0 and 1 violate a specified lower magnitude bound,
warning messages appear in the Diagnostic Viewer window. Click the link at the
bottom of the Simulink model to open this window. Click the link in the window to
view the details of the assertion.

 Verify Model at Multiple Simulation Snapshots

12-21

You can also view the bound violations on the plot window.

9 Modify a bound graphically. For example, to modify the upper magnitude bound
graphically:

a In the plot window, click the bound segment to select it and then drag it to the
desired location.

12 Model Verification

12-22

b Click Update block to update the new values in the Bounds tab of the Block
Parameters dialog box.

10 Disable the lower bounds to exclude them from asserting. Clear the Include lower
magnitude bounds in assertion option in the Block Parameters dialog box. Then,
click Apply.

The lower bounds are now grey-out in the plot window, indicating that they are
excluded from assertion.

 Verify Model at Multiple Simulation Snapshots

12-23

11 Resimulate the model to check if bounds are satisfied.

The software satisfies the specified upper magnitude bound, and therefore the
software no longer reports an assertion failure.

12 Model Verification

12-24

Verify Model Using Simulink Control Design and
Simulink Verification Blocks

This example shows how to use a combination of Simulink Control Design and Simulink
verification blocks, to assert that the linear system characteristics satisfy one of the
following bounds:

• Phase margin greater than 60 degrees
• Phase margin less than 60 degrees and the velocity less than or equal to 90% of the

cruise velocity.

1 Open the Simulink model of an aircraft.

scdmultiplechecks

The aircraft model is based on a long-haul passenger aircraft flying at cruising
altitude and speed. The aircraft starts with a full fuel load and follows a pre-specified

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

12-25

8-hour velocity profile. The model is a simplified version of a velocity control loop,
which adjusts the fuel flow rate to control the aircraft velocity.

The model includes blocks to model:

• Fuel consumption and resulting changes in aircraft mass
• Nonlinear draft effects limiting aircraft velocity

Constants used in the model, such as the drag coefficient, are defined in the model
workspace and initialized from a script.

The v <= 0.9*vCruise and Assert that: PM >= 60 or if PM < 60 then v
<= 0.9*vCruise blocks are Check Static Upper Bound and Assertion blocks,
respectively, from the Simulink Model Verification library. In this example, you use
these blocks with the Check Gain and Phase Margins block to design a complex logic
for assertion.

2 View the linearization input, output and settings in the Linearizations tab of the
Check Gain and Phase Margins block parameters dialog box.

12 Model Verification

12-26

The model has already been configured with:

• Linearization input and output for computing gain and phase margins
• Settings to compute the linear system

The software linearizes the loop seen by the Velocity Controller block every 30
minutes of simulated time and computes the gain and phase margins.

3 Specify phase margin bounds in the Bounds tab of the Check Gain and Phase
Margins block.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

12-27

In this example, the linearization input and output include the summation block with
negative feedback. Change the Feedback sign, used to compute the margin, to
positive feedback.

To view the phase margins to be computed later during simulation, specify Tabular
in Plot type, and click Show Plot.

4 Design assertion logic that causes the verification blocks to assert when the phase
margin is greater than 60 degrees or if the phase margin is less than 60 degrees, the
velocity is less than or equal to 90% the cruise velocity.

a In the Check Gain and Phase Margins Block Parameters dialog box, in the
Assertion tab, select Output assertion signal, and click Apply.

This action adds an output port z-1 to the block.
b Double-click the v <= 0.9*vCruise block, and specify the block parameters,

as shown in the following figure. After setting the parameters, click Apply.

12 Model Verification

12-28

These parameters configure the block to:

• Check if the aircraft velocity exceeds the cruise velocity by 0.9 times
• Add an output port to the block

c Connect the Check Gain and Phase Margins, v <= 0.9*vCruise and Assert
that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise blocks, as
shown in the following figure.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

12-29

This connection causes the Assert that: PM >= 60 or if PM < 60 then
v <= 0.9*vCruise block to assert and stop the simulation if the phase margin
is less than 60 degrees and the velocity is greater than 90% of the cruise velocity.

Alternatively, you can type scdmultiplechecks_final at the MATLAB prompt to
open a Simulink model already configured with these settings.

5 Simulate the model by selecting Simulation > Run in the Simulink Editor.

During simulation:

• The v <= 0.9*vCruise block asserts multiple times.
• The Check Gain and Phase Margins block asserts two times. You can view the

phase margins that violate the bound in the plot window.

12 Model Verification

12-30

• The Assert that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise
does not encounter the assertion condition. Therefore, the simulation does not
stop.

6 Click the link at the bottom of the Simulink model to open the Diagnostic Viewer
window.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

12-31

When a block asserts, warnings appear in this window. You can view the details of the
assertions by clicking the link in this window.

12 Model Verification

12-32

Alphabetical List

13

Linear Analysis Tool
Linearize Simulink models

Description
The Linear Analysis Tool lets you perform linear analysis of nonlinear Simulink models.

Using this tool you can:

• Interactively linearize models at different operating points.
• Interactively obtain operating points by trimming or simulating models.
• Perform exact linearization of nonlinear models.
• Perform frequency response estimation of nonlinear models.
• Batch linearize models for varying parameter values.
• Generate MATLAB code for performing linearization tasks.
• Generate MATLAB code for computing operating points.

Open the Linear Analysis Tool App
• Simulink model editor: Select Analysis > Control Design > Linear Analysis.
• Simulink model editor: Select Analysis > Control Design > Frequency Response

Estimation.
• Simulink model editor: Right-click a block, and select Linear Analysis > Linearize

Block.

Examples
• “Linearize Simulink Model at Model Operating Point” on page 2-72
• “Linearize at Trimmed Operating Point” on page 2-88
• “Linearize at Simulation Snapshot” on page 2-94
• “Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

13 Alphabetical List

13-2

• “Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-29
• “Analyze Results Using Linear Analysis Tool Response Plots” on page 2-149
• “Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool”

on page 3-75

Parameters
Linear Analysis Tab

Analysis I/Os — Linearization inputs, outputs, and loop openings
Model I/Os (default) | linearization I/O set

Linearization inputs, outputs, and loop openings. The currently active I/O set is displayed.
To change the I/O set, select one of the following:

• Model I/Os — Use the inputs, outputs, and loop openings specified in the Simulink
model. For more information on specifying analysis points in your model, see “Specify
Portion of Model to Linearize in Simulink Model” on page 2-21.

• Root Level Inports and Outports — Use the root level inputs and outputs of
the Simulink model.

• Linearize the Currently Selected Block — Use the input and output ports of
the currently selected block in the Simulink model.

• Create New Linearization I/Os — Specify inputs, outputs, and loop openings.
For more information, see “Specify Portion of Model to Linearize in Linear Analysis
Tool” on page 2-29.

• Existing I/Os — Select a previously created I/O set.
• View/Edit — View or edit the currently selected operating point. For more

information, see “Edit Analysis Points” on page 2-34.

Operating Point — Linearization operating point
Model Initial Condition (default) | operating point

Linearization operating point. The current operating point is displayed. To change the
operating point, select one of the following:

• Model Initial Condition — Use the initial conditions defined in the Simulink.

 Linear Analysis Tool

13-3

• Linearize At — Simulate the model using the model initial conditions, and use the
simulation snapshot at the specified time as the operating point. For more information,
see “Linearize at Simulation Snapshot” on page 2-94.

• Linearize at Multiple Points — Select multiple previously created operating
points.

• Existing Operating points — Select a previously created operating point.
• Trim Model — Compute a steady-state operating point. For more information, see

“Compute Steady-State Operating Point from State Specifications” on page 1-13 and
“Compute Steady-State Operating Point from Output Specifications” on page 1-28.

• Take Simulation Snapshot — Simulate the model using the model initial
conditions, and compute an operating point at the specified simulation snapshot times.
For more information, see “Compute Operating Points at Simulation Snapshots” on
page 1-78.

• View/Edit — View or edit the currently selected operating point.

Parameter Variations — Parameters to vary for batch linearization
None (default) | parameters to vary

To vary parameters for batch linearization, in the drop-down list, click Select
parameters to vary. On the Parameter Variations tab, specify the parameters to
vary.

For more information, see “Specify Parameter Samples for Batch Linearization” on page
3-62.

Result Viewer — Open linearization result viewer
cleared (default) | checked

Select to display result details after linearization. For more information, see “View
Linearized Model Equations Using Linear Analysis Tool” on page 2-147.

Linearization Advisor — Collect diagnostic information and open
Linearization Advisor
cleared (default) | checked

Select to collect diagnostic information during linearization and open an Advisor tab for
interactive troubleshooting of linearization problems. For more information, see
“Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23.

13 Alphabetical List

13-4

Note The Linear Analysis Tool only collects diagnostic information when Linearization
Advisor is checked before performing a linearization task.

Estimation Tab

Input Signal — Estimation input signal
Sinestream | Fixed Sample Time Sinestream | Chirp | Random

Estimation input signal. The current input signal is displayed. To change the input signal,
select one of the following:

• Sinestream — Create an input signal that consists of adjacent sine waves of varying
frequencies. For more information, see “Create Sinestream Input Signals” on page 5-
13.

• Fixed Sample Time Sinestream — Create a discrete-time sinestream input with a
specified sample time.

• Chirp — Create a swept-frequency cosine input signal. For more information, see
“Create Chirp Input Signals” on page 5-18.

• Random — Create a random input signal.

Analysis I/Os — Linearization inputs, outputs, and loop openings
Model I/Os (default) | linearization I/O set

Linearization inputs, outputs, and loop openings. The currently active I/O set is displayed.
To change the I/O set, select one of the following:

• Model I/Os — Use the inputs, outputs, and loop openings specified in the Simulink
model. For more information on specifying analysis points in your model, see “Specify
Portion of Model to Linearize in Simulink Model” on page 2-21.

• Root Level Inports and Outports — Use the root level inputs and outputs of
the Simulink model.

• Linearize the Currently Selected Block — Use the input and output ports of
the currently selected block in the Simulink model.

• Create New Linearization I/Os — Specify inputs, outputs, and loop openings.
For more information, see “Specify Portion of Model to Linearize in Linear Analysis
Tool” on page 2-29.

• Existing I/Os — Select a previously created I/O set.
• View/Edit — View or edit the currently selected operating point. For more

information, see “Edit Analysis Points” on page 2-34.

 Linear Analysis Tool

13-5

Operating Point — Linearization operating point
Model Initial Condition (default) | operating point

Linearization operating point. The current operating point is displayed. To change the
operating point, select one of the following:

• Model Initial Condition — Use the initial conditions defined in the Simulink.
• Linearize At — Simulate the model using the model initial conditions, and use the

simulation snapshot at the specified time as the operating point. For more information,
see “Linearize at Simulation Snapshot” on page 2-94.

• Linearize at Multiple Points — Select multiple previously created operating
points.

• Existing Operating points — Select a previously created operating point.
• Trim Model — Compute a steady-state operating point. For more information, see

“Compute Steady-State Operating Point from State Specifications” on page 1-13 and
“Compute Steady-State Operating Point from Output Specifications” on page 1-28.

• Take Simulation Snapshot — Simulate the model using the model initial
conditions, and compute an operating point at the specified simulation snapshot times.
For more information, see “Compute Operating Points at Simulation Snapshots” on
page 1-78.

• View/Edit — View or edit the currently selected operating point.

Result Viewer — Open estimation result viewer
cleared (default) | checked

Select to display result details about the estimation configuration and input signal used
for estimation.

Diagnostic Viewer — Collect diagnostic information and open diagnostic viewer
cleared (default) | checked

Select to collect diagnostic information that displays after estimation. You can use the
diagnostic information to analyze the estimation result and troubleshoot estimation
problems. For more information, see “Analyze Estimated Frequency Response” on page 5-
37.

Note The Linear Analysis Tool only collects diagnostic information when Diagnostic
Viewer is checked before performing an estimation task.

13 Alphabetical List

13-6

See Also
Functions
findop | frestimate | linearize

Topics
“Linearize Simulink Model at Model Operating Point” on page 2-72
“Linearize at Trimmed Operating Point” on page 2-88
“Linearize at Simulation Snapshot” on page 2-94
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25
“Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-29
“Analyze Results Using Linear Analysis Tool Response Plots” on page 2-149
“Batch Linearize Model for Parameter Value Variations Using Linear Analysis Tool” on
page 3-75

Introduced in R2011b

 Linear Analysis Tool

13-7

addoutputspec
Add output specification to operating point specification

Syntax
newOpspec = addoutputspec(opspec,block,port)

Description
newOpspec = addoutputspec(opspec,block,port) adds an output specification for
a Simulink model to an existing operating point specification or array of operating point
specifications. The output specification is added for the signal that originates from the
specified output port of a Simulink block.

To find the width of the specified port, the addoutputspec command recompiles the
model.

Examples

Add Output Specification to Operating Point Specification Object

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

13 Alphabetical List

13-8

Create a default operating point specification object for the model.

opspec = operspec(sys)

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, initial guess: 209

Inputs:

(1.) scdspeed/Throttle perturbation
 initial guess: 0

Outputs: None

The default operating point specification object has no output specifications because
there are no root-level outports in the model.

Add an output specification to the outport of the rad/s to rpm block.

 addoutputspec

13-9

newspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

Specify a known value of 2000 rpm for the output specification.

newspec.Outputs(1).Known = 1;
newspec.Outputs(1).y = 2000;

View the updated operating point specification.

newspec

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 spec: dx = 0, initial guess: 0.543
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 spec: dx = 0, initial guess: 209

Inputs:

(1.) scdspeed/Throttle perturbation
 initial guess: 0

Outputs:

(1.) scdspeed/rad//s to rpm
 spec: y = 2e+03

Add Output Specification to Multiple Operating Point Specification Objects

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

13 Alphabetical List

13-10

Create a 3-by-1 array of default operating point specification objects for the model.

opspec = operspec(sys,[3,1])

Array of operating point specifications for the model scdspeed. To display an
 operating point specification, select an element from the array.

Add an output specification to the outport of the rad/s to rpm block.

newspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

This output specification is added to all of the operating point specification objects in
opspec.

You can specify different output constraints for each specification in opspec. For
example, specify different known values for each specification.

newspec(1,1).Outputs(1).Known = 1;
newspec(1,1).Outputs(1).y = 1900;

newspec(2,1).Outputs(1).Known = 1;
newspec(2,1).Outputs(1).y = 2000;

 addoutputspec

13-11

newspec(3,1).Outputs(1).Known = 1;
newspec(3,1).Outputs(1).y = 2100;

Input Arguments
opspec — Operating point specification
operspec object | array of operspec objects

Operating point specification for a Simulink model, specified as one of the following:

• operspec object — Add output specification to a single operspec object.
• Array of operspec objects — Add the same output specification to all operspec

objects in the array. All the specification objects must have the same Model property.

To create an operating point specification object for your model, use the operspec
command.

block — Simulink block
character vector | string

Simulink block to which to add the output specification, specified as a character vector or
string that contains its block path. The block must be in the Simulink model specified in
opspec.Model.

port — Output port
positive integer

Output port to which to add the output specification, specified as a positive integer in the
range [1,N], where N is the number of output ports on the specified block.

Output Arguments
newOpspec — Updated operating point specification
operspec object | array of operspec objects

Updated operating point specification, returned as an operspec object or an array of
operspec objects with the same dimensions as opspec. newOpspec is the same as
opspec, except that it contains the new output specification in its Outputs array.

13 Alphabetical List

13-12

You can modify the constraints and specifications for the new output specification using
dot notation.

Alternative Functionality

Linear Analysis Tool
You can interactively add output specifications when trimming your model using the
Linear Analysis Tool. For more information, see “Compute Steady-State Operating Point
from Output Specifications” on page 1-28.

Simulink Model
You can add output specifications directly in your Simulink model. To do so, right-click the
signal to which you want to add the specification, and select Linear Analysis Points >
Trim Output Constraint.

See Also
findop | operpoint | operspec

Introduced before R2006a

 addoutputspec

13-13

advise
Package: linearize.advisor

Find blocks that are potentially problematic for linearization

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To search the
LinearizationAdvisor object for diagnostics of blocks that are potentially problematic
for linearization, use the advise function.

Syntax
advise(advisor)
result = advise(advisor)

Description
advise(advisor) opens the Linear Analysis Tool with an Advisor tab open for
troubleshooting the block linearizations in advisor. For more information, see
“Troubleshoot Linearization Results in Linear Analysis Tool” on page 4-23.

result = advise(advisor) returns a LinearizationAdvisor object that contains
linearization diagnostic information for any blocks in advisor that are potentially
problematic for linearization.

Examples

Open Linearization Advisor

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

13 Alphabetical List

13-14

Linearize model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Open the Linearization Advisor in the Linear Analysis Tool.

advise(advisor)

 advise

13-15

Find Potentially Problematic Blocks for Linearization

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find potentially problematic blocks for linearization.

result = advise(advisor)

result =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor
object or an array of LinearizationAdvisor objects.

Output Arguments
result — Diagnostic information for potentially problematic blocks
LinearizationAdvisor object

13 Alphabetical List

13-16

Diagnostic information for potentially problematic blocks in linearization results, returned
as a LinearizationAdvisor object. result contains linearization diagnostic
information for any blocks in advisor that are on the linearization path and satisfy at
least one of the following criteria:

• Have diagnostic messages regarding the block linearization
• Linearize to zero
• Have substituted linearizations

Algorithms
Calling the advise function is equivalent to performing the following custom query with
the find function:

qPath = linqueryIsOnPath;
qZero = linqueryIsZero;
qBlkRep = linqueryIsBlockSubstituted;
qDiags = linqueryHasDiagnostics;

q = qPath & (qZero | qDiags | qBlkRep);

advisor_new = find(advisor,q);

See Also
Apps
Linear Analysis Tool

Functions
find | getBlockInfo | getBlockPaths | highlight

Objects
LinearizationAdvisor

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42
“Identify and Fix Common Linearization Issues” on page 4-9

 advise

13-17

Introduced in R2017b

13 Alphabetical List

13-18

copy
Copy operating point or operating point specification

Syntax
op_point2=copy(op_point1)
op_spec2=copy(op_spec1)

Description
op_point2=copy(op_point1) returns a copy of the operating point object
op_point1. You can create op_point1 with the function operpoint.

op_spec2=copy(op_spec1) returns a copy of the operating point specification object
op_spec1. You can create op_spec1 with the function operspec.

Note The command op_point2=op_point1 does not create a copy of op_point1 but
instead creates a pointer to op_point1. In this case, any changes made to op_point2
are also made to op_point1.

Examples
Create an operating point object for the model, magball.

opp=operpoint('magball')

The operating point is displayed.

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0

 copy

13-19

(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Create a copy of this object, opp.

new_opp=copy(opp)

An exact copy of the object is displayed.

Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

See Also
operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-20

find
Package: linearize.advisor

Find blocks in linearization results that match specific criteria

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Syntax
result = find(advisor,query)

Description
result = find(advisor,query) returns the subset of block diagnostics in advisor
that match the search criteria specified in query.

Examples

Find Blocks on Linearization Path

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');

 find

13-21

io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,~,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create a query object for finding blocks on the linearization path.

query = linqueryIsOnPath;

Find blocks using query object.

advOnPath = find(advisor,query)

advOnPath =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x26 linearize.advisor.BlockDiagnostic]
 QueryType: 'On Linearization Path'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

13 Alphabetical List

13-22

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor
object or an array of LinearizationAdvisor objects.

query — Search criteria
CompoundQuery object | linqueryIsOnPath object | linqueryHasDiagnostics
object | linqueryHasOrder object | ...

Search criteria, specified as one of the following query objects or a logical combination of
query objects (CompoundQuery object).

Query Object Find Blocks That...
linqueryAdvise Are potentially problematic for

linearization.
linqueryAllBlocks Are in the advisor object.
linqueryContributesToLinearizatio
n

Numerically contribute to the model
linearization result.

linqueryHasDiagnostics Have diagnostic messages regarding their
linearization.

linqueryHasInputs Have a specified number of inputs.
linqueryHasOrder Have a specified number of states.
linqueryHasOutputs Have a specified number of outputs.
linqueryHasSampleTime Have a specified sample time.

 find

13-23

Query Object Find Blocks That...
linqueryHasZeroIOPair Have at least one input/output pair that

linearizes to zero.
linqueryIsBlockSubstituted Have a custom block linearization specified.
linqueryIsBlockType Are of a specified type.
linqueryIsExact Are linearized using their defined exact

linearization.
linqueryIsNumericallyPerturbed Are linearized using numerical

perturbation.
linqueryIsOnPath Are on the linearization path.
linqueryIsZero Linearize to zero.

To create a compound query, combine these queries using AND (&), OR (|), and NOT (~)
logical operations. For example, to find all blocks on the linearization path that do not
contribute to the model linearization result, use:

compundQuery = linqueryIsOnPath & ~linqueryContributesToLinearization

Output Arguments
result — Diagnostic information for blocks that match the search criteria
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for blocks that match the search criteria specified in query,
returned as:

• LinearizationAdvisor object if advisor is a single LinearizationAdvisor
object.

• A LinearizationAdvisor object with the same dimensions as advisor if advisor
is an array.

See Also
Objects
CompoundQuery | LinearizationAdvisor

13 Alphabetical List

13-24

Functions
advise | getBlockInfo | getBlockPaths | highlight

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 find

13-25

findop
Steady-state operating point from specifications (trimming) or simulation

Syntax
op = findop(mdl,opspec)
op = findop(mdl,opspec,param)

op = findop(___ ,options)

[op,opreport] = findop(___)

op = findop(mdl,tsnapshot)
op = findop(mdl,tsnapshot,param)

Description
op = findop(mdl,opspec) returns the operating point of the model that meets the
specifications in opspec. Typically, you trim the model at a steady-state operating point
on page 13-41. The Simulink model must be open. If opspec is an array of operating
points specifications, findop returns an array of corresponding operating points.

op = findop(mdl,opspec,param) batch trims the model for the parameter value
variations specified in param.

op = findop(___ ,options) trims the model using additional optimization algorithm
options.

[op,opreport] = findop(___) returns an operating point search report, opreport,
for any of the previous syntaxes.

op = findop(mdl,tsnapshot) simulates the model using the model initial conditions,
and extracts operating points at simulation snapshot times specified in tsnapshot.

op = findop(mdl,tsnapshot,param) simulates the model and extracts operating
points at simulation snapshot times.

13 Alphabetical List

13-26

Examples

Trim Model to Meet State Specifications

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Trim the model to find a steady-state operating point where the water tank level is 10.

Create default operating point specification object.

opspec = operspec(mdl);

Configure specifications for the first model state. The first state must be at steady state
with a lower bound of 0. Provide an initial guess of 2 for the state value.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Configure the second model state as a known state with a value of 10.

opspec.States(2).Known = 1;
opspec.States(2).x = 10;

Find the operating point that meets these specifications.

 findop

13-27

op = findop(mdl,opspec);

 Operating point search report:

 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) watertank/PID Controller/Integrator
 x: 1.26 dx: 0 (0)
(2.) watertank/Water-Tank System/H
 x: 10 dx: 0 (0)

Inputs: None

Outputs: None

Batch Trim Simulink Model for Parameter Variation

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

13 Alphabetical List

13-28

Vary parameters A and b within 10% of their nominal values, and create a 3-by-4
parameter grid.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each
parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model.

opspec = operspec(mdl);

Trim the model using the specified operating point specification and parameter grid.

opt = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,params,opt);

op is a 3-by-4 array of operating point objects that correspond to the specified parameter
grid points.

 findop

13-29

Trim Model Using Specified Optimizer Type

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Create a default operating point specification object.

opspec = operspec(mdl);

Create an option set that sets the optimizer type to gradient descent and suppresses the
search report display.

opt = findopOptions('OptimizerType','graddescent','DisplayReport','off');

Trim the model using the specified option set.

op = findop(mdl,opspec,opt);

Obtain Operating Point Search Report

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

13 Alphabetical List

13-30

Create default operating point specification object.

opspec = operspec(mdl);

Configure specifications for the first model state.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Configure specifications for the second model state.

opspec.States(2).Known = 1;
opspec.States(2).x = 10;

Find the operating point that meets these specifications, and return the operating point
search report. Create an option set to suppress the search report display.

opt = findopOptions('DisplayReport',false);
[op,opreport] = findop(mdl,opspec,opt);

opreport describes how closely the optimization algorithm met the specifications at the
end of the operating point search.

opreport

 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

 findop

13-31

Operating point specifications were successfully met.
States:

(1.) watertank/PID Controller/Integrator
 x: 1.26 dx: 0 (0)
(2.) watertank/Water-Tank System/H
 x: 10 dx: 0 (0)

Inputs: None

Outputs: None

dx is the time derivative for each state. Since all dx values are zero, the operating point is
at steady state.

Extract Operating Points at Simulation Snapshots

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

Simulate the model, and extract operating points at 10 and 20 time units.

op = findop(mdl,[10,20]);

13 Alphabetical List

13-32

op is a column vector of operating points, with one element for each snapshot time.

Display the first operating point.

op(1)

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=10)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 5.47e-07
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 8.44e-08
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Vary Parameters and Extract Operating Points at Simulation Snapshots

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

 findop

13-33

Specify parameter values. The parameter grids are 5-by-4 arrays.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,5),...
 linspace(0.9*b,1.1*b,4));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Simulate the model and extract operating points at 0, 5, and 10 time units.

op = findop(mdl,[0 5 10],params);

findop simulates the model for each parameter value combination, and extracts
operating points at the specified simulation times.

op is a 3-by-5-by-4 array of operating point objects.

size(op)

ans =

13 Alphabetical List

13-34

 3 5 4

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the
current working folder or on the MATLAB path.

opspec — Operating point specifications
operspec object | array of operspec objects

Operating point specifications for trimming the model, specified as an operspec object
or an array of operspec objects.

If opspec is an array, findop returns an array of corresponding operating points using a
single model compilation.

param — Parameter samples
structure | structure array

Parameter samples for trimming, specified as one of the following:

• Structure — Vary the value of a single parameter by specifying param as a structure
with the following fields:

• Name — Parameter name, specified as a character vector or string. You can specify
any model parameter that is a variable in the model workspace, the MATLAB
workspace, or a data dictionary. If the variable used by the model is not a scalar
variable, specify the parameter name as an expression that resolves to a numeric
scalar value. For example, to use the first element of vector V as a parameter, use:

param.Name = 'V(1)';
• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range:

param.Name = 'A';
param.Value = linspace(0.9*A,1.1*A,3);

 findop

13-35

• Structure array — Vary the value of multiple parameters. For example, vary the values
of parameters A and b in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

When you specify parameter value variations, findop batch trims the model for each
parameter value combination, and returns an array of corresponding operating points. If
param specifies tunable parameters only, then the software batch trims the model using a
single compilation.

If you specify opspec as a single operspec object and the parameter values in param
produce states that conflict with known states in opspec, findop trims the model using
the specifications in opspec. To trim the model at state values derived from the
parameter values, specify opspec as an array of corresponding operspec objects. For an
example, see “Batch Trim Simulink Model for Parameter Variation” on page 13-28.

options — Trimming options
findopOptions option set

Trimming options, specified as a findopOptions option set.

tsnapshot — Simulation snapshot times
scalar | vector

Simulation snapshot times at which to extract the operating point of the model, specified
as a scalar for a single snapshot or a vector for multiple snapshots. findop simulates the
model and computes an operating point for the state of the model at each snapshot time.

Output Arguments
op — Operating point
operating point object | array of operating point objects

Operating point, returned as an operating point object or an array of operating point
objects. The dimensions of op depend on the specified parameter variations and either
the operating point specifications or the simulation snapshot time.

13 Alphabetical List

13-36

Parameter Variation Find operating point for... Resulting op Dimensions
No parameter variation Single operating point

specification, specified by
opspec

single operating point object

Single snapshot time,
specified by tsnapshot
N1-by-...-by-Nm array of
operating point
specifications, specified by
opspec

N1-by-...-by-Nm

Ns snapshots, specified by
tsnapshot

Column vector of length Ns

N1-by-...-by-Nm parameter
grid, specified by param

Single operating point
specification, specified by
opspec

N1-by-...-by-Nm

Single snapshot time,
specified by tsnapshot
N1-by-...-by-Nm array of
operating point
specifications, specified by
opspec
Ns snapshots, specified by
tsnapshot

Ns-by-N1-by-...-by-Nm.

For example, suppose:

• opspec is a single operating point specification object and param specifies a 3-by-4-
by-2 parameter grid. In this case, op is a 3-by-4-by-2 array of operating points.

• tsnapshot is a scalar and param specifies a 5-by-6 parameter grid. In this case, op is
a 1-by-5-by-6 array of operating points.

• tsnapshot is a row vector with three elements and param specifies a 5-by-6
parameter grid. In this case, op is a 3-by-5-by-6 array of operating points.

Each operating point object has the following properties:

 findop

13-37

Property Description
Model Simulink model name, returned as a character vector.
States State operating point, returned as a vector of state objects. Each entry in

States represents the supported states of one Simulink block.

For a list of supported states for operating point objects, see “Simulink
Model States Included in Operating Point Object” on page 1-3.

Note If the block has multiple named continuous states, States contains
one structure for each named state.

Each state object has the following fields:

Field Description
Nx (read
only)

Number of states in the block

Block Block path, returned as a character vector.
StateName State name
x Values of all supported block states, returned as a vector of

length Nx.
Ts Sample time and offset of each supported block state,

returned as a vector. For continuous-time systems, Ts is zero.
SampleType State time rate, returned as one of the following:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete—time state

inReferenc
edModel

Flag indicating whether the block is inside a reference
model, returned as one of the following:

• 1 — Block is inside a reference model.
• 0 — Block is in the current model file.

Descriptio
n

Block state description, returned as a character vector.

13 Alphabetical List

13-38

Property Description
Inputs Input level at the operating point, returned as a vector of input objects. Each

entry in Inputs represents the input levels of one root-level inport block in
the model.

Each entry input object has the following fields:

Field Description
Block Inport block name
PortWidth Number of inport block signals
PortDimen
sions

Dimension of signals accepted by the inport

u Inport block input levels at the operating point, returned as a
vector of length PortWidth.

Descripti
on

Inport block input description, returned as a character vector.

Time Times at which any time-varying functions in the model are evaluated,
returned as a vector.

Version Object version number

You can edit the properties of op using dot notation or the set function.

opreport — Operating point search report
operating point search report object | array of operating point search report objects

Operating point search report, returned as an operating point search report object. If op
is an array of operating point objects, then opreport is an array of corresponding search
reports.

This report displays automatically, even when you suppress the output using a semicolon.
To hide the report, set the DisplayReport field in options to 'off'.

Each operating point search report has the following properties:

Property Description
Model Model property value of op

 findop

13-39

Property Description
Inputs Inputs property value of op
Outputs Outputs property value of op, with the addition of yspec, which is the

desired y value
States States property value of op with the addition of dx, which contains the

state derivative values. For discrete-time states, dx is the difference
between the next state value and the current one; that is, x(k+1) – x(k).

Time Time property value of op
Terminatio
nString

Optimization termination condition, returned as a character vector.

Optimizati
onOutput

Optimization algorithm search results, returned as a structure with the
following fields:

Field Description
iterations Number of iterations performed during the optimization
funcCount Number of function evaluations performed during the

optimization
lssteplengt
h

Size of line search step relative to search direction
(active-set optimization algorithm only)

stepsize Displacement in the state vector at the final iteration
(active-set and interior-point optimization algorithms)

algorithm Optimization algorithm used
firstordero
pt

Measure of first-order optimization, for the trust-region-
reflective optimization algorithm; [] for other algorithms

constrviola
tion

Maximum of constraint functions

message Exit message

For more information about the optimization algorithm, see the
Optimization Toolbox documentation.

13 Alphabetical List

13-40

Definitions

Steady-State Operating Point (Trim Condition)
A steady-state operating point of a model, also called an equilibrium or trim condition,
includes state variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped
pendulum has two steady-state operating points at which the pendulum position does not
change with time. A stable steady-state operating point occurs when a pendulum hangs
straight down. When the pendulum position deviates slightly, the pendulum always
returns to equilibrium. In other words, small changes in the operating point do not cause
the system to leave the region of good approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long
as the pendulum points exactly upward, it remains in equilibrium. However, when the
pendulum deviates slightly from this position, it swings downward and the operating point
leaves the region around the equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your
initial guesses for the states and input levels must be near the desired operating point to
ensure convergence.

When linearizing a model with multiple steady-state operating points, it is important to
have the right operating point. For example, linearizing a pendulum model around the
stable steady-state operating point produces a stable linear model, whereas linearizing
around the unstable steady-state operating point produces an unstable linear model.

Tips
• You can initialize an operating point search at a simulation snapshot or a previously

computed operating point using initopspec.
• Linearize the model at the operating point op using linearize.

 findop

13-41

Algorithms
By default, findop uses the optimizer graddescent-elim. To use a different optimizer,
change the value of OptimizerType in options using findopOptions.

findop automatically sets these Simulink model properties for optimization:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'
• SaveFormat = 'StructureWithTime'

After the optimization completes, Simulink restores the original model properties.

Alternatives
As an alternative to the findop command, you can find operating points using the Linear
Analysis Tool. For more information, see the following examples:

• “Compute Steady-State Operating Point from State Specifications” on page 1-13
• “Compute Steady-State Operating Point from Output Specifications” on page 1-28

See Also
addoutputspec | findopOptions | initopspec | linearize | operspec

Topics
“About Operating Points” on page 1-2
“Compute Steady-State Operating Points” on page 1-5
“Compute Operating Points at Simulation Snapshots” on page 1-78

Introduced before R2006a

13 Alphabetical List

13-42

findopOptions
Set options for finding operating points from specifications

Syntax
options = findopOptions
options = findopOptions(Name,Value)

Description
options = findopOptions returns the default operating point search options.

options = findopOptions(Name,Value) returns an option set with additional
options specified by one or more Name,Value pair arguments. Use this option set to
specify options for the findop command.

Examples

Create Option Set for Operating Point Search

Create an option set for operating point search that sets the optimizer type to gradient
descent and suppresses the display output of findop.

option = findopOptions('OptimizerType','graddescent','DisplayReport','off');

Alternatively, use dot notation to set the values of options.

options = findopOptions;
options.OptimizerType = 'graddescent';
options.DisplayReport = 'off';

 findopOptions

13-43

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayReport','off' suppresses the display of the operating point search
report to the Command Window.

OptimizerType — Optimizer type used by the optimization algorithm
'graddescent-elim' (default) | 'graddescent' | 'graddescent-proj' |
'lsqnonlin' | 'lsqnonlin-proj' | 'simplex'

Optimizer type used by the optimization algorithm, specified as the comma-separated pair
consisting of 'OptimizerType' and one of the following:

• 'graddescent-elim' — Enforce an equality constraint to force the time derivatives
of states to be zero (dx/dt = 0, x(k+1) = x(k)) and output signals to be equal to
their specified known values. The optimizer fixes the states, x, and inputs, u, that are
marked as Known in an operating point specification, and optimizes the remaining
variables.

• 'graddescent' — Enforce an equality constraint to force the time derivatives of
states to be zero (dx/dt = 0, x(k+1) = x(k)) and the output signals to be equal to
their specified known values. The optimizer also minimizes the error between the
states, x, and inputs, u, and their respective known values from an operating point
specification. If there are not any inputs or states marked as Known, findop attempts
to minimize the deviation between the initial guesses for x and u, and their trimmed
values.

• 'graddescent-proj' — In addition to 'graddescent', enforce consistency of
model initial conditions at each function evaluation. To specify whether constraints are
hard or soft, use the ConstraintType option. This optimization method does not
support analytical Jacobians.

• 'lsqnonlin' — Fix the states, x, and inputs, u, marked as Known in an operating
point specification, and optimize the remaining variables. The algorithm tries to
minimize both the error in the time derivatives of the states (dx/dt = 0, x(k+1) =
x(k)) and the error between the outputs and their specified known values.

13 Alphabetical List

13-44

• 'lsqnonlin-proj' — In addition to 'lsqnonlin', enforce consistency of model
initial conditions at each function evaluation. This optimization method does not
support analytical Jacobians.

• 'simplex' — Use the same cost function as lsqnonlin with the direct search
optimization routine found in fminsearch.

For more information about these optimization algorithms, see fmincon, lsqnonlin,
and fminsearch in the Optimization Toolbox documentation.

OptimizationOptions — Options for the optimization algorithm
structure

Options for the optimization algorithm, specified as the comma-separated pair consisting
of 'OptimizationOptions' and a structure created using the optimset function.

DisplayReport — Flag indicating whether to display the operating summary
report
'on' (default) | 'off' | 'iter'

Flag indicating whether to display the operating point summary report, specified as the
comma-separated pair consisting of 'DisplayReport' and one of the following:

• 'on' — Display the operating point summary report in the MATLAB command window
when running findop.

• 'off' — Suppress display of the summary report.
• 'iter' — Display an iterative update of the optimization progress.

AreParamsTunable — Flag indicating whether to recompile the model when
varying parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for
trimming, specified as the comma-separated pair consisting of 'AreParamsTunable'
and one of the following:

• true — Do not recompile the model when all varying parameters are tunable. If any
varying parameters are not tunable, recompile the model for each parameter grid
point, and issue a warning message.

• false — Recompile the model for each parameter grid point. Use this option when
you vary the values of nontunable parameters.

 findopOptions

13-45

ConstraintType — Constraint types for 'graddescent-proj'
structure

Constraint types for 'graddescent-proj' optimizer algorithm, specified as the comma-
separated pair consisting of 'ConstraintType' and a structure with the following
fields:

• dx — Type for constraints on state derivatives
• x — Type for constraints on state values
• y — Type for constraints on output values

Specify each constraint as one of the following:

• 'hard' — Enforce the constraints to be zero.
• 'soft' — Minimize the constraints.

All constraint types are 'hard' by default.

Output Arguments
options — Trimming options
findopOptions option set

Trimming options, returned as a findopOptions option set.

See Also
findop

Introduced in R2013b

13 Alphabetical List

13-46

frest.Chirp
Package: frest

Swept-frequency cosine signal

Syntax
input = frest.Chirp(sys)
input = frest.Chirp('OptionName',OptionValue)

Description
input = frest.Chirp(sys) creates a swept-frequency cosine input signal based on
the dynamics of a linear system sys.

input = frest.Chirp('OptionName',OptionValue) creates a swept-frequency
cosine input signal using the options specified by comma-separated name/value pairs.

To view a plot of your input signal, type plot(input). To obtain a timeseries for your
input signal, use the generateTimeseries command.

Input Arguments
sys

Linear system for creating a chirp signal based on the dynamic characteristics of this
system. You can specify the linear system based on known dynamics using tf, zpk, or ss.
You can also obtain the linear system by linearizing a nonlinear system.

The resulting chirp signal automatically sets these options based on the linear system:

• 'FreqRange' are the frequencies at which the linear system has interesting
dynamics.

• 'Ts' is set to avoid aliasing such that the Nyquist frequency of the signal is five times
the upper end of the frequency range.

 frest.Chirp

13-47

• 'NumSamples' is set such that the frequency response estimation includes the lower
end of the frequency range.

Other chirp options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated option name and option value pairs.

Option Name Option Value
'Amplitude' Signal amplitude.

Default: 1e-5
'FreqRange' Signal frequencies, specified as either:

• Two-element vector, for example [w1 w2]
• Two-element cell array, for example {w1 w2}

Default: [1,1000]
'FreqUnits' Frequency units:

• 'rad/s' — Radians per second
• 'Hz' — Hertz

Changing frequency units does not impact frequency
response estimation.

Default: 'rad/s'
'Ts' Sample time of the chirp signal in seconds. The default

setting avoids aliasing.

Default: 2

5

p

* max()FreqRange

13 Alphabetical List

13-48

Option Name Option Value
'NumSamples' Number of samples in the chirp signal. Default setting

ensures that the estimation includes the lower end of
the frequency range.

Default: 4p

Ts FreqRange*min()

 frest.Chirp

13-49

Option Name Option Value
'SweepMethod' Method for evolution of instantaneous frequency:

• 'linear' (default) — Specifies the instantaneous
frequency sweep fi(t):

f t f t where f f ti f() () /= + = -0 1 0b b

β ensures that the signal maintains the desired
frequency breakpoint f1 at final time tf.

f

t

f

t

f1 > f2 f1 < f2

• 'logarithmic' — Specifies the instantaneous
frequency sweep fi(t) given by

f t f where
f

f
i

t tf
() = ¥ =

Ê

Ë
Á

ˆ

¯
˜0

1

0

1

b b

f

t

f

t

f1 > f2 f1 < f2

• 'quadratic' — Specifies the instantaneous
frequency sweep fi(t):

f t f t where f f ti i() () /= + = -0
2

1 0
2b b

13 Alphabetical List

13-50

Option Name Option Value
Also specify the shape of the quadratic using the
'Shape' option.

'Shape' Use when you set 'SweepMethod' to 'quadratic' to
describe the shape of the parabola in the positive
frequency axis:

• 'concave' — Concave quadratic sweeping shape.

f

t

f

t

f1 > f2 f1 < f2

• 'convex' — Convex quadratic sweeping shape.

f

t

f

t

f1 > f2 f1 < f2

'InitialPhase' Initial phase of the Chirp signal in degrees.

Default: 270

Examples
Create a chirp input signal:
input = frest.Chirp('Amplitude',1e-3,'FreqRange',[10 500],'NumSamples',20000)

 frest.Chirp

13-51

See Also
frest.Random | frest.Sinestream | frestimate | generateTimeseries |
getSimulationTime

Topics
“Estimation Input Signals” on page 5-7
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

Introduced in R2009b

13 Alphabetical List

13-52

frest.createFixedTsSinestream
Package: frest

Sinestream input signal with fixed sample time

Syntax
input = frest.createFixedTsSinestream(ts)
input = frest.createFixedTsSinestream(ts,{wmin wmax})
input = frest.createFixedTsSinestream(ts,w)
input = frest.createFixedTsSinestream(ts,sys)
input = frest.createFixedTsSinestream(ts,sys,{wmin wmax})
input = frest.createFixedTsSinestream(ts,sys,w)

Description
input = frest.createFixedTsSinestream(ts) creates sinestream input signal in
which each frequency has the same fixed sample time ts in seconds. The signal has 30

frequencies between 1 and ωs, where w
p

s

s
t

=

2 is the sample rate in radians per second.
The software adjusts the SamplesPerPeriod option to ensure that each frequency has
the same sample time. Use when your Simulink model has linearization input I/Os on
signals with discrete sample times.

input = frest.createFixedTsSinestream(ts,{wmin wmax}) creates sinestream
input signal with up to 30 frequencies logarithmically spaced between wmin and wmax in
radians per second.

input = frest.createFixedTsSinestream(ts,w) creates sinestream input signal
with frequencies w, specified as a vector of frequency values in radians per second. The

values of w must satisfy w
Nts

=
2p for integer N such that the sample rate w

p

s

s
t

=

2 is an
integer multiple of each element of w.

 frest.createFixedTsSinestream

13-53

input = frest.createFixedTsSinestream(ts,sys) creates sinestream input
signal with a fixed sample time ts. The signal's frequencies, settling periods, and number
of periods automatically set based on the dynamics of a linear system sys.

input = frest.createFixedTsSinestream(ts,sys,{wmin wmax}) creates
sinestream input signal with up to 30 frequencies logarithmically spaced between wmin
and wmax in radians per second.

input = frest.createFixedTsSinestream(ts,sys,w) creates sinestream input
signal at frequencies w, specified as a vector of frequency values in radians per second.

The values of w must satisfy w
Nts

=
2p for integer N such that the sample rate ts is an

integer multiple of each element of w.

Examples
Create a sinusoidal input signal with the following characteristics:

• Sample time of 0.02 sec
• Frequencies of the sinusoidal signal are between 1 rad/s and 10 rad/s

input = frest.createFixedTsSinestream(0.02,{1, 10});

See Also
frest.Sinestream | frestimate

Topics
“Estimation Input Signals” on page 5-7
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

Introduced in R2009b

13 Alphabetical List

13-54

frest.createStep
Package: frest

Step input signal

Syntax
input = frest.createStep('OptionName',OptionValue)

Description
input = frest.createStep('OptionName',OptionValue) creates a step input
signal as a MATLAB timeseries object using the options specified by comma-separated
name/value pairs.

Plot your input signal using plot(input).

Input Arguments
'OptionName',OptionValue

Signal characteristics, specified as comma-separated option name and option value pairs.

Option Name Option Value
'Ts' Sample time of the step input in seconds.

Default: 1e-3
'StepTime' Time in seconds when the output jumps from 0 to the

StepSize parameter.
Default: 1

'StepSize' Value of the step signal after time reaches and exceeds
the StepTime parameter.
Default: 1

 frest.createStep

13-55

Option Name Option Value
'FinalTime Final time of the step input signal in seconds.

Default: 10

Examples
Create step signal:

input = frest.createStep('StepTime',3,'StepSize',2)

See Also
frest.simCompare | frestimate

Topics
“Estimation Input Signals” on page 5-7
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

Introduced in R2009b

13 Alphabetical List

13-56

frest.findDepend
Package: frest

List of model path dependencies

Syntax
dirs = frest.findDepend(model)

Description
dirs = frest.findDepend(model) returns paths containing Simulink model
dependencies required for frequency response estimation using parallel computing.
model is the Simulink model to estimate, specified as a character vector or a string. dirs
is a cell array, where each element is a path character vector. dirs is empty when
frest.findDepend does not detect any model dependencies. Append paths to dirs
when the list of paths is empty or incomplete.

frest.findDepend does not return a complete list of model dependency paths when the
dependencies are undetectable.

Examples
Specify model path dependencies for parallel computing:
% Copy referenced model to temporary folder.
pathToLib = scdpathdep_setup;

% Add folder to search path.
addpath(pathToLib);

% Open Simulink model.
mdl = 'scdpathdep';
open_system(mdl);

% Get model dependency paths.
dirs = frest.findDepend(mdl)

 frest.findDepend

13-57

% The resulting path is on a local drive, C:/.
% Replace C:/ with valid network path accessible to remote workers.
dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

% Enable parallel computing and specify the model path dependencies.
options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

See Also
frestimate

Topics
“Speeding Up Estimation Using Parallel Computing” on page 5-79
“Scope of Dependency Analysis” (Simulink)

Introduced in R2010a

13 Alphabetical List

13-58

frest.findSources
Package: frest

Identify time-varying source blocks

Syntax
blocks = frest.findSources(model)
blocks = frest.findSources(model,io)

Description
blocks = frest.findSources(model) finds all time-varying source blocks in the
signal path of any linearization output point marked in the Simulink model model.

blocks = frest.findSources(model,io) finds all time-varying source blocks in the
signal path of any linearization output point specified in the array of linear analysis points
io.

Input Arguments
model

Character vector or string that contains the name of the Simulink model in which you are
identifying time-varying source blocks for frequency response estimation.

io

Array of linearization I/O points.

The elements of io are linearization I/O objects that you create with getlinio or linio.
frest.findSources uses only the output points to locate time-varying source blocks
that can interfere with frequency response estimation. See “Algorithms” on page 13-64
for more information.

 frest.findSources

13-59

Output Arguments
blocks

Block paths of time-varying source blocks in model that can interfere with frequency
response estimation, returned as an array of Simulink.BlockPath objects. blocks
includes time-varying source blocks inside subsystems and normal-mode referenced
models.

If you provide io, blocks contains all time-varying source blocks contributing to the
signal at the output points in io.

If you do not provide io, blocks contains all time-varying source blocks contributing to
the signal at the output points marked in model.

Examples
Estimate the frequency response of a model having time-varying source blocks. This
example shows the use of frest.findSources to identify time-varying source blocks
that interfere with frequency response estimation. You can also see the use of
BlocksToHoldConstant option of frestimateOptions to disable time-varying source
blocks in the estimation.

Load the model scdspeed_ctrlloop.

mdl = 'scdspeed_ctrlloop';
open_system(mdl)
% Convert referenced model to normal mode for accuracy
set_param('scdspeed_ctrlloop/Engine Model',...
 'SimulationMode','Normal');

First, view the effects of time-varying source blocks on frequency response estimation. To
do so, perform the estimation without disabling time-varying source blocks.

In this example, linearization I/O points are already defined in the model. Use the
getlinio command to get the I/O points for frestimate.

io = getlinio(mdl)

Define a sinestream signal and compute the estimated frequency response sysest.

13 Alphabetical List

13-60

in = frest.Sinestream('Frequency',logspace(1,2,10),...
 'NumPeriods',30,'SettlingPeriods',25);
[sysest,simout] = frestimate(mdl,io,in);

Perform exact linearization, and compare to the estimated response.

sys = linearize(mdl,io);
bodemag(sys,sysest,'r*')

The estimated frequency response does not match the exact linearization. The mismatch
occurs because time-varying source blocks in the model prevent the response from
reaching steady state.

Find the time-varying blocks using frest.findSources.

srcblks = frest.findSources(mdl);

 frest.findSources

13-61

srcblks is an array of block paths corresponding to the time-varying source blocks in
the model. To examine the result, index into the array.

For example, entering

srcblks(2)

returns the result

ans =

 Simulink.BlockPath
 Package: Simulink

 Block Path:
 'scdspeed_ctrlloop/Engine Model'
 'scdspeed_plantref/Drag Torque/Step1'

Now you can estimate the frequency response without the contribution of the time-
varying source blocks. To do so, set the BlocksToHoldConstant option of
frestimateOptions equal to srcblks, and run the estimation.

opts = frestimateOptions
opts.BlocksToHoldConstant = srcblks
% Run frestimate again with blocks disabled
 [sysest2,simout2] = frestimate(mdl,io,in,opts);

The frequency response estimate now provides a good match to the exact linearization
result.

bodemag(sys,sysest2,'r*')

13 Alphabetical List

13-62

Tips
• Use frest.findSources to identify time-varying source blocks that can interfere

with frequency response estimation. To disable such blocks to estimate frequency
response, set the BlocksToHoldConstant option of frestimateOptions equal to
blocks or a subset of blocks. Then, estimate the frequency response using
frestimate.

• Sometimes, model includes referenced models containing source blocks in the signal
path of a linearization output point. In such cases, set the referenced models to normal
simulation mode to ensure that frest.findSources locates them. Use the
set_param command to set SimulationMode of any referenced models to Normal
before running frest.FindSources.

 frest.findSources

13-63

Algorithms
To locate time-varying source blocks that can interfere with frequency response
estimation, frest.findSources begins at each linearization output point in the model.
From each output point, the algorithm traces every signal path backward block by block.
The algorithm reports any source block (a block with no input port) it discovers, unless
that source block is a Constant or Ground block.

The frest.findSources algorithm traces every signal path that can affect the signal
value at each linearization output point in the model. The paths traced include:

• Signal paths inside virtual and nonvirtual subsystems.
• Signal paths inside normal-mode referenced models. Set all referenced models to

normal simulation mode before using frest.findSources to ensure that the
algorithm identifies source blocks within the referenced models.

• Signals routed through From and Goto blocks, or through Data Store Read and Data
Store Write blocks.

• Signals routed through switches. The frest.findSources algorithm assumes that
any pole of a switch can be active during frequency response estimation. The
algorithm therefore follows the signal back through all switch inputs.

For example, consider the model scdspeed_ctrlloop. This model has one linearization
output point, located at the output of the Sum block labeled Speed Output. (The
frest.findSources algorithm ignores linearization input points.) Before running
frest.findSources, convert the referenced model to normal simulation mode:

set_param('scdspeed_ctrlloop/Engine Model',...
 'SimulationMode','Normal');

You can now run frest.findSources to identify the time-varying source blocks using
the linearization output point defined in the model.

13 Alphabetical List

13-64

 srcblks = frest.findSources('scdspeed_ctrlloop');

The algorithm begins at the output point and traces back through the Sum block Speed
Output. One input to Speed Output is the subsystem External Disturbance. The
algorithm enters the subsystem, finds the source block labeled Step Disturbance, and
reports that block.

The Sum block Speed Output has another input, which the algorithm traces back into
the referenced model Engine Model. Engine Model contains several subsystems, and
the algorithm traces the signal through these subsystems to identify any time-varying
source blocks present.

For example, the Combustion subsystem includes the From block marked delta that
routes the signal from the Spark Advance source. Because Spark Advance is a
constant source block, however, the algorithm does not report the presence of the block.

The algorithm continues the trace until all possible signal paths contributing to the signal
at each linearization output point are examined.

Alternatives
You can use the Simulink Model Advisor to determine whether time-varying source blocks
exist in the signal path of output linear analysis points in your model. To do so, use the

 frest.findSources

13-65

Model Advisor check “Identify time-varying source blocks interfering with frequency
response estimation.” For more information about using the Model Advisor, see “Run
Model Checks” (Simulink) in the Simulink User's Guide.

See Also
frestimate | frestimateOptions

Topics
“Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-56

Introduced in R2010b

13 Alphabetical List

13-66

frest.Random
Package: frest

Random input signal for simulation

Syntax
input = frest.Random('OptionName',OptionValue)
input = frest.Random(sys)

Description
input = frest.Random('OptionName',OptionValue) creates the Random input
signal using the options specified by comma-separated name/value pairs.

input = frest.Random(sys) creates a Random input signal based on the dynamics of
a linear system sys.

To view a plot of your input signal, type plot(input). To obtain a time series for your
input signal, use the generateTimeseries command.

Input Arguments
sys

Linear system for creating a random signal based on the dynamic characteristics of this
system. You can specify the linear system based on known dynamics using tf, zpk, or ss.
You can also obtain the linear system by linearizing a nonlinear system.

The resulting random signal automatically sets these options based on the linear system:

• Ts is set such that the Nyquist frequency of the signal is five times the upper end of
the frequency range to avoid aliasing issues.

• NumSamples is set such that the frequency response estimation includes the lower
end of the frequency range.

 frest.Random

13-67

Other random options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated option name and option value pairs.

Option Name Option Value
'Amplitude' Signal amplitude.

Default: 1e-5
'Ts' Sample time of the chirp signal in seconds.

Default: 1e-3
'NumSamples' Number of samples in the Random signal.

Default: 1e4
'Stream' Random number stream you create using the MATLAB command

RandStream. The state of the stream you specify stores with the
input signal. This stored state allows the software to return the
same result every time you use generateTimeseries and
frestimate with the input signal.
Default: Default stream of the MATLAB session

Examples
Create a Random input signal with 1000 samples taken at 100 Hz and amplitude of 0.02:
input = frest.Random('Amplitude',0.02,'Ts',1/100,'NumSamples',1000);

Create a Random input signal using multiplicative lagged Fibonacci generator random
stream:
% Specify the random number stream
stream = RandStream('mlfg6331_64','Seed',0);

% Create the input signal
input = frest.Random('Stream',stream);

See Also
frest.Random | frest.Sinestream | frestimate | generateTimeseries |
getSimulationTime

13 Alphabetical List

13-68

Topics
“Estimation Input Signals” on page 5-7
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25

Introduced in R2009b

 frest.Random

13-69

frest.simCompare
Package: frest

Plot time-domain simulation of nonlinear and linear models

Syntax
frest.simCompare(simout,sys,input)
frest.simCompare(simout,sys,input,x0)
[y,t] = frest.simCompare(simout,sys,input)
[y,t,x] = frest.simCompare(simout,sys,input,x0)

Description
frest.simCompare(simout,sys,input) plots both

• Simulation output, simout, of the nonlinear Simulink model

You obtain the output from the frestimate command.
• Simulation output of the linear model sys for the input signal input

The linear simulation results are offset by the initial output values in the simout data.

frest.simCompare(simout,sys,input,x0) plots the frequency response simulation
output and the simulation output of the linear model with initial state x0. Because you
specify the initial state, the linear simulation result is not offset by the initial output
values in the simout data.

[y,t] = frest.simCompare(simout,sys,input) returns the linear simulation
output response y and the time vector t for the linear model sys with the input signal
input. This syntax does not display a plot. The matrix y has as many rows as time
samples (length(t)) and as many columns as system outputs.

[y,t,x] = frest.simCompare(simout,sys,input,x0) also returns the state
trajectory x for the linear state space model sys with initial state x0.

13 Alphabetical List

13-70

Examples
Compare a time-domain simulation of the Simulink watertank model and its linear
model representation:

% Create input signal for simulation
input = frest.createStep('FinalTime',100);

% Open the Simulink model
watertank

% Specify the operating point for the estimation
watertank_spec = operspec('watertank');
op = findop('watertank',watertank_spec)

% Specify portion of model to estimate
io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'output');

% Estimate the frequency response of the watertank model
[sysest,simout] = frestimate('watertank',op,io,input)
sys = linearize('watertank',op,io);
frest.simCompare(simout,sys,input);

The software returns the following plot.

 frest.simCompare

13-71

See Also
frest.simView | frestimate

Introduced in R2009b

13 Alphabetical List

13-72

frest.simView
Package: frest

Plot frequency response model in time- and frequency-domain

Syntax
frest.simView(simout,input,sysest)
frest.simView(simout,input,sysest,sys)

Description
frest.simView(simout,input,sysest) plots the following frequency response
estimation results:

• Time-domain simulation simout of the Simulink model
• FFT of time-domain simulation simout
• Bode of estimated system sysest

This Bode plot is available when you create the input signal using
frest.Sinestream or frest.Chirp. In this plot, you can interactively select
frequencies or a frequency range for viewing the results in all three plots.

You obtain simout and sysest from the frestimate command using the input signal
input.

frest.simView(simout,input,sysest,sys) includes the linear system sys in the
Bode plot when you create the input signal using frest.Sinestream or frest.Chirp.
Use this syntax to compare the linear system to the frequency response estimation
results.

Examples
Estimate the closed-loop of the watertank Simulink model and analyze the results:

 frest.simView

13-73

% Open the Simulink model
watertank

% Specify portion of model to linearize and estimate
io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'output');

% Specify the operating point for the linearization and estimation
watertank_spec = operspec('watertank');
op = findop('watertank',watertank_spec);

% Create input signal for simulation
input = frest.Sinestream('Frequency',logspace(-1,2,10));

% Estimate the frequency response of the watertank model
[sysest,simout] = frestimate('watertank',op,io,input);

% Analyze the estimation results
frest.simView(simout,input,sysest)

13 Alphabetical List

13-74

See Also
frest.simCompare | frestimate

Topics
“Analyze Estimated Frequency Response” on page 5-37
“Troubleshooting Frequency Response Estimation” on page 5-45

Introduced in R2009b

 frest.simView

13-75

frest.Sinestream
Package: frest

Signal containing series of sine waves

Syntax
input = frest.Sinestream(sys)
input = frest.Sinestream('OptionName',OptionValue)

Description
input = frest.Sinestream(sys) creates a signal with a series of sinusoids based on
the dynamics of a linear system sys.

input = frest.Sinestream('OptionName',OptionValue) creates a signal with a
series of sinusoids, where each sinusoid frequency lasts for a specified number of periods,
using the options specified by comma-separated name/value pairs.

To view a plot of your input signal, type plot(input). To obtain a timeseries for your
input signal, use the generateTimeseries command.

Input Arguments
sys

Linear system for creating a sinestream signal based on the dynamic characteristics of
this system. You can specify the linear system based on known dynamics using tf, zpk, or
ss. You can also obtain the linear system by linearizing a nonlinear system.

The resulting sinestream signal automatically sets these options based on the linear
system:

• 'Frequency' are the frequencies at which the linear system has interesting
dynamics.

13 Alphabetical List

13-76

• 'SettlingPeriods' is the number of periods it takes the system to reach steady
state at each frequency in 'Frequency'.

• 'NumPeriods' is (3 + SettlingPeriods) to ensure that each frequency excites the
system at specified amplitude for at least three periods.

• For discrete systems only, 'SamplesPerPeriod' is set such that all frequencies have
the same sample time as the linear system.

Other sinestream options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated option name and option value pairs.

Option Name Option Value
'Frequency' Signal frequencies, specified as either a scalar or a vector of

frequency values.

Default: logspace(1,3,50)
'Amplitude' Signal amplitude at each frequency, specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: 1e-5
'SamplesPerPeriod' Number of samples for each period for each signal frequency,

specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: 40
'FreqUnits' Frequency units:

• 'rad/s' — Radians per second
• 'Hz' — Hertz

Default: 'rad/s'

 frest.Sinestream

13-77

Option Name Option Value
'RampPeriods' Number of periods for ramping up the amplitude of each sine

wave to its maximum value, specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Use this option to ensure a smooth response when your input
amplitude changes.

Default: 0

RampPeriods

13 Alphabetical List

13-78

Option Name Option Value
'NumPeriods' Number of periods each sine wave is at maximum amplitude,

specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: max(3 - RampPeriods + SettlingPeriods,
2)

NumPeriods

 frest.Sinestream

13-79

Option Name Option Value
'SettlingPeriods' Number of periods corresponding to the transient portion of

the simulated response at a specific frequency, before the
system reaches steady state, specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Before performing the estimation, frestimate discards this
number of periods from the output signals.

Default: 1

SettlingPeriods
Bold periods
for estimation

'ApplyFilteringInFRESTIMATE' Frequency-selective FIR filtering of the input signal before
estimating the frequency response using frestimate.

• 'on' (default)
• 'off'

For more information, see the frestimate algorithm.

13 Alphabetical List

13-80

Option Name Option Value
'SimulationOrder' The order in which frestimate injects the individual

frequencies of the input signal into your Simulink model
during simulation.

• 'Sequential' (default) — frestimate injects one
frequency after the next into your model in a single
Simulink simulation using variable sample time. To use
this option, your Simulink model must use a variable-step
solver.

• 'OneAtATime' — frestimate injects each frequency
during a separate Simulink simulation of your model.
Before each simulation, frestimate initializes your
Simulink model to the operating point specified for
estimation. If you have Parallel Computing Toolbox
installed, you can run each simulation in parallel to speed
up estimation using parallel computing. For more
information, see “Speeding Up Estimation Using Parallel
Computing” on page 5-79.

Examples
Create a sinestream signal having several different frequencies. For each frequency,
specify an amplitude, a number of periods at maximum amplitude, a ramp-up period, and
a number of settling periods.

1 Create sinestream signal.

input = frest.Sinestream('Frequency',[1 2.5 5],...
 'Amplitude',[1 2 1.5],...
 'NumPeriods',[4 6 12],...
 'RampPeriods',[0 2 6],...
 'SettlingPeriods',[1 3 7]);

2 (Optional) Plot the sinestream signal.

plot(input)

 frest.Sinestream

13-81

Create a sinusoidal input signal with the following characteristics:

• 50 frequencies spaced logarithmically between 10 Hz and 1000 Hz
• All frequencies have amplitude of 1e-3
• Sampled with a frequency 10 times the frequency of the signal (meaning ten samples

per period)

% Create the input signal
input = frest.Sinestream('Amplitude',1e-3,'Frequency',logspace(1,3,50),...
'SamplesPerPeriod',10,'FreqUnits','Hz');

See Also
frest.Chirp | frest.Random | frest.createFixedTsSinestream | frestimate |
generateTimeseries | getSimulationTime

Topics
“Estimation Input Signals” on page 5-7
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25
“Speeding Up Estimation Using Parallel Computing” on page 5-79

13 Alphabetical List

13-82

Introduced in R2009b

 frest.Sinestream

13-83

frestimate
Frequency response estimation of Simulink models

Syntax
sysest = frestimate(model,io,input)
sysest = frestimate(model,op,io,input)
[sysest,simout] = frestimate(model,op,io,input)
[sysest,simout] = frestimate(model,op,io,input,options)

Description
sysest = frestimate(model,io,input) estimates frequency response model
sysest. model is a character vector or string that specifies the name of your Simulink
model. input can be a sinestream, chirp, or random signal, or a MATLAB timeseries
object. io specifies the linearization I/O object, which you either obtain using getlinio
or create using linio. I/O points cannot be on bus signals. The estimation occurs at the
operating point specified in the Simulink model.

sysest = frestimate(model,op,io,input) initializes the model at the operating
point op before estimating the frequency response model. Create op using either
operpoint or findop.

[sysest,simout] = frestimate(model,op,io,input) estimates frequency
response model and returns the simulated output simout. This output is a cell array of
Simulink.Timeseries objects with dimensions m-by-n. m is the number of linearization
output points, and n is the number of input channels.

[sysest,simout] = frestimate(model,op,io,input,options) uses the
frequency response options (options) to estimate the frequency response. Specify these
options using frestimateOptions.

Examples
Estimating frequency response for a Simulink model:

13 Alphabetical List

13-84

% Create input signal for simulation:
input = frest.Sinestream('Frequency',logspace(-3,2,30));

% Open the Simulink model:
watertank

% Specify portion of model to estimate:
io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

% Specify the steady state operating point for the estimation.
watertank_spec = operspec('watertank');
op = findop('watertank',watertank_spec);

% Estimate frequency response of specified blocks:
sysest = frestimate('watertank',op,io,input);
bode(sysest)

Validate exact linearization results using estimated frequency response of a Simulink
model:

 frestimate

13-85

% Open the Simulink model:
watertank

% Specify portion of model to estimate:
io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'output');

% Specify operating point for linearization and estimation:
watertank_spec = operspec('watertank');
op = findop('watertank',watertank_spec);

% Linearize the model:
sys = linearize('watertank',op,io);

% Estimate the frequency response of the watertank model
input = frest.Sinestream('Frequency',logspace(-1,2,10));
[sysest,simout] = frestimate('watertank',op,io,input);

% Compare linearization and estimation results in frequency domain:
frest.simView(simout,input,sysest,sys)

13 Alphabetical List

13-86

Algorithms
frestimate performs the following operations when you use the sinestream signal:

1 Injects the sinestream input signal you design, uest(t), at the linearization input point.
2 Simulates the output at the linearization output point.

frestimate adds the signal you design to existing Simulink signals at the
linearization input point.

u(t)

u (t)

y(t)

est

3 Discards the SettlingPeriods portion of the output (and the corresponding input)
at each frequency.

The simulated output at each frequency has a transient portion and steady state
portion. SettlingPeriods corresponds to the transient components of the output
and input signals. The periods following SettlingPeriods are considered to be at
steady state.

 frestimate

13-87

SettlingPeriods

Input

Output

4 Filters the remaining portion of the output and the corresponding input signals at
each input frequency using a bandpass filter. Because most models are not at steady
state, the response might contain low-frequency transient behavior. Filtering typically
improves the accuracy of your model by removing the effects of frequencies other
than the input frequencies, which are problematic when sampling and analyzing data
of finite length. These effects are called spectral leakage.

Any transients associated with filtering are only in the first period of the filtered
steady-state output. After filtering, frestimate discards the first period of the input
and output signals. frestimate uses a finite impulse response (FIR) filter, whose
order matches the number of samples in a period.

13 Alphabetical List

13-88

SettlingPeriods
Filtered
portion

Used for
estimation

Input

Output

5 Estimates the frequency response of the processed signal by computing the ratio of
the fast Fourier transform of the filtered steady-state portion of the output signal
yest(t) and the fast Fourier transform of the filtered input signal uest(t):

Frequency Response Model
fft of y t

fft of u t

est

est

=

()

()

To compute the response at each frequency, frestimate uses only the simulation
output at that frequency.

 frestimate

13-89

See Also
frest.Chirp | frest.Random | frest.Sinestream | frest.simView |
frestimateOptions | getSimulationTime

Topics
“Estimate Frequency Response at the Command Line” on page 5-32
“Estimate Frequency Response Using Linear Analysis Tool” on page 5-25
“Speeding Up Estimation Using Parallel Computing” on page 5-79

Introduced in R2009b

13 Alphabetical List

13-90

frestimateOptions
Options for frequency response estimation

Syntax
options = frestimateOptions
options = frestimateOptions('OptionName',OptionValue)

Description
options = frestimateOptions creates a frequency response estimation options
object, options, with default settings. Pass this object to the function frestimate to
use these options for frequency response estimation.

options = frestimateOptions('OptionName',OptionValue) creates a frequency
response estimation options object options using the options specified by comma-
separated name/value pairs.

Input Arguments
'OptionName',OptionValue

Estimation options, specified as comma-separated option name and option value pairs.

Option Name Option Value
'BlocksToHoldConstant' Block paths of time-varying source blocks to hold constant

during frequency response estimation, specified as an array
of Simulink.BlockPath objects. To identify time-varying
source blocks that can interfere with frequency response
estimation, use frest.findSources.

Default: empty

 frestimateOptions

13-91

Option Name Option Value
'UseParallel' Set to 'on' to enable parallel computing for estimations

with the frestimate command.

Default: 'off'
'ParallelPathDependencies' A cell array of character vectors or string array that specifies

the path dependencies required to execute the model to
estimate. All the workers in the parallel pool must have
access to the folders listed in
'ParallelPathDependencies'.

Default: empty

Examples
Identify and disable time-varying source blocks for frequency response estimation.

% Open Simulink model.
mdl = 'scdspeed_ctrlloop';
open_system(mdl)

% Convert referenced subsystem to normal mode.
set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal');

% Get I/O points and create sinestream.
io = getlinio(mdl)
in = frest.Sinestream('Frequency',logspace(1,2,10),'NumPeriods',30,...
 'SettlingPeriods',25);

% Identify time-varying source blocks.
srcblks = frest.findSources(mdl)

% Create options set specifying blocks to hold constant
opts = frestimateOptions
opts.BlocksToHoldConstant = srcblks

% Run frestimate
[sysest,simout] = frestimate(mdl,io,in,opts)

Enable parallel computing and specify the model path dependencies.

13 Alphabetical List

13-92

% Copy referenced model to temporary folder.
pathToLib = scdpathdep_setup;

% Add folder to search path.
addpath(pathToLib);

% Open Simulink model.
mdl = 'scdpathdep';
open_system(mdl);

% Get model dependency paths.
dirs = frest.findDepend(mdl)

% The resulting path is on a local drive, C:/.
% Replace C:/ with valid network path accessible to remote workers.
dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

% Enable parallel computing and specify the model path dependencies.
options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

Alternatives
You can enable parallel computing for all models with no path dependencies. To do so,
select the Use the parallel pool when you use the "frestimate" command check box
in the MATLAB preferences. When you select this check box and use the frestimate
command, you do not need to provide a frequency response options object.

If your model has path dependencies, you must create your own frequency response
options object that specifies the path dependencies. Use the
ParallelPathDependencies option before beginning the estimation.

See Also
frest.findSources | frestimate

Introduced in R2010a

 frestimateOptions

13-93

fselect
Extract sinestream signal at specified frequencies

Syntax
input2 = fselect(input,fmin,fmax)
input2 = fselect(input,index)

Description
input2 = fselect(input,fmin,fmax) extracts a portion of the sinestream input
signal input in the frequency range between fmin and fmax. Specify fmin and fmax in
the same frequency units as the sinestream signal.

input2 = fselect(input,index) extracts a sinestream signal at specific
frequencies, specified by the vector of indices index.

Examples
Extract the second frequency in a sinestream signal:

% Create the input signal
input = frest.Sinestream('Frequency',[1 2.5 5],...
 'Amplitude',[1 2 1.5],...
 'NumPeriods',[4 6 12],...
 'RampPeriods',[0 2 6]);

% Extract a sinestream signal for the second frequency
input2 = fselect(input,2)

% Plot the extracted input signal
plot(input2)

13 Alphabetical List

13-94

See Also
fdel | frest.Sinestream | frestimate

Topics
“Time Response Not at Steady State” on page 5-45

Introduced in R2010a

 fselect

13-95

generateTimeseries
Generate time-domain data for input signal

Syntax
ts = generateTimeseries(input)

Description
ts = generateTimeseries(input) creates a MATLAB timeseries object ts from
the input signal input. input can be a sinestream, chirp, or random signal. For chirp
and random signals, that time vector of ts has equally spaced time values, ranging from 0
to Ts(NumSamples-1).

Examples
Create timeseries object for chirp signal:
input = frest.Chirp('Amplitude',1e-3,'FreqRange',...
 [10 500],'NumSamples',20000);
ts = generateTimeseries(input)

See Also
frest.Chirp | frest.Random | frest.Sinestream | frestimate

Introduced in R2009b

13 Alphabetical List

13-96

get
Properties of linearization I/Os and operating points

Syntax
get(ob)
get(ob,'PropertyName')

Description
get(ob) displays all properties and corresponding values of the object, ob, which can be
a linearization I/O object, an operating point object, or an operating point specification
object. Create ob using findop, getlinio, linio, operpoint, or operspec.

get(ob,'PropertyName') returns the value of the property, PropertyName, within
the object, ob. The object, ob, can be a linearization I/O object, an operating point object,
or an operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

ob.PropertyName is an alternative notation for displaying the value of the property,
PropertyName, of the object, ob. The object, ob, can be a linearization I/O object, an
operating point object, or an operating point specification object. Create ob using
findop, getlinio, linio, operpoint, or operspec.

Examples
Create an operating point object, op, for the Simulink model, magball.

op=operpoint('magball');

Get a list of all object properties using the get function with the object name as the only
input.

get(op)

 get

13-97

This returns the properties of op and their current values.

 Model: 'magball'
 States: [5x1 opcond.StatePoint]
 Inputs: [0x1 double]
 Time: 0
 Version: 2

To view the value of a particular property of op, supply the property name as an argument
to get. For example, to view the name of the model associated with the operating point
object, type:

V=get(op,'Model')

which returns

V =
magball

Because op is a structure, you can also view any properties or fields using dot-notation, as
in this example.

W=op.States

This notation returns a vector of objects containing information about the states in the
operating point.

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Use get to view details of W. For example:

get(W(2),'x')

returns

13 Alphabetical List

13-98

ans =

 14.0071

See Also
findop | getlinio | linio | operpoint | operspec | set

Introduced before R2006a

 get

13-99

getBlockInfo
Package: linearize.advisor

Obtain diagnostic information for block linearizations

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. You can
troubleshoot your linearization results by reviewing this diagnostic information. To access
the diagnostic information, use the getBlockInfo function.

Syntax
blockInfo = getBlockInfo(advisor)
blockInfo = getBlockInfo(advisor,block)
blockInfo = getBlockInfo(advisor,index)

Description
blockInfo = getBlockInfo(advisor) returns the diagnostic information for all
blocks listed in the LinearizationAdvisor object, advisor.

blockInfo = getBlockInfo(advisor,block) returns diagnostic information for
blocks with block paths specified in block.

blockInfo = getBlockInfo(advisor,index) returns diagnostic information for
blocks with indices specified in index.

Examples

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

13 Alphabetical List

13-100

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Obtain Diagnostics Using Block Names

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain diagnostic information for the saturation block.

 getBlockInfo

13-101

satDiag = getBlockInfo(advisor,'scdpendulum/pendulum/Saturation')

satDiag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostic information for multiple blocks at once. Obtain diagnostics
for the sin blocks in the model.

sinBlocks = {'scdpendulum/pendulum/Trigonometric Function';
 'scdpendulum/angle_wrap/Trigonometric Function1'};

sinDiag = getBlockInfo(advisor,sinBlocks)

sinDiag =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Obtain Diagnostics Using Indices

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

13 Alphabetical List

13-102

Obtain diagnostic information for the first element of advisor.BlockDiagnostics.

diag = getBlockInfo(advisor,1)

diag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostics for multiple blocks. For example, obtain diagnostics for
the second and third blocks listed in advisor.

diags = getBlockInfo(advisor,[2 3])

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Integrator, Second-Order Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation

Obtain Diagnostics for Blocks in Subsystem

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain block paths of linearized blocks.

 getBlockInfo

13-103

paths = getBlockPaths(advisor);

Create boolean array indicating which blocks are in the angle_wrap subsystem.

index = contains(paths,'angle_wrap');

Obtain diagnostic information for these blocks.

diags = getBlockInfo(advisor,index)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/angle_wrap/Trigonometric Function2 Yes No Perturbation
3. scdpendulum/angle_wrap/Trigonometric Function Yes No Perturbation

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor
object or an array of LinearizationAdvisor objects.

block — Block paths
character vector | cell array of character vectors

Block paths in Simulink model, specified as one of the following:

• Character vector — Obtain diagnostic information for a single block.
• Cell array of character vectors — Obtain diagnostic information for multiple blocks.

index — Block indices
positive integer | array of positive integers | boolean array

Block indices, specified as one of the following:

13 Alphabetical List

13-104

• Positive integer — Obtain diagnostic information for the specified element of
Advisor.BlockDiagnostics

• Array of positive integers — Obtain diagnostic information for multiple elements of
Advisor.BlockDiagnostics.

• Boolean array — For each element of index that is true, return the diagnostics for
the corresponding element of Advisor.BlockDiagnostics.

Output Arguments
blockInfo — Diagnostic information for block linearizations
BlockDiagnostic object | vector of BlockDiagnostic objects | cell array

Diagnostic information for block linearizations indicated by index, returned as a
BlockDiagnostic object or vector of BlockDiagnostic objects if advisor is a single
LinearizationAdvisor object.

If advisor is an array of LinearizationAdvisor objects, then blockInfo is a cell
array with the same dimensions as advisor in which each element is a vector of
BlockDiagnostic objects.

See Also
Objects
LinearizationAdvisor

Functions
advise | find | getBlockPaths

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 getBlockInfo

13-105

getBlockPaths
Package: linearize.advisor

Obtain list of blocks in LinearizationAdvisor object

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations, which you can
use for troubleshooting linearization results. To obtain a list of the blocks in the
LinearizationAdvisor object, use the getBlockPaths function.

Syntax
blocks = getBlockPaths(advisor)

Description
blocks = getBlockPaths(advisor) returns a list of block paths for the blocks in the
LinearizationAdvisor object advisor.

Examples

Obtain List of Numerically Perturbed Blocks

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

13 Alphabetical List

13-106

Find all blocks in linearization results that are numerically perturbed.

perturbed = find(advisor,linqueryIsNumericallyPerturbed);

Obtain list of numerically perturbed blocks.

blocks = getBlockPaths(perturbed)

blocks = 6x1 cell array
 {'scdspeed/Throttle & Manifold/Intake Manifold/Convert to mass charge'}
 {'scdspeed/Combustion/Torque Gen' }
 {'scdspeed/Combustion/Torque Gen2' }
 {'scdspeed/Throttle & Manifold/Intake Manifold/Pumping1' }
 {'scdspeed/Throttle & Manifold/Throttle/f(theta)' }
 {'scdspeed/Throttle & Manifold/Throttle/g(pratio)' }

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor
object or an array of LinearizationAdvisor objects.

Output Arguments
blocks — Block paths
cell array of character vectors | cell array

Block paths for blocks in advisor, returned as a cell array of character vectors if
advisor is a single LinearizationAdvisor object. If advisor is an array of
LinearizationAdvisor objects, then blocks is a cell array with the same dimensions
as advisor in which each element is a cell array of character vectors.

 getBlockPaths

13-107

See Also
Objects
LinearizationAdvisor

Functions
advise | getBlockInfo | getBlockPaths

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

13 Alphabetical List

13-108

getInputIndex
Get index of an input element of an operating point specification or operating point

The Inputs property of an operating point specification is an array that contains
trimming specifications for each model input. When defining a mapping function for
customized trimming of Simulink models, getInputIndex lets you obtain the index of an
input specification based on the corresponding block path.

When trimming Simulink models using optimization-based search, some applications
require additional flexibility in defining the optimization search parameters. For such
systems, you can specify custom constraints and a custom objective function. For complex
models, you can define a mapping that selects a subset of the model states, inputs, and
outputs to pass to the custom constraint and objective functions. For more information,
see “Compute Operating Points Using Custom Constraints and Objective Functions” on
page 1-50.

Syntax
index = getInputIndex(op,block)
index = getInputIndex(op,block,element)

Description
index = getInputIndex(op,block) returns the index of the input specification that
corresponds to block in the Inputs property of operating point specification op.

index = getInputIndex(op,block,element) returns the index of the specified
element within an input specification for an input port that has a port width greater than
1.

Examples

 getInputIndex

13-109

Get Input Index from Operating Point Specification

Open Simulink model.

mdl = 'scdtmpSetpoints';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains specifications for the root-level input ports of the model.

opspec.Inputs

(1.) scdtmpSetpoints/Feed rpm
 initial guess: 0

13 Alphabetical List

13-110

(2.) scdtmpSetpoints/Setpoints
 initial guess: 0
 initial guess: 0
 initial guess: 0
 initial guess: 0

Obtain the index of the specification in opspec.Inputs that corresponds to the Feed
rpm input block.

index1 = getInputIndex(opspec,'scdtmpSetpoints/Feed rpm')

index1 =

 1 1

index1(1) is the index of the input specification object for the Feed rpm block in the
opspec.Inputs. Since this input port is a scalar signal, index1 has one row and
index1(2) is 1.

If an input port is a vector signal, you can obtain the indices for all of the elements in the
corresponding input specification.

index2 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints')

index2 =

 2 1
 2 2
 2 3
 2 4

Each row of index2 is the index for one element of the Setpoints input vector.

Get Index of Specified Input Element of Operating Point Specification

Open Simulink model.

 getInputIndex

13-111

mdl = 'scdtmpSetpoints';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains specifications for the root-level input ports of the model.

Obtain the index of the element that corresponds to the second signal in the Setpoints
input vector.

index1 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints',2)

index1 =

13 Alphabetical List

13-112

 2 2

You can also obtain the indices of multiple vector elements at the same time. For example,
get the indices for the first and third elements of the Setpoints vector.

index2 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints',[1 3])

index2 =

 2 1
 2 3

Input Arguments
op — Operating point specification or operating point
operspec object | operating point object

Operating point specification or operating point for a Simulink model, specified as an
operspec object or operating point object.

block — Block path
character vector | string

Block path that corresponds to an input specification in the Inputs property of op,
specified as a character vector or string that contains the path of a root-level input of a
Simulink model.

To see all the blocks that have input specifications, view the Inputs property of op.

op.Inputs

element — Input element index
positive integer | vector of positive integers

Input element index, specified as a positive integer less than or equal to the port width of
the input specified by block, or as a vector of such integers. By default, if you do not
specify element, getInputIndex returns the indices of all elements in the selected

 getInputIndex

13-113

input specification. For an example, see “Get Index of Specified Input Element of
Operating Point Specification” on page 13-111.

Output Arguments
index — Input index
2-element row vector | 2-column array

Input index, returned as a 2-element row vector when element is an integer, or a 2-
column array when element is a vector. Each row of index contains the index for a
single model input element.

The first column of index contains the index of the corresponding input specification in
the Inputs property of op. The second column contains the element index within the
input specification.

Using index, you can specify the input portion of a custom mapping for customized
trimming of Simulink models. For more information, see the CustomMappingFcn
property of operspec.

See Also
findop | getOutputIndex | getStateIndex | operspec

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page
1-50

Introduced in R2017a

13 Alphabetical List

13-114

getinputstruct
Input structure from operating point

Syntax
in_struct = getinputstruct(op_point)

Description
in_struct = getinputstruct(op_point) extracts a structure of input values,
in_struct, from the operating point object, op_point. The structure, in_struct, uses
the same format as Simulink software which allows you to set initial values for inputs in
the model within the Data Import/Export pane of the Configuration Parameters dialog
box.

Examples
Create an operating point object for the scdplane model:

open_system('scdplane')
op_scdplane = operpoint('scdplane');

Extract an input structure from the operating point object:

inputs_scdplane = getinputstruct(op_scdplane)

inputs_scdplane =

 time: 0
 signals: [1x1 struct]

To view the values of the inputs within this structure, use dot-notation to access the
values field:

inputs_scdplane.signals.values

 getinputstruct

13-115

In this case, the value of the input is 0.

See Also
getstatestruct | getxu | operpoint

Introduced before R2006a

13 Alphabetical List

13-116

getlinio
Obtain linear analysis points from Simulink model, Linear Analysis Plots block, or Model
Verification block

Syntax
io = getlinio(mdl)
io = getlinio(blockpath)

Description
io = getlinio(mdl) returns the analysis points defined in the Simulink model mdl.

io = getlinio(blockpath) returns the analysis points defined for the specified
Linear Analysis Plots block or Model Verification block in a Simulink model.

Examples

Obtain Analysis Points from Simulink Model

Open Simulink model.

mdl = 'scdpwm';
open_system(mdl)

This model contains the following linear analysis points:

 getlinio

13-117

• Input perturbation at the output of the Step block
• Output measurement at the output of the Plant Model block

Obtain the analysis points from the model.

io = getlinio(mdl)

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdpwm/Step
- Port: 1
2. Linearization output measurement located at the following signal:
- Block: scdpwm/Plant Model
- Port: 1

You can use these analysis points for subsequent linearizations of the model using the
linearize command or an slLinearizer interface.

Obtain Analysis Points from Linear Analysis Plots Block

Open Simulink model.

open_system('scdcstr')

13 Alphabetical List

13-118

This model contains a Bode Plot block that is configured with the following linear analysis
points:

• Input perturbation at the output of the Coolant Temp block
• Output measurement at the CA output of the CSTR block

Obtain the analysis points from the Bode Plot block.

io = getlinio('scdcstr/Bode Plot')

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdcstr/Coolant Temp
- Port: 1
2. Linearization output measurement located at the following signal:

 getlinio

13-119

- Block: scdcstr/CSTR
- Port: 2

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the
current working folder or on the MATLAB path.

If the model is not open or loaded into memory, getlinio loads the model into memory.

blockpath — Linear Analysis Plots block or Model Verification block
character vector | string

Linear Analysis Plots block or Model Verification block, specified as a character vector or
string that contains its full block path. The model that contains the block must be in the
current working folder or on the MATLAB path.

For more information on:

• Linear analysis plot blocks, see “Visualization During Simulation”.
• Model verification blocks, see “Model Verification”.

Output Arguments
io — Analysis point set
linearization I/O object | vector of linearization I/O objects

Analysis point set, returned as a linearization I/O object or a vector of linearization I/O
objects. Use io to specify linearization inputs, outputs, and loop openings when using the
linearize command. For more information, see “Specify Portion of Model to Linearize”
on page 2-13.

Each analysis point has the following properties:

13 Alphabetical List

13-120

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified

as one of the following:

• 'on' — Use the analysis point for linearization. This value is the default
option.

• 'off' — Do not use the analysis point for linearization. Use this option
if you have an existing set of analysis points and you want to linearize a
model with a subset of these points.

Block Full block path of the block with which the analysis point is associated,
specified as a character vector.

PortNumber Output port with which the analysis point is associated, specified as an
integer.

Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model
to Linearize” on page 2-13.

BusElement Bus element name with which the analysis point is associated, specified as
a character vector or '' if the analysis point is not a bus element.

Descriptio
n

User-specified description of the analysis point, which you can set for
convenience, specified as a character vector.

See Also
linearize | linio | setlinio

 getlinio

13-121

Topics
“Specify Portion of Model to Linearize” on page 2-13

Introduced before R2006a

13 Alphabetical List

13-122

getlinplant
Compute open-loop plant model from Simulink diagram

Syntax
[sysp,sysc] = getlinplant(block,op)
[sysp,sysc] = getlinplant(block,op,options)

Description
[sysp,sysc] = getlinplant(block,op) Computes the open-loop plant seen by a
Simulink block labeled block (where block specifies the full path to the block). The
plant model, sysp, and linearized block, sysc, are linearized at the operating point op.

[sysp,sysc] = getlinplant(block,op,options) Computes the open-loop plant
seen by a Simulink block labeled block, using the linearization options specified in
options.

Examples
To compute the open-loop model seen by the Controller block in the Simulink model
magball, first create an operating point object using the function findop. In this case,
you find the operating point from simulation of the model.

magball
op=findop('magball',20);

Next, compute the open-loop model seen by the block magball/Controller, with the
getlinplant function.

[sysp,sysc]=getlinplant('magball/Controller',op)

The output variable sysp gives the open-loop plant model as follows:

a =
 Current dhdt height

 getlinplant

13-123

 Current -100 0 0
 dhdt -2.801 0 196.2
 height 0 1 0

b =
 Controller
 Current 50
 dhdt 0
 height 0

c =
 Current dhdt height
 Sum2 0 0 -1

d =
 Controller
 Sum2 0

Continuous-time model.

See Also
findop | linearizeOptions | operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-124

getOffsetsForLPV
Extract LPV offsets from linearization results

Syntax
offsets = getOffsetsForLPV(info)

Description
offsets = getOffsetsForLPV(info) extracts linearization offsets from info and
converts them to the array format supported by the LPV System block.

Examples

Extract LPV Offsets from Linearization Results

Open the Simulink model.

model = 'watertank';
open_system(model)

 getOffsetsForLPV

13-125

Specify linearization I/Os.

io(1) = linio('watertank/Desired Water Level',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Vary plant parameters A and b, and create a 3-by-4 parameter grid.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),linspace(0.9*b,1.1*b,4));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a linearization option set, setting the StoreOffsets option to true.

opt = linearizeOptions('StoreOffsets',true);

Linearize the model using the specified parameter grid, and return the linearization
offsets in the info structure.

[sys,op,info] = linearize('watertank',io,params,opt);

Extract the linearization offsets.

offsets = getOffsetsForLPV(info)

offsets =

 struct with fields:

 x: [2x1x3x4 double]
 y: [1x1x3x4 double]
 u: [1x1x3x4 double]
 dx: [2x1x3x4 double]

To configure an LPV System block, use the fields from offsets directly.

13 Alphabetical List

13-126

Input Arguments
info — Linearization information
structure

 getOffsetsForLPV

13-127

Linearization information returned by exact linearization commands, specified as a
structure. This structure has an Offsets field that contains an N1-by-...-by-Nm array of
structures, where N1 to Nm are the dimensions of the operating point array or parameter
grid used for linearization. Each structure in info.Offsets contains offset information
that corresponds to a specific operating point.

You can store and obtain linearization offsets when you linearize your model using one of
the following commands:

• linearize
• getIOTransfer
• getLoopTransfer
• getSensitivity
• getCompSensitivity

For example:

opt = linearizeOptions('StoreOffsets',true);
[sys,op,info] = linearize(mdl,io,params,opt);

You can then extract the offset information using getOffsetsForLPV.

offsets = getOffsetsForLPV(info);

Output Arguments
offsets — Linearization offsets
structure

Linearization offsets corresponding to the operating points at which the model was
linearized, returned as a structure with the following fields:

Field Description
x State offsets used for linearization, returned as an nx-by-1-by-N1-by-...-by-

Nm array, where nx is the number of states in the linearized system.
y Output offsets used for linearization, returned as an ny-by-1-by-N1-by-...-by-

Nm array, where ny is the number of outputs in the linearized system.

13 Alphabetical List

13-128

Field Description
u Input offsets used for linearization, returned as an nu-by-1-by-N1-by-...-by-

Nm array, where nu is the number of inputs in the linearized system.
dx Derivative offsets for continuous time systems, or updated state values for

discrete-time systems, returned as an nx-by-1-by-N1-by-...-by-Nm array.

For instance, suppose that your model has three inputs, two outputs, and four states. If
you linearize your model using a 5-by-6 array of operating points, offsets contains
arrays with the following dimensions:

• offsets.x — 4-by-1-by-5-by-6
• offsets.y — 2-by-1-by-5-by-6
• offsets.u — 3-by-1-by-5-by-6
• offsets.dx — 4-by-1-by-5-by-6

To configure an LPV System block, you can use the fields of offsets directly. For an
example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

See Also
Blocks
LPV System

Functions
getCompSensitivity | getIOTransfer | getLoopTransfer | getSensitivity |
linearize

Topics
“Linear Parameter-Varying Models” (Control System Toolbox)
“Approximating Nonlinear Behavior Using an Array of LTI Systems” on page 3-91

Introduced in R2016b

 getOffsetsForLPV

13-129

getOutputIndex
Get index of an output element of an operating point specification

The Outputs property of an operating point specification is an array that contains
trimming specifications for each model output. When defining a mapping function for
customized trimming of Simulink models, getOutputIndex lets you obtain the index of
an output specification based on the corresponding block path.

When trimming Simulink models using optimization-based search, some applications
require additional flexibility in defining the optimization search parameters. For such
systems, you can specify custom constraints and a custom objective function. For complex
models, you can define a mapping that selects a subset of the model states, inputs, and
outputs to pass to the custom constraint and objective functions. For more information,
see “Compute Operating Points Using Custom Constraints and Objective Functions” on
page 1-50.

Syntax
index = getOutputIndex(op,block)
index = getOutputIndex(op,block,port)
index = getOutputIndex(op,block,port,element)

Description
index = getOutputIndex(op,block) returns the index of the output specification
that corresponds to block in the Outputs property of operating point specification op.

index = getOutputIndex(op,block,port) returns the index of the output
specification that corresponds to the trim output constraint added to the specified output
port of the specified block.

Use this syntax when theOutputs property of op contains trim output constraints for
more than one signal originating from the same block.

index = getOutputIndex(op,block,port,element) returns the index of the
specified element within an output specification for an output with multiple elements.

13 Alphabetical List

13-130

Examples

Get Output Index from Operating Point Specification

Open Simulink model.

mdl = 'scdindex1';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

Create an operating point specification for model.

opspec = operspec(mdl);

opspec contains an array of output specifications for the model.

opspec.Outputs

(1.) scdindex1/Out1
 spec: none
(2.) scdindex1/Out2
 spec: none

Get the index of the output specification for Out2.

idx = getOutputIndex(opspec,'scdindex1/Out2')

idx =

 2 1

 getOutputIndex

13-131

The first column of idx contains the index of the output specification in
opspec.Outputs. The second column contains the element index within the output
specification. In this case, there is only one element in the output specification.

Get Index of Trim Output Specification Added To Signal

Open Simulink model.

mdl = 'scdplane';
open_system(mdl)

Create an operating point specification for the model.

opspec = operspec(mdl);

13 Alphabetical List

13-132

In addition to root-level outputs of a model, the opspec.Outputs array contains
specifications for trim constraints added to signals using the addoutputspec command.

Add an output specification to the signal originating from second output port of the
Aircraft Dynamics Model block.

opspec = addoutputspec(opspec,'scdplane/Aircraft Dynamics Model',2);

View the output array of opspec.

opspec.Outputs

(1.) scdplane/alpha (rad)
 spec: none
(2.) scdplane/Nz Pilot (g)
 spec: none
(3.) scdplane/Aircraft Dynamics Model
 spec: none

Get the index of the added output specification. When there is an output specification for
only one of the output ports of a given block, you do not need to specify the port number
to get the output index.

index1 = getOutputIndex(opspec,'scdplane/Aircraft Dynamics Model')

index1 =

 3 1

Add an output specification to the signal originating from the first output of the same
block.

opspec = addoutputspec(opspec,'scdplane/Aircraft Dynamics Model',1);

View the output array of opspec.

opspec.Outputs

(1.) scdplane/alpha (rad)
 spec: none
(2.) scdplane/Nz Pilot (g)
 spec: none
(3.) scdplane/Aircraft Dynamics Model

 getOutputIndex

13-133

 spec: none
(4.) scdplane/Aircraft Dynamics Model
 spec: none

There are now two output specifications that correspond to the same block, one for each
output port. Obtain the index for the output specification that corresponds with the
output port 1 of the Aircraft Dynamics Model block.

index2 = getOutputIndex(opspec,'scdplane/Aircraft Dynamics Model',1)

index2 =

 4 1

Get Output Indices for Output Specification with Multiple Elements

Open Simulink model.

mdl = 'scdtmp';
open_system(mdl)

13 Alphabetical List

13-134

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains an output specification for the output port Out1, which is a vector
signal.

opspec.Outputs

(1.) scdtmp/Out1
 spec: none
 spec: none

 getOutputIndex

13-135

 spec: none
 spec: none
 spec: none
 spec: none

Obtain the indices of all the elements of Out1.

index1 = getOutputIndex(opspec,'scdtmp/Out1')

index1 =

 1 1
 1 2
 1 3
 1 4
 1 5
 1 6

Each row of index1 contains the index for one element of the vector signal in Out1. The
first column is the index of the output specification object for the Out1 port in the
opsepc.Outputs. The second column is the element index within the output
specification.

You can also obtain the index for individual elements of an output specification, or a
subset of elements. Get the index of element number 4 of Out1.

index2 = getOutputIndex(opspec,'scdtmp/Out1',[],4)

index2 =

 1 4

Get the indices of elements 2 and 3 of Out1.

index3 = getOutputIndex(opspec,'scdtmp/Out1',[],[2 3])

index3 =

 1 2

13 Alphabetical List

13-136

 1 3

Input Arguments
op — Operating point specification
operspec object

Operating point specification for a Simulink model, specified as an operspec object.

block — Block path
character vector | string

Block path that corresponds to an output specification in the Outputs property of op,
specified as a character vector or string that contains the path of one of the following:

• Root-level output of the model.
• Source block for a signal in the model to which an output specification has been

added. For more information on adding output specifications to a model, see
addoutputspec.

To see all the blocks that have output specifications, view the Outputs property of op.

op.Outputs

port — Output port
integer in the range [1,N]

Output port, specified as an integer in the range [1,N], where N is the number of output
ports on the specified block. If block is a root-level output port, then N is 1.

If you do not specify port, and there is one entry in the output array of op that
corresponds to the specified block, then the default value of port is the port number of
that entry. If there are multiple entries in the output array that correspond to the
specified block, then the default value of port is the port number of the first entry. For
an example, see “Get Index of Trim Output Specification Added To Signal” on page 13-
132.

To view the port number of the ith entry in the output array of op, type:

op.Outputs(i).PortNumber

 getOutputIndex

13-137

element — Output element index
[1,M] (default) | positive integer | vector of positive integers

Output element index, specified as a positive integer less than or equal to the port width
of the output of the specified block, or a vector of such integers. By default, if you do not
specify element, getOutputIndex returns the indices of all elements in the selected
output specification. For an example, see “Get Output Indices for Output Specification
with Multiple Elements” on page 13-134.

Output Arguments
index — Output index
2-element row vector | 2-column array

Output index, returned as a 2-element row vector when element is an integer, or a 2-
column array when element is a vector. Each row of index contains the index for a
single output element.

The first column of index contains the index of the corresponding output specification in
the Outputs property of op. The second column contains the element index within the
output specification.

Using index, you can specify the output portion of a custom mapping for customized
trimming of Simulink models. For more information, see the CustomMappingFcn
property of operspec.

See Also
findop | getInputIndex | getStateIndex | operspec

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page
1-50

Introduced in R2017a

13 Alphabetical List

13-138

getSimulationTime
Final time of simulation for frequency response estimation

Syntax
tfinal = getSimulationTime(input)

Description
tfinal = getSimulationTime(input) returns the final time of the Simulink
simulation performed during frequency response estimation using the input signal input.
Altering input to reduce the final simulation time can help reduce the time it takes to
perform frequency response estimation.

Input Arguments
input

Input signal for frequency response estimation with the frestimate command.

The input signal input must be either:

• A sinestream input signal, created in the Linear Analysis Tool or created with
frest.Sinestream

• A chirp input signal, created in the Linear Analysis Tool or created with frest.Chirp
• A random input signal, created in the Linear Analysis Tool or created with

frest.Random

 getSimulationTime

13-139

Output Arguments
tfinal

Final time of simulation performed during frequency response estimation using the input
signal input.

For example, the command sysest = frestimate(mdl,io,input) performs
frequency response estimation on the Simulink model specified by mdl with the
linearization I/O set io. The estimation uses the input signal input. The command
tfinal = getSimulationTime(input) returns the simulation time at the end of the
simulation performed by frestimate.

Examples

Retrieve Simulation Time for Frequency Response Estimation

Create a sinestream input signal.

input = frest.Sinestream('Amplitude',1e-3,...
 'Frequency',logspace(1,3,50),...
 'SamplesPerPeriod',40,'FreqUnits','Hz');

The sinestream signal input includes 50 frequencies spaced logarithmically between 10
Hz and 1000 Hz. Each frequency is sampled 40 times per period.

Calculate the final simulation time of an estimation using that signal.

tfinal = getSimulationTime(input)

tfinal = 4.4186

tfinal indicates that frequency response estimation of any model with this input signal
would simulate the model for 4.4186 s.

• “Create Sinestream Input Signals” on page 5-13
• “Create Chirp Input Signals” on page 5-18

13 Alphabetical List

13-140

See Also
frest.Chirp | frest.Random | frest.Sinestream | frestimate

Topics
“Create Sinestream Input Signals” on page 5-13
“Create Chirp Input Signals” on page 5-18
“Ways to Speed up Frequency Response Estimation” on page 5-77

Introduced in R2012a

 getSimulationTime

13-141

getStateIndex
Get index of a state element of an operating point specification or operating point

The States property of an operating point specification is an array that contains
trimming specifications for each model state. When defining a mapping function for
customized trimming of Simulink models, getStateIndex lets you obtain the index of a
state specification based on the corresponding block path or state name.

When trimming Simulink models using optimization-based search, some applications
require additional flexibility in defining the optimization search parameters. For such
systems, you can specify custom constraints and a custom objective function. For complex
models, you can define a mapping that selects a subset of the model states, inputs, and
outputs to pass to the custom constraint and objective functions. For more information,
see “Compute Operating Points Using Custom Constraints and Objective Functions” on
page 1-50.

Syntax
index = getStateIndex(op,name)
index = getStateIndex(op,name,element)

Description
index = getStateIndex(op,name) returns the index of the state specification that
corresponds to name in the States property of operating point specification op.

index = getStateIndex(op,name,element) returns the index of the specified
element within a state specification for a block with multiple states.

Examples

Get State Index from Operating Point Specification

Open Simulink model.

13 Alphabetical List

13-142

mdl = 'scdindex1';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

Create an operating point specification for model.

opspec = operspec(mdl);

opspec contains an array of state specifications for the model.

opspec.States

(1.) scdindex1/system1
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
 spec: dx = 0, initial guess: 0
(2.) scdindex1/system2
 spec: dx = 0, initial guess: 0

Get the index of the state specification that corresponds to the system2 block.

index2 = getStateIndex(opspec,'scdindex1/system2')

index2 =

 2 1

index2(1) is the index of the state specification object for system2 in opspec.States.
Since this block has a single state, index2 has a single row and index2(2) is 1.

If a block has multiple states, you can obtain the indices of all the states in the
corresponding state specification.

 getStateIndex

13-143

index1 = getStateIndex(opspec,'scdindex1/system1')

index1 =

 1 1
 1 2
 1 3

Each row of index1 contains the index of one state in the system2 block. For each row,
the first column contains the index of the state specification in opspec.States. The
second column contains the index of each state element within the specification.

Get Index of Specified State Element of Operating Point Specification

Open Simulink model.

mdl = 'scdindex1';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

Create an operating point specification for the model.

opspec = operspec(mdl);

If a block has multiple states, you can obtain the index of a specific state within the
corresponding state specification by specifying the element index. For example, get the
index for the second state in the specification for the system1 block.

index1 = getStateIndex(opspec,'scdindex1/system1',2)

13 Alphabetical List

13-144

index1 =

 1 2

You can also obtain the indices of a subset of the block states by specifying the element
index as a vector. For example, get the indices for the first and third states in the
specification for the system1 block.

index2 = getStateIndex(opspec,'scdindex1/system1',[1 3])

index2 =

 1 1
 1 3

Get Index of Named State from Operating Point Specification

Open Simulink model.

mdl = 'scdindex2';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

The system1 block is a state-space system with three named states: position,
velocity, and acceleration.

Create an operating point specification for the model.

opspec = operspec(mdl);

The States property of the operating point specification object contains one entry for
each named state in system1.

 getStateIndex

13-145

opspec.States

(1.) position
 spec: dx = 0, initial guess: 0
(2.) velocity
 spec: dx = 0, initial guess: 0
(3.) acceleration
 spec: dx = 0, initial guess: 0

To obtain the index of a state specification that corresponds to a named state within a
block, specify the state name.

index1 = getStateIndex(opspec,'velocity')

index1 =

 2 1

The first column of index1 contains the index of the corresponding state specification in
the opspec.States property. The second column is 1 for a named state.

Get Index of Simscape State from Operating Point Specification

Open model.

mdl = 'scdTanks_simscape';
mdlpath = fullfile(matlabroot,'examples','slcontrol',mdl);
open_system(mdlpath)

13 Alphabetical List

13-146

Create an operating point specification for the model.

opspec = operspec(mdl);

The States property of the operating point specification object contains one state
specification for each Simscape state in the model.

To obtain the index of a specification that corresponds to a Simscape state, specify the
state name. For example, get the index of the pressure state of Tank3.

idx = getStateIndex(opspec,'scdTanks_simscape.Tank3.pressure')

idx =

 21 1

 getStateIndex

13-147

The first column of idx contains the index of the corresponding state specification in
opspec.States. The second column is 1 for a Simscape state.

View the specification in opspec.States for this state.

opspec.States(idx(1))

(1.) scdTanks_simscape.Tank3.pressure
 spec: dx = 0, initial guess: 0

Input Arguments
op — Operating point specification or operating point
operspec object | operating point object

Operating point specification or operating point for a Simulink model, specified as an
operspec object or operating point object.

name — Block path or state name
character vector | string

Block path or state name that corresponds to a state specification in the States property
of op, specified as a character vector or string that contains one of the following:

• Block path of a block in the Simulink model that contains unnamed states.
• Name of a named state in a Simulink or Simscape block.

To see all the states that have state specifications, view the States property of op.

op.States

element — State element index
positive integer | vector of positive integers

State element index, specified as a positive integer less than or equal to the number of
state elements in the block or state specified by name, or a vector of such integers. By
default, if you do not specify element, getStateIndex returns the indices of all
elements in the selected state specification. For an example, see “Get Index of Specified
State Element of Operating Point Specification” on page 13-144.

13 Alphabetical List

13-148

Output Arguments
index — State index
2-element row vector | 2-column array

State index, returned as a 2-element row vector when element is an integer, or a 2-
column array when element is a vector. Each row of index contains the index for a
single model state.

The first column of index contains the index of the corresponding state specification in
the States property of op. The second column contains the element index within the
state specification.

Using index, you can specify the state portion of a custom mapping for customized
trimming of Simulink models. For more information, see the CustomMappingFcn
property of operspec.

See Also
findop | getInputIndex | getOutputIndex | operspec

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page
1-50

Introduced in R2017a

 getStateIndex

13-149

getstatestruct
State structure from operating point

Syntax
x_struct = getstatestruct(op_point)

Description
x_struct = getstatestruct(op_point) extracts a structure of state values,
x_struct, from the operating point object, op_point. The structure, x_struct, uses
the same format as Simulink software which allows you to set initial values for states in
the model within the Data Import/Export pane of the Configuration Parameters dialog
box.

Examples
Create an operating point object for the magball model:

op_magball=operpoint('magball');

Extract a state structure from the operating point object:

states_magball=getstatestruct(op_magball)

This extraction returns

states_magball =

 time: 0
 signals: [1x5 struct]

To view the values of the states within this structure, use dot-notation to access the
values field:

states_magball.signals.values

13 Alphabetical List

13-150

This dot-notation returns

ans =

 0

ans =

 14.0071

ans =

 7.0036

ans =

 0

ans =

 0.0500

See Also
getinputstruct | getxu | operpoint

Introduced before R2006a

 getstatestruct

13-151

getxu
States and inputs from operating points

Syntax
x = getxu(op_point)
[x,u] = getxu(op_point)
[x,u,xstruct] = getxu(op_point)

Description
x = getxu(op_point) extracts a vector of state values, x, from the operating point
object, op_point. The ordering of states in x is the same as that used by Simulink
software.

[x,u] = getxu(op_point) extracts a vector of state values, x, and a vector of input
values, u, from the operating point object, op_point. States in x and inputs in u are
ordered in the same way as for Simulink.

[x,u,xstruct] = getxu(op_point) extracts a vector of state values, x, a vector of
input values, u, and a structure of state values, xstruct, from the operating point object,
op_point. The structure of state values, xstruct, has the same format as that returned
from a Simulink simulation. States in x and xstruct and inputs in u are ordered in the
same way as for Simulink.

Examples
Create an operating point object for the magball model by typing:

op=operpoint('magball');

To view the states within this operating point, type:

op.States

13 Alphabetical List

13-152

which returns

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

To extract a vector of state values, with the states in an ordering that is compatible with
Simulink, along with inputs and a state structure, type:

[x,u,xstruct]=getxu(op)

This syntax returns:

x =

 0.0500
 0
 14.0071
 7.0036
 0

u =

 []

xstruct =

 time: 0
 signals: [1x5 struct]

View xstruct in more detail by typing:

xstruct.signals

This syntax displays:

 getxu

13-153

ans =

1x5 struct array with fields:
 values
 dimensions
 label
 blockName
 stateName
 inReferencedModel
 sampleTime

View each component of the structure individually. For example:

xstruct.signals(1).values

ans =

 0

or

xstruct.signals(2).values

ans =

 7.0036

You can import these vectors and structures into Simulink as initial conditions or input
vectors or use them with setxu, to set state and input values in another operating point.

See Also
operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-154

highlight
Package: linearize.advisor

Highlight linearization path in Simulink model

Syntax
highlight(advisor)

Description
highlight(advisor) highlights the blocks on the linearization path for the model
linearization associated with a LinearizationAdvisor object. The software identifies
blocks that are on or off the linearization path. Also, for blocks that are on the
linearization path, the software indicates whether they contribute to the linearization
result.

Examples

Highlight Linearization Path

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Highlight the linearization path.

 highlight

13-155

highlight(advisor)

The Simulink model is highlighted as follows:

• Blue blocks are on the linearization path and contribute to the model linearization.
• Red blocks are on the linearization path and do not contribute to the model

linearization.

13 Alphabetical List

13-156

• Gray blocks are not on the linearization path.

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object

Diagnostic information for block linearizations, specified as a LinearizationAdvisor
object.

Definitions

Linearization Path
A block is on the linearization path if there is a signal path from at least one linearization
input to at least one linearization output that passes through the block.

See Also
Objects
LinearizationAdvisor

Functions
advise | find | getBlockInfo

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 highlight

13-157

initopspec
Initialize operating point specification values

Syntax
opnew=initopspec(opspec,oppoint)
opnew=initopspec(opspec,x,u)
opnew=initopspec(opspec,xstruct,u)

Description
opnew=initopspec(opspec,oppoint) initializes the operating point specification
object, opspec, with the values contained in the operating point object, oppoint. The
function returns a new operating point specification object, opnew. Create opspec with
the function operspec. Create oppoint with the function operpoint or findop.

opnew=initopspec(opspec,x,u) initializes the operating point specification object,
opspec, with the values contained in the state vector, x, and the input vector, u. The
function returns a new operating point specification object, opnew. Create opspec with
the function operspec. You can use the function getxu to create x and u with the
correct ordering.

opnew=initopspec(opspec,xstruct,u) initializes the operating point specification
object, opspec, with the values contained in the state structure, xstruct, and the input
vector, u. The function returns a new operating point specification object, opnew. Create
opspec with the function operspec. You can use the function getstatestruct or
getxu to create xstruct and the function getxu to create u with the correct ordering.
Alternatively, you can save xstruct to the MATLAB workspace after a simulation of the
model. See the Simulink documentation for more information on these structures.

Examples
Create an operating point using findop by simulating the magball model and extracting
the operating point after 20 time units.

13 Alphabetical List

13-158

oppoint=findop('magball',20)

This syntax returns the following operating point:

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=20)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 2.33e-007
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 3.6e-008
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Use these operating point values as initial values in an operating point specification
object.

opspec=operspec('magball');
newopspec=initopspec(opspec,oppoint)

The new operating point specification object is displayed.

 Operating Specification for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 spec: dx = 0, initial guess: 2.33e-007
(2.) magball/Controller/PID Controller/Integrator
 spec: dx = 0, initial guess: 14
(3.) magball/Magnetic Ball Plant/Current
 spec: dx = 0, initial guess: 7
(4.) magball/Magnetic Ball Plant/dhdt
 spec: dx = 0, initial guess: 3.6e-008
(5.) magball/Magnetic Ball Plant/height

 initopspec

13-159

 spec: dx = 0, initial guess: 0.05

Inputs: None

Outputs: None

You can now use this object to find operating points by optimization.

Alternatives
As an alternative to the initopspec function, initialize operating point specification
values in the Linear Analysis Tool. See “Import and Export Specifications For Operating
Point Search” on page 1-48.

See Also
findop | getstatestruct | getxu | operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-160

linearize
Linear approximation of Simulink model or subsystem

Syntax
linsys = linearize(mdl,io)
linsys = linearize(mdl,io,op)
linsys = linearize(mdl,io,param)
linsys = linearize(mdl,io,blocksub)
linsys = linearize(mdl,io,options)
linsys = linearize(mdl,io,op,param,blocksub,options)

linsys = linearize(mdl,blockpath)
linsys = linearize(mdl,blockpath,op)
linsys = linearize(mdl,blockpath,param)
linsys = linearize(mdl,blockpath,blocksub)
linsys = linearize(mdl,blockpath,options)
linsys = linearize(mdl,blockpath,op,param,blocksub,options)

linsys = linearize(___ ,'StateOrder',stateorder)

[linsys,linop] = linearize(___)

[linsys,linop,info] = linearize(___)

Description
linsys = linearize(mdl,io) returns a linear approximation of the nonlinear
Simulink model mdl at the model operating point using the analysis points specified in
io. If you omit io, then linearize uses the root level inports and outports of the model
as analysis points.

linsys = linearize(mdl,io,op) linearizes the model at operating point op.

 linearize

13-161

linsys = linearize(mdl,io,param) linearizes the model using the parameter value
variations specified in param. You can vary any model parameter with a value given by a
variable in the model workspace, the MATLAB workspace, or a data dictionary.

linsys = linearize(mdl,io,blocksub) linearizes the model using the substitute
block or subsystem linearizations specified in blocksub.

linsys = linearize(mdl,io,options) linearizes the model using additional
linearization options.

linsys = linearize(mdl,io,op,param,blocksub,options) linearizes the model
using any combination of op, param, blocksub, and options in any order.

linsys = linearize(mdl,blockpath) returns a linear approximation of a block or
subsystem in model mdl, specified by blockpath, at the model operating point. The
software isolates the block from the rest of the model before linearization.

linsys = linearize(mdl,blockpath,op) linearizes the block or subsystem at
operating point op.

linsys = linearize(mdl,blockpath,param) linearizes the block or subsystem
using the parameter value variations specified in param. You can vary any model
parameter with a value given by a variable in the model workspace, the MATLAB
workspace, or a data dictionary.

linsys = linearize(mdl,blockpath,blocksub) linearizes the block or subsystem
using the substitute block or subsystem linearizations specified in blocksub.

linsys = linearize(mdl,blockpath,options) linearizes the block or subsystem
using additional linearization options.

linsys = linearize(mdl,blockpath,op,param,blocksub,options) linearizes
the block or subsystem using any combination of op, param, blocksub, and options in
any order.

linsys = linearize(___ ,'StateOrder',stateorder) specifies the order of the
states in the linearized model for any of the previous syntaxes.

[linsys,linop] = linearize(___) returns the operating point at which the model
was linearized. Use this syntax when linearizing at simulation snapshots or when varying
parameters during linearization.

13 Alphabetical List

13-162

[linsys,linop,info] = linearize(___) returns additional linearization
information. To select the linearization information to return in info, enable the
corresponding option in options.

Examples

Linearize Model Using Specified I/O Set

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Specify a linearization input at the output of the PID Controller block, which is the input
signal for the Water-Tank System block.

io(1) = linio('watertank/PID Controller',1,'input');

Specify a linearization output point at the output of the Water-Tank System block.
Specifying the output point as open-loop removes the effects of the feedback signal on the
linearization without changing the model operating point.

io(2) = linio('watertank/Water-Tank System',1,'openoutput');

Linearize the model using the specified I/O set.

linsys = linearize(mdl,io);

 linearize

13-163

linsys is the linear approximation of the plant at the model operating point.

Linearize Model at Specified Operating Point

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

Find a steady-state operating point at which the ball height is 0.05. Create a default
operating point specification, and set the height state to a known value.

opspec = operspec(mdl);
opspec.States(5).Known = 1;
opspec.States(5).x = 0.05;

Trim the model to find the operating point.

options = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,options);

Specify linearization input and output signals to compute the closed-loop transfer
function.

io(1) = linio('magball/Desired Height',1,'input');
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Linearize the model at the specified operating point using the specified I/O set.

13 Alphabetical List

13-164

linsys = linearize(mdl,io,op);

Linearize Model at Simulation Snapshot Time

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

To compute the closed-loop transfer function, first specify the linearization input and
output signals.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Simulate sys for 10 seconds and linearize the model.

linsys = linearize(mdl,io,10);

Batch Linearize Model for Parameter Variations

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

 linearize

13-165

Specify parameter variations for the outer-loop controller gains, Kp1 and Ki1. Create
parameter grids for each gain value.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);
[Kp1_grid,Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

Create a parameter value structure with fields Name and Value.

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

params is a 6-by-4 parameter value grid, where each grid point corresponds to a unique
combination of Kp1 and Ki1 values.

Define linearization input and output points for computing the closed-loop response of the
system.

io(1) = linio('scdcascade/setpoint',1,'input');
io(2) = linio('scdcascade/Sum',1,'output');

Linearize the model at the model operating point using the specified parameter values.

linsys = linearize(mdl,io,params);

13 Alphabetical List

13-166

Specify Substitute Block Linearization and Linearize Model

Open the Simulink model.

mdl = 'scdpwm';
open_system(mdl)

Extract linearization input and output from the model.

io = getlinio(mdl);

Linearize the model at the model operating point.

linsys = linearize(mdl,io)

linsys =

 D =
 Step
 Plant Model 0

Static gain.

The discontinuities in the Voltage to PWM block cause the model to linearize to zero. To
treat this block as a unit gain during linearization, specify a substitute linearization for
this block.

blocksub.Name = 'scdpwm/Voltage to PWM';
blocksub.Value = 1;

Linearize the model using the specified block substitution.

linsys = linearize(mdl,blocksub,io)

linsys =

 linearize

13-167

 A =
 State Space(State Space(
 State Space(0.9999 -0.0001
 State Space(0.0001 1

 B =
 Step
 State Space(0.0001
 State Space(5e-09

 C =
 State Space(State Space(
 Plant Model 0 1

 D =
 Step
 Plant Model 0

Sample time: 0.0001 seconds
Discrete-time state-space model.

Specify Sample Time of Linearized Model

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

13 Alphabetical List

13-168

To linearize the Water-Tank System block, specify a linearization input and output.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'openoutput');

Create a linearization option set, and specify the sample time for the linearized model.

options = linearizeOptions('SampleTime',0.1);

Linearize the plant using the specified options.

linsys = linearize(mdl,io,options)

linsys =

 A =
 H
 H 0.995

 B =
 PID Controll
 H 0.02494

 C =
 H
 Water-Tank S 1

 D =
 PID Controll

 linearize

13-169

 Water-Tank S 0

Sample time: 0.1 seconds
Discrete-time state-space model.

The linearized plant is a discrete-time state-space model with a sample time of 0.1.

Linearize Block or Subsystem at Model Operating Point

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Specify the full block path for the block you want to linearize.

blockpath = 'watertank/Water-Tank System';

Linearize the specified block at the model operating point.

linsys = linearize(mdl,blockpath);

Linearize Block or Subsystem at Trimmed Operating Point

Open Simulink model.

13 Alphabetical List

13-170

mdl = 'magball';
open_system(mdl)

Find a steady-state operating point at which the ball height is 0.05. Create a default
operating point specification, and set the height state to a known value.

opspec = operspec(mdl);
opspec.States(5).Known = 1;
opspec.States(5).x = 0.05;

options = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,options);

Specify the block path for the block you want to linearize.

blockpath = 'magball/Magnetic Ball Plant';

Linearize the specified block at the specified operating point.

linsys = linearize(mdl,blockpath,op);

Specify State Order in Linearized Model

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

 linearize

13-171

Linearize the plant at the model operating point.

blockpath = 'magball/Magnetic Ball Plant';
linsys = linearize(mdl,blockpath);

View the default state order for the linearized plant.

linsys.StateName

ans =

 3x1 cell array

 {'height' }
 {'Current'}
 {'dhdt' }

Linearize the plant and reorder the states in the linearized model. Set the rate of change
of the height as the second state.

stateorder = {'magball/Magnetic Ball Plant/height';...
 'magball/Magnetic Ball Plant/dhdt';...
 'magball/Magnetic Ball Plant/Current'};
linsys = linearize(mdl,blockpath,'StateOrder',stateorder);

View the new state order.

linsys.StateName

13 Alphabetical List

13-172

ans =

 3x1 cell array

 {'height' }
 {'dhdt' }
 {'Current'}

Linearize Model at Multiple Snapshot Times

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

To compute the closed-loop transfer function, first specify the linearization input and
output signals.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Simulate sys and linearize the model at 0 and 10 seconds. Return the operating points
that correspond to these snapshot times; that is, the operating points at which the model
was linearized.

 linearize

13-173

[linsys,linop] = linearize(mdl,io,[0,10]);

Batch Linearize Plant Model and Obtain Linearization Offsets

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Vary parameters A and b within 10% of their nominal values.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each
parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model.

opspec = operspec(mdl);

Trim the model using the specified operating point specification, parameter grid.
Suppress the display of the operating point search report.

13 Alphabetical List

13-174

opt = findopOptions('DisplayReport','off');
[op,opreport] = findop(mdl,opspec,params,opt);

op is a 3-by-4 array of operating point objects that correspond to the specified parameter
grid points.

Specify the block path for the plant model.

blockpath = 'watertank/Desired Water Level';

To store offsets during linearization, create a linearization option set and set
StoreOffsets to true.

options = linearizeOptions('StoreOffsets',true);

Batch linearize the plant at the trimmed operating points, using the specified I/O points
and parameter variations.

[linsys,linop,info] = linearize(mdl,blockpath,op,params,options);

You can use the offsets in info.Offsets when configuring an LPV System block.

info.Offsets

ans =

 3x4 struct array with fields:

 x
 dx
 u
 y
 StateName
 InputName
 OutputName
 Ts

Input Arguments
mdl — Simulink model name
character vector | string

 linearize

13-175

Simulink model name, specified as a character vector or string. The model must be in the
current working folder or on the MATLAB path.

io — Analysis point set
linearization I/O object | vector of linearization I/O objects

Analysis point set that contains inputs, outputs, and openings, specified as a linearization
I/O object or a vector of linearization I/O objects. To create io:

• Define the inputs, outputs, and openings using linio.
• If the inputs, outputs, and openings are specified in the Simulink model, extract these

points from the model using getlinio.

Each linearization I/O object in io must correspond to the Simulink model mdl or some
normal mode model reference in the model hierarchy.

If you omit io, then linearize uses the root level inports and outports of the model as
analysis points.

For more information on specifying linearization inputs, outputs, and openings, see
“Specify Portion of Model to Linearize” on page 2-13.

op — Operating point
operating point object | array of operating point objects | vector of positive scalars

Operating point for linearization, specified as one of the following:

• Operating point object, created using:

• operpoint
• findop with either a single operating point specification, or a single snapshot

time.
• Array of operating point objects, specifying multiple operating points. To create an

array of operating point objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more

information, see “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.

13 Alphabetical List

13-176

• Batch trim your model using parameter variations. For more information, see
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-
65.

• Vector of positive scalars representing one or more simulation snapshot times. The
software simulates sys and linearizes the model at the specified snapshot times.

If you also specify parameter variations using param, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

If you specify parameter variations using param, and the parameters:

• Affect the model operating point, then specify op as an array of operating points with
the same dimensions as the parameter value grid. To obtain the operating points that
correspond to the parameter value combinations, batch trim your model using param
before linearization. For more information, see “Batch Linearize Model at Multiple
Operating Points Derived from Parameter Variations” on page 3-25.

• Do not affect the model operating point, then specify op as a single operating point.

blockpath — Block or subsystem
character vector | string

Block or subsystem to linearize, specified as a character vector or string that contains its
full block path.

The software treats the inports and outports of the specified block as open-loop inputs
and outputs, which isolates it from the rest of the model before linearization.

blocksub — Substitute linearizations for blocks and subsystems
structure | structure array

Substitute linearizations for blocks and subsystems, specified as a structure or an n-by-1
structure array, where n is the number of blocks for which you want to specify a
linearization. Use blocksub to specify a custom linearization for a block or subsystem.
For example, you can specify linearizations for blocks that do not have analytic
linearizations, such as blocks with discontinuities or triggered subsystems.

To study the effects of varying the linearization of a block on the model dynamics, you can
batch linearize your model by specifying multiple substitute linearizations for a block.

Each substitute linearization structure has the following fields:

 linearize

13-177

Name — Block path
character vector | string

Block path of the block for which you want to specify the linearization, specified as a
character vector or string.

Value — Substitute linearization
double | double array | LTI model | model array | structure

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of

gain values, where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O
configuration of the specified model must match the configuration of the block
specified by Name. Using an uncertain model requires Robust Control Toolbox
software.

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch
linearize the model using multiple block substitutions. The I/O configuration of each
model in the array must match the configuration of the block for which you are
specifying a custom linearization. If you:

• Vary model parameters using param and specify Value as a model array, the
dimensions of Value must match the parameter grid size.

• Specify op as an array of operating points and Value as a model array, the
dimensions of Value must match the size of op.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI
models for one or more of these blocks, the dimensions of the arrays must match.

• Structure with the following fields:

13 Alphabetical List

13-178

Field Description
Specification Block linearization, specified as a character vector that

contains one of the following:

• MATLAB expression
• Name of a “Custom Linearization Function” on page 13-

185 in your current working folder or on the MATLAB
path

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object

(requires Robust Control Toolbox software)

The I/O configuration of the returned model must match
the configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

ParameterNames Linearization function parameter names, specified as a cell
array of character vectors. Specify ParameterNames only
when Type = 'Function' and your block linearization
function requires input parameters. These parameters only
impact the linearization of the specified block.

You must also specify the corresponding
blocksub.Value.ParameterValues field.

ParameterValues Linearization function parameter values, specified as a
vector of doubles. The order of parameter values must
correspond to the order of parameter names in
blocksub.Value.ParameterNames. Specify
ParameterValues only when Type = 'Function' and
your block linearization function requires input
parameters.

 linearize

13-179

param — Parameter samples
structure | structure array

Parameter samples for linearization, specified as one of the following:

• Structure — Vary the value of a single parameter by specifying param as a structure
with the following fields:

• Name — Parameter name, specified as a character vector or string. You can specify
any model parameter that is a variable in the model workspace, the MATLAB
workspace, or a data dictionary. If the variable used by the model is not a scalar
variable, specify the parameter name as an expression that resolves to a numeric
scalar value. For example, to use the first element of vector V as a parameter, use:

param.Name = 'V(1)';
• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range:

param.Name = 'A';
param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values
of parameters A and b in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

For more information, see “Specify Parameter Samples for Batch Linearization” on page
3-62.

If param specifies tunable parameters only, the software batch linearizes the model using
a single model compilation.

To compute the offsets required by the LPV System block, specify param, and set
options.StoreOffsets to true. You can then return additional linearization
information in info, and extract the offsets using getOffsetsForLPV.

stateorder — State order in linearization results
cell array of character vectors

13 Alphabetical List

13-180

State order in linearization results, specified as a cell array of block paths or state names.
The order of the block paths and states in stateorder indicates the order of the states
in linsys.

You can specify block paths for any blocks in mdl that have states, or any named states in
mdl.

You do not have to specify every block and state from mdl in stateorder. The states you
specify appear first in linsys, followed by the remaining states in their default order.

options — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions option set.

Output Arguments
linsys — Linearization result
state-space model | array of state-space models

Linearization result, returned as a state-space model or an array of state-space models.
The dimensions of linsys depend on the specified parameter variations and block
substitutions, and the operating points at which you linearize the model.

Note If you specify more than one of op, param, or blocksub.Value as an array, then
their dimensions must match.

Parameter
Variation

Block Substitution Linearize At... Resulting linsys
Dimensions

No parameter
variation

No block substitution Model operating
point

Single state-space
model

Single operating
point, specified as an
operating point
object or snapshot
time using op

 linearize

13-181

Parameter
Variation

Block Substitution Linearize At... Resulting linsys
Dimensions

N1-by-...-by-Nm
array of operating
point objects,
specified by op

N1-by-...-by-Nm

Ns snapshots,
specified as a vector
of snapshot times
using op

Column vector of
length Ns

N1-by-...-by-Nm
model array for at
least one block,
specified by
blocksub.Value

Model operating
point

N1-by-...-by-Nm

Single operating
point, specified as an
operating point
object or snapshot
time using op
N1-by-...-by-Nm
array of operating
points, specified as
an array of operating
point objects using
op
Ns snapshots,
specified as a vector
of snapshot times
using op

Ns-by-N1-by-...-by-
Nm

N1-by-...-by-Nm
parameter grid,
specified by param

Either no block
substitution or an N1-
by-...-by-Nm model
array for at least one
block, specified by
blocksub.Value

Model operating
point

N1-by-...-by-Nm

Single operating
point, specified as an
operating point
object or snapshot
time using op

13 Alphabetical List

13-182

Parameter
Variation

Block Substitution Linearize At... Resulting linsys
Dimensions

N1-by-...-by-Nm
array of operating
point objects,
specified by op
Ns snapshots,
specified as a vector
of snapshot times
using op

Ns-by-N1-by-...-by-
Nm

For example, suppose:

• op is a 4-by-3 array of operating point objects and you do not specify parameter
variations or block substitutions. In this case, linsys is a 4-by-3 model array.

• op is a single operating point object and param specifies a 3-by-4-by-2 parameter grid.
In this case, linsys is a 3-by-4-by-2 model array.

• op is a row vector of positive scalars with two elements and you do not specify param.
In this case, linsys is a column vector with two elements.

• op is a column vector of positive scalars with three elements and param specifies a 5-
by-6 parameter grid. In this case, linsys is a 3-by-5-by-6 model array.

• op is a single operating point object, you do not specify parameter variations, and
blocksub.Value is a 2-by-3 model array for one block in the model. In this case,
linsys is a 2-by-3 model array.

• op is a column vector of positive scalars with four elements, you do not specify
parameter variations, and blocksub.Value is a 1-by-2 model array for one block in
the model. In this case, linsys is a 4-by-1-by-2 model array.

For more information on model arrays, see “Model Arrays” (Control System Toolbox).

linop — Operating point
operating point object | array of operating point objects

Operating point at which the model was linearized, returned as an operating point object
or an array of operating point objects with the same dimensions as linsys. Each element
of linop is the operating point at which the corresponding linsys model was obtained.

If you specify op as a single operating point object or an array of operating point objects,
then linop is a copy of op. If you specify op as a single operating point object and also

 linearize

13-183

specify parameter variations using param, then linop is an array with the same
dimensions as the parameter grid. In this case, the elements of linop are scalar
expanded copies of op.

To determine whether the model was linearized at a reasonable operating point, view the
states and inputs in linop.

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets that correspond to the operating point at which the model was
linearized, returned as [] if options.StoreOffsets is false. Otherwise, Offsets is
returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with

the same dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx,

where nx is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length

ny, where ny is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu,

where nu is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for

discrete-time systems, returned as a column vector of length nx.
StateNam
e

State names, returned as a cell array that contains nx elements that match
the names in linsys.StateName.

InputNam
e

Input names, returned as a cell array that contains nu elements that match
the names in linsys.InputName.

13 Alphabetical List

13-184

Field Description
OutputNa
me

Output names, returned as a cell array that contains ny elements that match
the names in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the
sample time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets.
To do so, first convert them to the required format using getOffsetsForLPV. For an
example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor
objects

Linearization diagnostic information, returned as [] if options.StoreAdvisor is
false. Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor
object.

• If linsys is an array of state-space models, Advisor is an array of
LinearizationAdvisor objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual
linearized blocks. For an example of troubleshooting linearization results using a
LinearizationAdvisor object, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

Definitions

Custom Linearization Function
You can specify a substitute linearization for a block or subsystem in your Simulink model
using a custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a
structure that the software creates and passes to the function. BlockData has the
following fields:

 linearize

13-185

Field Description
BlockName Name of the block for which you are specifying a custom linearization.
Parameters Block parameter values, specified as a structure array with Name and

Value fields. Parameters contains the names and values of the
parameters you specify in the blocksub.Value.ParameterNames and
blocksub.Value.ParameterValues fields.

Inputs Input signals to the block for which you are defining a linearization,
specified as a structure array with one structure for each block input.
Each structure in Inputs has the following fields:

Field Description
BlockName Full block path of the block whose output connects

to the corresponding block input.
PortIndex Output port of the block specified by BlockName

that connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then
Values is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLinea
rization

Current default linearization of the block, specified as a state-space model.
You can specify a block linearization that depends on the default
linearization using BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model
must be one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox

software)

For example, the following function multiplies the current default block linearization, by a
delay of Td = 0.5 seconds. The delay is represented by a Thiran filter with sample time
Ts = 0.1. The delay and sample time are parameters stored in BlockData.

13 Alphabetical List

13-186

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;
 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

Algorithms

Model Properties for Linearization
By default, linearize automatically sets the following Simulink model properties:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'
• SaveFormat = 'StructureWithTime'

After linearization, Simulink restores the original model properties.

Block-by-Block Linearization
Simulink Control Design software linearizes models using a block-by-block approach. The
software individually linearizes each block in your Simulink model and produces the
linearization of the overall system by combining the individual block linearizations.

 linearize

13-187

The software determines the input and state levels for each block from the operating
point, and requests the Jacobian for these levels from each block.

For some blocks, the software cannot compute an analytical linearization. For example:

• Some nonlinearities do not have a defined Jacobian.
• Some discrete blocks, such as state charts and triggered subsystems, tend to linearize

to zero.
• Some blocks do not implement a Jacobian.
• Custom blocks, such as S-Function blocks and MATLAB Function blocks, do not have

analytical Jacobians.

You can specify a custom linearization for any such blocks for which you know the
expected linearization. If you do not specify a custom linearization, the software linearizes
the model by perturbing the block inputs and states and measuring the response to these

perturbations. For each input and state, the default perturbation level is 10 1
5-

+()x ,
where x is the value of the corresponding input or state at the operating point. For
information on how to change perturbation levels for individual blocks, see “Change
Perturbation Level of Blocks Perturbed During Linearization” on page 2-183.

For more information, see “Linearize Nonlinear Models” on page 2-3 and “Exact
Linearization Algorithm” on page 2-209

Full-Model Numerical Perturbation
You can linearize your system using full-model numerical perturbation, where the
software computes the linearization of the full model by perturbing the values of root-
level inputs and states. To do so, create a linearizeOptions object and set the
LinearizationAlgorithm property to one of the following:

• 'numericalpert' — Perturb the inputs and states using forward differences; that is,
by adding perturbations to the input and state values. This perturbation method is
typically faster than the 'numericalpert2' method.

• 'numericalpert2' — Perturb the inputs and states using central differences; that is,
by perturbing the input and state values in both positive and negative directions. This
perturbation method is typically more accurate than the 'numericalpert' method.

13 Alphabetical List

13-188

For each input and state, the software perturbs the model and computes a linear model
based on the model response to these perturbations. You can configure the state and
input perturbation levels using the NumericalPertRel linearization options.

Block-by-block linearization has several advantages over full-model numerical
perturbation:

• Most Simulink blocks have a preprogrammed linearization that provides an exact
linearization of the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model

simulation.
• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control

Toolbox software).
• You can obtain detailed diagnostic information.
• When linearizing multirate models, you can use different rate conversion methods.

Full-model numerical perturbation can only use zero-order-hold rate conversion.

For more information, see “Linearize Nonlinear Models” on page 2-3 and “Exact
Linearization Algorithm” on page 2-209.

Alternatives
As an alternative to the linearize function, you can linearize models using one of the
following methods:

• To interactively linearize models, use the Linear Analysis Tool. For an example, see
“Linearize Simulink Model at Model Operating Point” on page 2-72.

• To obtain multiple transfer functions without modifying the model or creating an
analysis point set for each transfer function, use an slLinearizer interface. For an
example, see “Vary Parameter Values and Obtain Multiple Transfer Functions” on page
3-32.

Although both Simulink Control Design software and the Simulink linmod function
perform block-by-block linearization, Simulink Control Design linearization functionality
has a more flexible user interface and uses Control System Toolbox numerical algorithms.

 linearize

13-189

For more information, see “Linearization Using Simulink Control Design Versus Simulink”
on page 2-10.

See Also
Linear Analysis Tool | findop | linearizeOptions | slLinearizer

Topics
“Linearize Simulink Model at Model Operating Point” on page 2-72
“Linearize at Trimmed Operating Point” on page 2-88
“Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-20

Introduced in R2006a

13 Alphabetical List

13-190

linearizeOptions
Set linearization options

Syntax
options = linearizeOptions
options = linearizeOptions(Name,Value)

Description
options = linearizeOptions returns the default linearization option set.

options = linearizeOptions(Name,Value) returns an option set with additional
options specified by one or more Name,Value pair arguments.

Examples

Create Option Set for Linearization

Create a linearization option set that sets the rate conversion method to the Tustin
method with prewarping at a frequency of 10 rad/s. Additionally, instruct the linearization
not to omit blocks outside the linearization path.

options = linearizeOptions('RateConversionMethod','prewarp',...
 'PreWarpFreq',10,...
 'BlockReduction','off');

Alternatively, use dot notation to set the values of options.

options = linearizeOptions;
options.RateConversionMethod = 'prewarp';
options.PreWarpFreq = 10;
options.BlockReduction = 'off';

 linearizeOptions

13-191

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RateConversionMethod','prewarp' sets the rate conversion method to
the Tustin method with prewarping.

LinearizationAlgorithm — Algorithm used for linearization
'blockbyblock' (default) | 'numericalpert'

Algorithm used for linearization, specified as the comma-separated pair consisting of
'LinearizationAlgorithm' and one of the following:

• 'blockbyblock' — Individually linearize each block in the model, and combine the
results to produce the linearization of the specified system.

• 'numericalpert' — Full-model numerical-perturbation linearization in which root-
level inports and states are perturbed using forward differences; that is, by adding
perturbations to the input and state values. This perturbation method is typically
faster than the 'numericalpert2' method.

• 'numericalpert2' — Full-model numerical-perturbation linearization in which root-
level inports and states are numerically perturbed using central differences; that is, by
perturbing the input and state values in both positive and negative directions. This
perturbation method is typically more accurate than the 'numericalpert' method.

The numerical perturbation linearization methods ignore linear analysis points set in the
model and use root-level inports and outports instead.

Block-by-block linearization has several advantages over full-model numerical
perturbation:

• Many Simulink blocks have a preprogrammed linearization that provides an exact
linearization of the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model

simulation.

13 Alphabetical List

13-192

• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control

Toolbox software).
• You can obtain detailed diagnostic information

SampleTime — Sample time of linearization result
-1 (default) | 0 | positive scalar

Sample time of linearization result, specified as the comma-separated pair consisting of
'SampleTime' and one of the following:

• -1 — Use the longest sample time that contributes to the linearized model.
• 0 — Use for continuous-time systems.
• Positive scalar — Specify the sample time for discrete-time systems.

UseFullBlockNameLabels — Flag indicating whether to truncate names of I/Os
and states
'off' (default) | 'on'

Flag indicating whether to truncate names of I/Os and states in the linearized model,
specified as the comma-separated pair consisting of 'UseFullBlockNameLabels' and
either:

• 'off' — Use truncated names for the I/Os and states in the linearized model.
• 'on' — Use the full block path to name the I/Os and states in the linearized model.

UseBusSignalLabels — Flag indicating whether to use bus signal channel
numbers or names
'off' (default) | 'on'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in
the linearized model, specified as the comma-separated pair consisting of
'UseBusSignalLabels' and one of the following:

• 'off' — Use bus signal channel numbers to label I/Os on bus signals in the linearized
model.

• 'on' — Use bus signal names to label I/Os on bus signals in the linearized model. Bus
signal names appear in the results when the I/O points are located at the output of the
following blocks:

 linearizeOptions

13-193

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing

through only virtual or nonvirtual subsystem boundaries

StoreOffsets — Flag indicating whether to compute linearization offsets
false (default) | true

Flag indicating whether to compute linearization offsets for inputs, outputs, states, and
state derivatives or updated states, specified as the comma-separated pair consisting of
'StoreOffsets' and one of the following:

• false — Do not compute linearization offsets.
• true — Compute linearization offsets.

You can configure an LPV System block using linearization offsets. For an example, see
“Approximating Nonlinear Behavior Using an Array of LTI Systems” on page 3-91

StoreAdvisor — Flag indicating whether to store diagnostic information
false (default) | true

Flag indicating whether to store diagnostic information during linearization, specified as
the comma-separated pair consisting of 'StoreAdvisor' and one of the following:

• false — Do not store linearization diagnostic information.
• true — Store linearization diagnostic information.

Linearization commands store and return diagnostic information in a
LinearizationAdvisor object. For an example of troubleshooting linearization results
using a LinearizationAdvisor object, see “Troubleshoot Linearization Results at
Command Line” on page 4-42.

BlockReduction — Flag indicating whether to omit blocks that are not on the
linearization path
'on' (default) | 'off'

Flag indicating whether to omit blocks that are not in the linearization path, specified as
the comma-separated pair consisting of 'BlockReduction' and one of the following:

13 Alphabetical List

13-194

• 'on' — Return a linearized model that does not include states from noncontributing
linearization paths.

• 'off' — Return a linearized model that includes all the states of the model.

Dead linearization paths can include:

• Blocks that linearize to zero.
• Switch blocks that are not active along the path.
• Disabled subsystems.
• Signals marked as open-loop linearization points.

For example, if this flag set to 'on', the linearization result of the model shown in the
following figure includes only two states. It does not include states from the two blocks
outside the linearization path. These states do not appear because these blocks are on a
dead linearization path with a block that linearizes to zero (the zero gain block).

This option applies only when LinearizationAlgorithm is 'blockbyblock'.
BlockReduction is always treated as 'on' when LinearizationAlgorithm is
'numericalpert' or 'numericalpert2'.

IgnoreDiscreteStates — Flag indicating whether to remove discrete-time
states
'off' (default) | 'on'

Flag indicating whether to remove discrete-time states from the linearization, specified as
the comma-separated pair consisting of 'IgnoreDiscreteStates' and one of the
following:

• 'off' — Always include discrete-time states.

 linearizeOptions

13-195

• 'on' — Remove discrete states from the linearization. Use this option when
performing continuous-time linearization (SampleTime = 0) to accept the D value for
all blocks with discrete-time states.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

RateConversionMethod — Rate conversion method
'zoh' (default) | 'tustin' | 'prewarp' | 'upsampling_zoh' |
'upsampling_tustin' | 'upsampling_prewarp'

Method used for rate conversion when linearizing a multirate system, specified as the
comma-separated pair consisting of 'RateConversionMethod' and one of the
following:

• 'zoh' — Zero-order hold rate conversion method
• 'tustin' — Tustin (bilinear) method
• 'prewarp' — Tustin method with frequency prewarp. When you use this method, set

the PreWarpFreq option to the desired prewarp frequency.
• 'upsampling_zoh' — Upsample discrete states when possible, and use 'zoh'

otherwise.
• 'upsampling_tustin' — Upsample discrete states when possible, and use

'tustin' otherwise.
• 'upsampling_prewarp' — Upsample discrete states when possible, and use

'prewarp' otherwise. When you use this method, set the PreWarpFreq option to the
desired prewarp frequency.

For more information on rate conversion and linearization of multirate models, see:

• “Linearization of Multirate Models”.
• “Linearization Using Different Rate Conversion Methods”.
• “Continuous-Discrete Conversion Methods” (Control System Toolbox) .

Note If you use a rate conversion method other than 'zoh', the converted states no
longer have the same physical meaning as the original states. As a result, the state names
in the resulting LTI system change to '?'.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

13 Alphabetical List

13-196

PreWarpFreq — Prewarp frequency
0 (default) | positive scalar

Prewarp frequency in rad/s, specified as the comma-separated pair consisting of
'PreWarpFreq' and a nonnegative scalar. This option applies only when
RateConversionMethod is either 'prewarp' or 'upsampling_prewarp'.

UseExactDelayModel — Flag indicating whether to compute linearization with
exact delays
'off' (default) | 'on'

Flag indicating whether to compute linearization with exact delays, specified as the
comma-separated pair consisting of 'UseExactDelayModel' and one of the following:

• 'off' — Return a linear model with approximate delays.
• 'on' — Return a linear model with exact delays.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

AreParamsTunable — Flag indicating whether to recompile the model when
varying parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for
linearization, specified as the comma-separated pair consisting of 'AreParamsTunable'
and one of the following:

• true — Do not recompile the model when all varying parameters are tunable. If any
varying parameters are not tunable, recompile the model for each parameter grid
point, and issue a warning message.

• false — Recompile the model for each parameter grid point. Use this option when
you vary the values of nontunable parameters.

For more information about model compilation when you linearize with parameter
variation, see “Batch Linearization Efficiency When You Vary Parameter Values” on page
3-10.

NumericalPertRel — Numerical perturbation level
1e-5 (default) | positive scalar

 linearizeOptions

13-197

Numerical perturbation level, specified as the comma-separated pair consisting of
'NumericalPertRel' and a positive scalar. This option applies only when
LinearizationAlgorithm is 'numericalpert' or 'numericalpert2'.

The perturbation levels for the system states are:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

x

The perturbation levels for the system inputs are:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

u

You can override these values using the NumericalXPert or NumericalUPert options.

NumericalXPert — State perturbation levels
[] (default) | operating point object

State perturbation levels, specified as the comma-separated pair consisting of
'NumericalXPert' and an operating point object. This option applies only when
LinearizationAlgorithm is 'numericalpert' or 'numericalpert2'.

To set individual perturbation levels for each state:

1 Create an operating point object for the model using the operpoint command.

xPert = operpoint('watertank');
2 Set the state values in the operating point object to the perturbation levels.

xPert.States(1).x = 2e-3;
xPert.States(2).x = 3e-3;

3 Set the value of the NumericalXPert option to the operating point object.

opt = linearizeOptions('LinearizationAlgorithm','numericalpert');
opt.NumericalXPert = xPert;

If NumericalXPert is empty, [], the linearization algorithm derives the state
perturbation levels using NumericalPertRel.

NumericalUPert — Input perturbation levels
[] (default) | operating point object

13 Alphabetical List

13-198

Input perturbation levels, specified as the comma-separated pair consisting of
'NumericalUPert' and an operating point object. This option applies only when
LinearizationAlgorithm is 'numericalpert' or 'numericalpert2'.

To set individual perturbation levels for each input:

1 Create an operating point object for the model using the operpoint command.

uPert = operpoint('watertank');
2 Set the input values in the operating point object to the perturbation levels.

uPert.Inputs(1).x = 3e-3;
3 Set the value of the NumericalUPert option to the operating point object.

opt = linearizeOptions('LinearizationAlgorithm','numericalpert');
opt.NumericalUPert = uPert;

If NumericalUPert is empty, [], the linearization algorithm derives the input
perturbation levels using NumericalPertRel.

Output Arguments
options — Linearization options
linearizeOptions option set

Linearization options, returned as a linearizeOptions option set.

See Also
linearize | linlft | slLinearizer | ulinearize

Introduced in R2013b

 linearizeOptions

13-199

linio
Create linear analysis point for Simulink model, Linear Analysis Plots block, or Model
Verification block

Syntax
io = linio(block,port)
io = linio(block,port,type)
io = linio(block,port,type,[],busElement)

Description
io = linio(block,port) creates a linearization I/O object that represents an input
perturbation analysis point for the signal that originates from the specified output port
of a Simulink block.

io = linio(block,port,type) creates an analysis point of the specified type.

io = linio(block,port,type,[],busElement) creates an analysis point for an
element of a bus signal.

Examples

Create Analysis Points for Simulink Model

Open Simulink model.

open_system('magball')

13 Alphabetical List

13-200

To specify multiple analysis points for linearization, create a vector of linearization I/O
objects.

Create an input perturbation analysis point at the output port of the Controller block.

io(1) = linio('magball/Controller',1);

Create an open-loop output analysis point at the output of the Magnetic Ball Plant block.
An open-loop output point is an output measurement followed by a loop opening.

io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');

View the specified analysis points.

io

1x2 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: magball/Controller
- Port: 1
2. Linearization open-loop output located at the following signal:
- Block: magball/Magnetic Ball Plant
- Port: 1

You can use these analysis points to linearize only the Magnetic Ball Plant subsystem. To
do so, pass io to the linearize command or to an slLinearizer interface.

 linio

13-201

Unlike specifying analysis points directly in the Simulink model, when you create analysis
points using linio, no annotations are added to the model.

Select Individual Bus Element as Analysis Point

Open Simulink model.

mdl = 'scdbusselection';
open_system(mdl)

The COUNTERBUS signal, which originates from the COUNTERBUSCreator block, contains
multiple bus elements.

13 Alphabetical List

13-202

Specify the upper_saturation_limit bus element as a linearization input. Select this
element using dot notation, since it is within the nested limits bus.

io = linio('scdbusselection/COUNTERBUSCreator',1,'input',[],...
 'limits.upper_saturation_limit');

Input Arguments
block — Simulink block
character vector | string

Simulink block from which the analysis point originates, specified as a character vector or
string that contains its full block path. For example, to mark an analysis point at an output
of the Controller block in the magball model, specify block as 'magball/
Controller'.

port — Output port
positive integer

Output port of block from which the analysis point originates, specified as a positive
integer.

port must be a valid port number for the specified block.

type — Analysis point type
'input' (default) | 'output' | 'loopbreak' | ...

Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

 linio

13-203

For more information on analysis point types, see “Specify Portion of Model to Linearize”
on page 2-13.

busElement — Bus element name
character vector | string

Bus element name, specified as a character vector or string. When adding elements
within a nested bus structure, use dot notation to access the elements of the nested bus.
For an example, see “Select Individual Bus Element as Analysis Point” on page 13-202.

Output Arguments
io — Analysis point
linearization I/O object

Analysis point, returned as a linearization I/O object. Use io to specify a linearization
input, output, or loop opening when using the linearize command. For more
information, see “Specify Portion of Model to Linearize” on page 2-13.

Each linearization I/O object has the following properties:

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified

as one of the following:

• 'on' — Use the analysis point for linearization. This value is the default
option.

• 'off' — Do not use the analysis point for linearization. Use this option
if you have an existing set of analysis points and you want to linearize a
model with a subset of these points.

Block Full block path of the block with which the analysis point is associated,
specified as a character vector.

PortNumber Output port with which the analysis point is associated, specified as an
integer.

13 Alphabetical List

13-204

Property Description
Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model
to Linearize” on page 2-13.

BusElement Bus element name with which the analysis point is associated, specified as
a character vector or '' if the analysis point is not a bus element.

Descriptio
n

User-specified description of the analysis point, which you can set for
convenience, specified as a character vector.

Alternative Functionality

Linear Analysis Tool
You can interactively configure analysis points using the Linear Analysis Tool. For more
information see, “Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-
29.

Simulink Model
You can also specify analysis points directly in a Simulink model. When you do so, the
analysis points are saved within the model. For more information, see “Specify Portion of
Model to Linearize in Simulink Model” on page 2-21.

 linio

13-205

slLinearizer and slTuner Interfaces
If you want to obtain multiple open-loop or closed-loop transfer functions from the
linearized system without recompiling the model, you can specify linear analysis points
using an slLinearizer interface. For more information, see “Mark Signals of Interest
for Batch Linearization” on page 3-13. Similarly, if you want to tune a control system and
obtain multiple open-loop or closed-loop transfer functions from the resulting system, you
can specify linear analysis points using an slTuner interface. For more information, see
“Mark Signals of Interest for Control System Analysis and Design” on page 2-51.

See Also
getlinio | linearize | setlinio

Topics
“Specify Portion of Model to Linearize” on page 2-13

Introduced before R2006a

13 Alphabetical List

13-206

linlft
Linearize model while removing contribution of specified blocks

Syntax
lin_fixed = linlft(sys,io,blocks)
[lin_fixed,lin_blocks] = linlft(___)
[___] = linlft(___ ,opt)

Description
lin_fixed = linlft(sys,io,blocks) linearizes the Simulink model named sys
while removing the contribution of certain blocks. Specify sys as a character vector or
string. Specify the full block path of the blocks to ignore in the cell array of character
vectors or string array called blocks. The linearization occurs at the operating point
specified in the Simulink model, which includes the ignored blocks. You can optionally
specify linearization points (linear analysis points) in the I/O object io. The resulting
linear model lin_fixed has this form:

sys

... ...

In Out

Block 1 Out

Block 2 Out

Block n Out

Block 1 In

Block 2 In

Block n In

The top channels In and Out correspond to the linearization points you specify in the I/O
object io. The remaining channels correspond to the connection to the ignored blocks.

When you use linlft and specify the 'block-by-block' linearization algorithm in
linearizeOptions, you can use all the variations of the input arguments for
linearize.

You can linearize the ignored blocks separately using linearize, and then combine the
linearization results using linlftfold.

 linlft

13-207

[lin_fixed,lin_blocks] = linlft(___) returns the linearizations for each of the
blocks specified in blocks. If blocks contains a single block path, lin_blocks is a
single state-space (ss) model. If blocks is an array identifying multiple blocks,
lin_blocks is a cell array of state-space models. The full block path for each block in
lin_blocks is stored in the Notes property of the state-space model.

[___] = linlft(___ ,opt) uses additional linearization options, specified as a
linearizeOptions option set.

Examples
Linearize the following parts of the scdtopmdl Simulink model separately, and then
combine the results:

• Fixed portion, which contains everything except the Parameter Varying Controller
model reference

• Parameter Varying Controller model reference, which references the scdrefmdl
model

% Open the Simulink model
topmdl = 'scdtopmdl';

% Linearize the model without the Parameter Varying Controller
io = getlinio(topmdl);
blocks = {'scdtopmdl/Parameter Varying Controller'};
sys_fixed = linlft(topmdl,io,blocks);

% Linearize the Parameter Varying Controller
refmdl = 'scdrefmdl';
sys_pv = linearize(refmdl);

13 Alphabetical List

13-208

% Combine the results
BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);
sys_fold = linlftfold(sys_fixed,BlockSubs);

See Also
getlinio | linearize | linearizeOptions | linio | linlftfold | operpoint

Introduced in R2009b

 linlft

13-209

linlftfold
Combine linearization results from specified blocks and model

Syntax
lin = linlftfold(lin_fixed,blocksubs)

Description
lin = linlftfold(lin_fixed,blocksubs) combines the following linearization
results into one linear model lin:

• Linear model lin_fixed, which does not include the contribution of specified blocks
in your Simulink model.

Compute lin_fixed using linlft.
• Block linearizations for the blocks excluded from lin_fixed

You specify the block linearizations in a structure array blocksubs, which contains
two fields:

• 'Name' is a character vector or string specifying the block path of the Simulink
block to replace.

• 'Value' is the value of the linearization for each block.

Examples
Linearize the following parts of the scdtopmdl Simulink model separately and then
combine the results:

• Fixed portion, which contains everything except the Parameter Varying Controller
model reference

13 Alphabetical List

13-210

• Parameter Varying Controller model reference, which references the scdrefmdl
model

% Open the Simulink model
topmdl = 'scdtopmdl';

% Linearize the model without the Parameter Varying Controller
io = getlinio(topmdl);
blocks = {'scdtopmdl/Parameter Varying Controller'};
sys_fixed = linlft(topmdl,io,blocks);

% Linearize the Parameter Varying Controller
refmdl = 'scdrefmdl';
sys_pv = linearize(refmdl);

% Combine the results
BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);
sys_fold = linlftfold(sys_fixed,BlockSubs);

See Also
getlinio | linearize | linio | linlft | operpoint

Introduced in R2009b

 linlftfold

13-211

operpoint
Create operating point for Simulink model

Syntax
op = operpoint(sys)

Description
op = operpoint(sys) returns an object, op, containing the operating point of a
Simulink model, sys. Specify sys as either a character vector or a string. Use the object
with the function linearize to create linearized models. The operating point object has
the following properties:

• Model — Simulink model name, specified as a character vector.
• States — State operating point specification, specified as a structure array. Each

structure in the array represents the supported states of one Simulink block. (For a list
of supported states for operating point objects, see “Simulink Model States Included in
Operating Point Object” on page 1-3.) Edit the properties of this object using dot
notation or the set function.

Each States structure has the following fields:

Nx(read only) Number of states in the Simulink block.
Block Simulink block name.
StateName Name of state, specified as a character vector.
x Simulink block state values, specified as a vector of

states. This vector includes all supported states.

When creating state value specifications for operating
point searches using findop and you set the value of a
state that you want fixed, also set the Known field of the
States property for that state to 1.

13 Alphabetical List

13-212

Ts (Only for discrete-time states) Sample time and offset of
each Simulink block state, specified as a vector.

SampleType State time rate, specified as one of the following values:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete—time state

inReferencedModel Vector indicating whether each state is inside a
reference model:

• 1 — State is inside a reference model
• 0 — State is in the current model file

Description Block state description, specified as a character vector.
• Inputs — Input level at the operating point, specified as a vector of input objects.

Each input object represents the input levels of one root-level inport block in the
Simulink block.

Each entry in Inputs has the following fields:

Block Inport block name.
PortWidth Number of inport block signals.
PortDimensions Dimension of signals accepted by the inport.
u Inport block input levels at the operating point,

specified as a vector of input levels.

When creating input specifications for operating-point
searches using findop, also set the Known field of the
Inputs property for known input levels that remain
fixed during operating point search.

Description Inport block input description, specified as a character
vector.

• Time — Times at which any time-varying functions in the model are evaluated,
specified as a vector.

• Version — Object version number.

 operpoint

13-213

Examples

Create Operating Point for Simulink Model

Open Simulink model.

open_system('magball')

Create operating point for the model.

op = operpoint('magball')

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

13 Alphabetical List

13-214

Inputs: None

op lists each block in the model that has states. There are no root-level inports in this
model, therefore op does not contain inputs.

Alternatives
As an alternative to the operpoint function, create operating points in the Linear
Analysis Tool. See “Compute Steady-State Operating Point from State Specifications” on
page 1-13 and “Compute Steady-State Operating Point from Output Specifications” on
page 1-28.

See Also
get | linearize | operspec | set | update

Introduced before R2006a

 operpoint

13-215

operspec
Operating point specifications

Syntax
opspec = operspec(mdl)
opspec = operspec(mdl,dim)

Description
opspec = operspec(mdl) returns the default operating point specification object for
the Simulink model mdl. Use opspec for steady-state operating point trimming using
findop.

opspec = operspec(mdl,dim) returns an array of default operating point
specification objects with the specified dimensions, dim.

Examples

Create Operating Point Specification Object

Open Simulink model.

sys = 'watertank';
open_system(sys)

13 Alphabetical List

13-216

Create the default operating point specification object for the model.

opspec = operspec(sys)

 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) watertank/PID Controller/Integrator
 spec: dx = 0, initial guess: 0
(2.) watertank/Water-Tank System/H
 spec: dx = 0, initial guess: 1

Inputs: None

Outputs: None

opspec contains specifications for the two states in the model. Since the model has no
root level inports or outports, opspec does not contain input or output specifications. To
add output specifications, use addoutputspec.

Modify the operating point specifications for each state using dot notation. For example,
configure the first state to:

 operspec

13-217

• Be at steady state.
• Have a lower bound of 0.
• Have an initial value of 2 for trimming.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Create Array of Operating Point Specification Objects

Open Simulink model.

sys = 'watertank';
open_system(sys)

Create a 2-by-3 array of operating point specification objects. You can batch trim model at
multiple operating points using such arrays.

opspec = operspec(sys,[2,3]);

Each element of opspec contains a default operating point specification object for the
model.

Modify the operating point specification objects using dot notation. For example,
configure the second state of the specification object in row 1, column 3.

13 Alphabetical List

13-218

opspec(1,3).States(2).SteadyState = 1;
opspec(1,3).States(1).x = 2;

You can also create multidimensional arrays of operating point specification objects. For
example, create a 3-by-4-by-5 array.

opspec = operspec(sys,[3,4,5]);

Input Arguments
mdl — Simulink model
character vector | string

Simulink model name, specified as a character vector or string.

dim — Array dimensions
integer | row vector of integers

Array dimensions, specified as one of the following:

• Integer — Create a column vector of dim operating point specification objects.
• Row vector of integers — Create an array of operating point specification objects with

the dimensions specified by dim.

For example, to create a 4-by-5 array of operating point specification objects, use:

opspec = operspec(mdl,[4,5]);

To create a multidimensional array of operating point specification objects, specify
additional dimensions. For example, to create a 2-by-3-by-4 array, use:

opspec = operspec(mdl,[2,3,4]);

Output Arguments
opspec — Operating point specifications
operating point specification object | array of operating point specification objects

Operating point specifications, returned as an operating point specification object or an
array of such objects.

 operspec

13-219

You can modify the operating point specifications using dot notation. For example, if
opspec is a single operating point specification object, opspec.States(1).x accesses
the state values of the first model state. If opspec is an array of specification objects
opspec(2,3).Inputs(1).u accesses the input level of the first inport block for the
specification in row 2, column 3.

Each specification object has the following properties:

Property Description
Model Simulink model name, returned as a character vector.

13 Alphabetical List

13-220

Property Description
States State operating point specifications, returned as a vector of state

specification objects. Each entry in States represents the supported states
of one Simulink block.

For a list of supported states for operating point objects, see “Simulink
Model States Included in Operating Point Object” on page 1-3. Edit the
properties of this object using dot notation or the set function.

Note If the block has multiple named continuous states, States contains
one structure for each named state.

Each state specification object has the following fields:

Field Description
Nx (read-
only)

Number of states in the block

Block Block path, returned as a character vector.
StateName State name
x Values of all supported block states, specified as a vector of

length Nx.

If the corresponding flag in Known field of States is 1, x
contains the known state values. Otherwise, x contains initial
guesses for the state values.

Ts (Only for discrete-time states) Sample time and offset of each
supported block state, returned as a vector.

SampleTyp
e

State time rate, returned as one of the following:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete-time state

inReferen
cedModel

Flag indicating whether the block is inside a reference model,
returned as one of the following:

• 1 — Block is inside a reference model.

 operspec

13-221

Property Description
Field Description

• 0 — Block is in the current model file.
Known Flags indicating whether state values are known during

trimming, specified as a logical vector of length Nx.

• 1 — Known value that is fixed during operating point
search

• 0 (default) — Unknown value found by optimization

To fix a state during an operating point search, set the
corresponding Known flag to 1, and specify the value for that
state using the x property of States.

SteadySta
te

Flags indicating whether output values are at steady state
during trimming, specified as a logical vector of length Nx.

• 1 (default) — Equilibrium state
• 0 — Nonequilibrium state

Min Minimum bounds on state values, specified as a vector of
length Nx. By default, the minimum bound for each state is -
Inf.

Max Maximum bounds on state values, specified as a vector of
length Nx. By default, the maximum bound for each state is
Inf.

dxMin Minimum bounds on state derivatives that are not at steady-
state, specified as a vector of length Nx. By default, the
minimum bound for each state derivative is -Inf. When you
specify a derivative bound, you must also set SteadyState to
0.

dxMax Maximum bounds on state derivatives that are not at steady-
state, specified as a vector of length Nx. By default, the
maximum bound for each state derivative is Inf. When you
specify a derivative bound, you must also set SteadyState to
0.

Descripti
on

Block state description, specified as a character vector.

13 Alphabetical List

13-222

Property Description
Inputs Input level specifications at the operating point, returned as a vector of input

specification objects. Each entry in Inputs represents the input levels of one
root-level inport block in the model.

Each input specification object has the following fields:

Field Description
Block Inport block name
PortWidth Number of inport block signals
PortDimen
sions

Dimension of signals accepted by the inport

u Inport block input levels at the operating point, returned as a
vector of length PortWidth.

If the corresponding flag in Known field of Inputs is 1, u
contains the known input values. Otherwise, u contains initial
guesses for the input values.

Known Flags indicating whether input levels are known during
trimming, specified as a logical vector of length PortWidth.

• 1 — Known input level that is fixed during operating point
search

• 0 (default) — Unknown input level found by optimization

To fix an input level during an operating point search, set the
corresponding Known flag to 1, and specify the input value
using the u property of Inputs.

Min Minimum bounds on input levels, specified as a vector of
length PortWidth. By default, the minimum bound for each
input is -Inf.

Max Maximum bounds on input levels, specified as a vector of
length PortWidth. By default, the maximum bound for each
input is Inf.

Descripti
on

Inport block input description, specified as a character vector.

 operspec

13-223

Property Description
Outputs Output level specifications at the operating point, returned as a vector of

output specification objects. Each entry in Outputs represents the output
levels of one root-level outport block of the model or one trim output
constraint in the model.

You can specify additional trim output constraints using addoutputspec.

Each output specification object has the following fields:

Field Description
Block Outport block name
PortWidth Number of outport block signals
PortNumbe
r

Number of this outport in the model

y Outport block output levels at the operating point, specified as
a vector of length PortWidth.

If the corresponding flag in Known field of Outputs is 1, y
contains the known output values. Otherwise, y contains
initial guesses for the output values.

Known Flags indicating whether output levels are known during
trimming, specified as a logical vector of length PortWidth.

• 1 — Known output level that is fixed during operating
point search

• 0 (default) — Unknown output level found by optimization

To fix an output level during an operating point search, set the
corresponding Known flag to 1, and specify the output value
using the y property of Outputs.

Min Minimum bounds on output levels, specified as a vector of
length PortWidth. By default, the minimum bound for each
output is -Inf.

Max Maximum bounds the output levels, specified as a vector of
length PortWidth. By default, the maximum bound for each
output is Inf.

13 Alphabetical List

13-224

Property Description
Field Description
Descripti
on

Outport block input description, specified as a character
vector.

Time Times at which the time-varying functions in the model are evaluated,
returned as a vector.

CustomOb
jFcn

Function providing an additional custom objective function for trimming,
specified as a handle to the custom function, or a character vector or string
that contains the function name. The custom function must be on the
MATLAB path or in the current working folder.

You can specify a custom objective function as an algebraic combination of
model states, inputs, and outputs. For more information, see “Compute
Operating Points Using Custom Constraints and Objective Functions” on
page 1-50.

CustomCo
nstrFcn

Function providing additional custom constraints for trimming, specified as a
handle to the custom function, or a character vector or string that contains
the function name. The custom function must be on the MATLAB path or in
the current working folder.

You can specify custom equality and inequality constraints as algebraic
combinations of model states, inputs, and outputs. For more information, see
“Compute Operating Points Using Custom Constraints and Objective
Functions” on page 1-50.

CustomMa
ppingFcn

Function that maps model states, inputs, and outputs to the vectors accepted
by CustomConstrFcn and CustomObjFcn, specified as a handle to the
custom function, or a character vector or string that contains the function
name. The custom function must be on the MATLAB path or in the current
working folder.

For complex models, you can pass subsets of the model inputs, outputs, and
states to the custom constraint and objective functions using a custom
mapping function. If you specify a custom mapping, you must use the
mapping for both the custom constraint function and the custom objective
function. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-50.

 operspec

13-225

Tips
• To display the operating point specification object properties, use get.

See Also
addoutputspec | findop | update

Introduced before R2006a

13 Alphabetical List

13-226

set
Set properties of linearization I/Os and operating points

Syntax
set(ob)
set(ob,'PropertyName',val)

Description
set(ob) displays all editable properties of the object, ob, which can be a linearization
I/O object, an operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

set(ob,'PropertyName',val) sets the property, PropertyName, of the object, ob, to
the value, val. The object, ob, can be a linearization I/O object, an operating point object,
or an operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

ob.PropertyName = val is an alternative notation for assigning the value, val, to the
property, PropertyName, of the object, ob. The object, ob, can be a linearization I/O
object, an operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

Examples
Create an operating point object for the Simulink model, magball:

op_cond=operpoint('magball');

Use the set function to get a list of all editable properties of this object:

set(op_cond)

This function returns the properties of op_cond.

 set

13-227

ans =
 Model: {}
 States: {}
 Inputs: {}
 Time: {}

To set the value of a particular property of op_cond, provide the property name and the
desired value of this property as arguments to set. For example, to change the name of
the model associated with the operating point object from 'magball' to 'Magnetic
Ball', type:

set(op_cond,'Model','Magnetic Ball')

To view the property value and verify that the change was made, type:

op_cond.Model

which returns

ans =
Magnetic Ball

Because op_cond is a structure, you can set any properties or fields using dot-notation.
First, produce a list of properties of the second States object within op_cond, as
follows:

set(op_cond.States(2))

which returns

ans =

 Nx: {}
 Block: {}
 StateName: {}
 x: {}
 Ts: {}
 SampleType: {}
 inReferencedModel: {}
 Description: {}

Now, use dot-notation to set the x property to 8:

op_cond.States(2).x=8;

13 Alphabetical List

13-228

To view the property and verify that the change was made, type

op_cond.States(2)

which displays

(1.) magball/Magnetic Ball Plant/Current
 x: 8

See Also
findop | get | linio | operpoint | operspec | setlinio

Introduced before R2006a

 set

13-229

setlinio
Save linear analysis points to Simulink model, Linear Analysis Plots block, or Model
Verification block

Syntax
setlinio(mdl,io)
setlinio(blockpath,io)
oldio = setlinio(___)

Description
setlinio(mdl,io) writes the analysis points specified in io to the Simulink model mdl.

setlinio(blockpath,io) sets the specified analysis points to the specified Linear
Analysis Plots block or Model Verification block.

oldio = setlinio(___) returns the current set of analysis points in the model or
block and replaces them with io using any of the previous syntaxes.

Examples

Set Analysis Points in Simulink Model

Open Simulink model.

model = 'magball';
open_system(model)

13 Alphabetical List

13-230

Create a vector of analysis points for linearizing the plant model:

• Input perturbation at the output of the Controller block
• Open-loop output at the output of the Magnetic Ball Plant block

io(1) = linio('magball/Controller',1,'input');
io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');

Write the analysis points to the magball model.

setlinio(model,io);

The analysis points in io are added to the model as annotations. You can then save the
model to store the analysis points with the model.

Set Analysis Points in Linear Analysis Plots Block

Open Simulink model.

open_system('scdcstr')

 setlinio

13-231

Create analysis points for finding the transfer function between the coolant temperature
and the residual concentration.

• Input perturbation at the output of the Coolant Temp block
• Output measurement at the CA output of the CSTR block

io(1) = linio('scdcstr/Coolant Temp',1,'input');
io(2) = linio('scdcstr/CSTR',2,'output');

Set the analysis points in the Bode Plot block.

setlinio('scdcstr/Bode Plot',io);

View the analysis points in the Bode Plot Block Parameters dialog box.

open_system('scdcstr/Bode Plot')

13 Alphabetical List

13-232

 setlinio

13-233

During simulation, the software linearizes the model using the specified analysis, and
plots the magnitude and phase responses for the resulting linear system.

Save Old Analysis Points When Storing New Analysis Points

Open Simulink model.

mdl = 'scdpwm';
open_system(mdl)

This model is configured with analysis points for finding the combined transfer function of
the PWM and plant blocks.

Create analysis points for finding the transfer function of just the plant model.

io(1) = linio('scdpwm/Voltage to PWM',1,'input');
io(2) = linio('scdpwm/Plant Model',1,'output');

Store the analysis points to the model, and save the previous analysis point configuration.

oldio = setlinio(mdl,io)

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdpwm/Step
- Port: 1
2. Linearization output measurement located at the following signal:

13 Alphabetical List

13-234

- Block: scdpwm/Plant Model
- Port: 1

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the
current working folder or on the MATLAB path.

If the model is not open or loaded into memory, setlinio loads the model into memory.

io — Analysis point set
linearization I/O object | vector of linearization I/O objects

Analysis point set, specified as a linearization I/O object or a vector of linearization I/O
objects.

Each linearization I/O object has the following properties:

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified

as one of the following:

• 'on' — Use the analysis point for linearization. This value is the default
option.

• 'off' — Do not use the analysis point for linearization. Use this option
if you have an existing set of analysis points and you want to linearize a
model with a subset of these points.

Block Full block path of the block with which the analysis point is associated,
specified as a character vector.

PortNumber Output port with which the analysis point is associated, specified as an
integer.

 setlinio

13-235

Property Description
Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model
to Linearize” on page 2-13.

BusElement Bus element name with which the analysis point is associated, specified as
a character vector or '' if the analysis point is not a bus element.

Descriptio
n

User-specified description of the analysis point, which you can set for
convenience, specified as a character vector.

blockpath — Linear Analysis Plots block or Model Verification block
character vector | string

Linear Analysis Plots block or Model Verification block, specified as a character vector or
string that contains its full block path. The model that contains the block must be in the
current working folder or on the MATLAB path.

For more information on:

• Linear analysis plot blocks, see “Visualization During Simulation”.
• Model verification blocks, see “Model Verification”.

Output Arguments
oldio — Old analysis point set
linearization I/O object | vector of linearization I/O objects

13 Alphabetical List

13-236

Old analysis point set, returned as a linearization I/O object or a vector of linearization I/O
objects.

Alternative Functionality

Simulink Model
You can also specify analysis points directly in a Simulink model. For more information,
see “Specify Portion of Model to Linearize in Simulink Model” on page 2-21.

See Also
getlinio | linearize | linio | slLinearizer

Topics
“Specify Portion of Model to Linearize” on page 2-13

Introduced before R2006a

 setlinio

13-237

setxu
Set states and inputs in operating points

Syntax
op_new=setxu(op_point,x,u)

Description
op_new=setxu(op_point,x,u) sets the states and inputs in the operating point,
op_point, with the values in x and u. A new operating point containing these values,
op_new, is returned. The variable x can be a vector or a structure with the same format
as those returned from a Simulink simulation. The variable u can be a vector. Both x and
u can be extracted from another operating point object with the getxu function.

Examples

Initialize Operating Point Object Using State Values from Simulation

Export state values from a simulation and use the exported values to initialize an
operating point object.

Open the Simulink model. This example uses the model scdplane.

open_system('scdplane')

Select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, select Data Import/Export. Check Final states and click OK.
These selections save the final states of the model to the workspace after a simulation.

Simulate the model. After the simulation, a new variable, xFinal, appears in the
workspace. This variable is a vector containing the final state values.

Create an operating point object for scdplane.

13 Alphabetical List

13-238

op_point = operpoint('scdplane')

 Operating Point for the Model scdplane.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdplane/Actuator Model
 x: 0
(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1
 x: 0
(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2
 x: 0
(4.) scdplane/Controller/Alpha-sensor Low-pass Filter
 x: 0
(5.) scdplane/Controller/Pitch Rate Lead Filter
 x: 0
(6.) scdplane/Controller/Proportional plus integral compensator
 x: 0
(7.) scdplane/Controller/Stick Prefilter
 x: 0
(8.) scdplane/Dryden Wind Gust Models/Q-gust model
 x: 0
(9.) scdplane/Dryden Wind Gust Models/W-gust model
 x: 0
 x: 0

Inputs:

(1.) scdplane/u
 u: 0

All states are initially set to 0.

Initialize the states in the operating point object to the values in xFinal. Set the input to
be 9.

newop = setxu(op_point,xFinal,9)

 Operating Point for the Model scdplane.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdplane/Actuator Model

 setxu

13-239

 x: -0.032
(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1
 x: 0.56
(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2
 x: 678
(4.) scdplane/Controller/Alpha-sensor Low-pass Filter
 x: 0.392
(5.) scdplane/Controller/Pitch Rate Lead Filter
 x: 0.133
(6.) scdplane/Controller/Proportional plus integral compensator
 x: 0.166
(7.) scdplane/Controller/Stick Prefilter
 x: 0.1
(8.) scdplane/Dryden Wind Gust Models/Q-gust model
 x: 0.114
(9.) scdplane/Dryden Wind Gust Models/W-gust model
 x: 0.46
 x: -2.05

Inputs:

(1.) scdplane/u
 u: 9

Alternatives
As an alternative to the setxu function, set states and inputs of operating points with the
Simulink Control Design GUI.

See Also
getxu | initopspec | operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-240

slLinearizer
Interface for batch linearization of Simulink models

Syntax
sllin = slLinearizer(mdl)
sllin = slLinearizer(mdl,pt)
sllin = slLinearizer(mdl,param)
sllin = slLinearizer(mdl,op)
sllin = slLinearizer(mdl,blocksub)
sllin = slLinearizer(mdl,options)
sllin = slLinearizer(mdl,pt,op,param,blocksub,options)

Description
sllin = slLinearizer(mdl) creates an slLinearizer interface, sllin, for
linearizing the Simulink model, mdl. The interface adds the linear analysis points marked
in the model as analysis points on page 13-253 of sllin. The interface also adds the
linear analysis points that imply an opening as permanent openings on page 13-254.

sllin = slLinearizer(mdl,pt) adds the specified point to the list of analysis points
for sllin, ignoring linear analysis points marked in the model.

sllin = slLinearizer(mdl,param) specifies the parameters whose values you want
to vary when linearizing the model.

sllin = slLinearizer(mdl,op) specifies the operating points for linearizing the
model.

sllin = slLinearizer(mdl,blocksub) specifies substitute linearizations of blocks
and subsystems. Use this syntax, for example, to specify a custom linearization for a
block. You can also use this syntax for blocks that do not linearize successfully, such as
blocks with discontinuities or triggered subsystems.

sllin = slLinearizer(mdl,options) configures the linearization algorithm options.

 slLinearizer

13-241

sllin = slLinearizer(mdl,pt,op,param,blocksub,options) uses any
combination of the input arguments pt, op, param, blocksub, and options to create
sllin.

For example, use any of the following:

• sllin = slLinearizer(mdl,pt,param)
• sllin = slLinearizer(mdl,op,param).

If you do not specify pt, the interface adds the linear analysis points marked in the model
as analysis points. The interface also adds linear analysis points that imply an opening as
permanent openings.

Object Description
slLinearizer provides an interface between a Simulink model and the linearization
commands getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity. Use slLinearizer to efficiently batch linearize a model. You
can configure the slLinearizer interface to linearize a model at a range of operating
points and specify variations for model parameter values. Use interface analysis points on
page 13-253 and permanent openings on page 13-254 to obtain linearizations for any
open-loop or closed-loop transfer function from a model. Analyze the stability, or time-
domain or frequency-domain characteristics of the linearized models.

If you changed any interface properties since the last linearization, commands that
extract linearizations from the slLinearizer interface recompile the Simulink model. If
you made calls to specific functions since the last linearization, the commands also
recompile the Simulink model. These functions include addPoint, addOpening,
removePoint, removeOpening, removeAllPoints, and removeAllOpenings.

Examples

Create and Configure slLinearizer Interface for Batch Linear Analysis

Create an slLinearizer interface for the scdcascade model. Add analysis points to
the interface to extract open- or closed-loop transfer functions from the model. Configure
the interface to vary parameters and operating points.

13 Alphabetical List

13-242

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model. Add the signals r, u1,|u2|, y1,|y2|,
y1m, and y2m to the interface.

sllin = slLinearizer(mdl,{'r','u1','u2','y1','y2','y1m','y2m'});

scdcascade contains two PID Controller blocks, C1 and C2. Suppose you want to vary
the proportional and integral gains of C2, Kp2 and Ki2, in the 10% range. Create a
structure to specify the parameter variations.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

params specifies a 3x5 parameter grid. Each point in this grid corresponds to a
combination of the Kp2 and Ki2 parameter values.

 slLinearizer

13-243

Specify params as the Parameters property of sllin.

sllin.Parameters = params;

Now, when you use commands such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity, the software returns a linearization for
each parameter grid point specified by sllin.Parameters.

Suppose you want to linearize the model at multiple snapshot times, for example at t =
{0,1,2}. To do so, configure the OperatingPoints property of sllin.

sllin.OperatingPoints = [0 1 2];

You can optionally configure the linearization options and specify substitute linearizations
for blocks and subsystems in your model. After fully configuring sllin, use the
getIOTransfer, getLoopTransfer, getSensitivity, and getCompSensitivity
commands to linearize the model as required.

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string.
Example: 'scdcascade'

pt — Analysis point
character vector | string | cell array of character vectors | string array | vector of
linearization I/O objects

Analysis point on page 13-253 to be added to the list of analysis points for sllin,
specified as:

• Character vector or string — Analysis point identifier that can be any of the following:

• Signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Block path and port originating the signal, for example pt = 'Engine Model/1'

• Cell array of character vectors or string array — Specifies multiple analysis point
identifiers. For example:

13 Alphabetical List

13-244

pt = {'torque','Motor/PID','Engine Model/1'}

• Vector of linearization I/O objects — Create pt using linio. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');
pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The
interface also adds all 'loopbreak' type signals as permanent openings on page 13-
254.

param — Parameter samples
structure | structure array

Parameter samples for linearizing mdl, specified as:

• Structure — Vary the value of a single parameter by specifying param as a structure
with the following fields:

• Name — Parameter name, specified as a character vector or string. You can specify
any model parameter that is a variable in the model workspace, the MATLAB
workspace, or a data dictionary. If the variable used by the model is not a scalar
variable, specify the parameter name as an expression that resolves to a numeric
scalar value. For example, to use the first element of vector V as a parameter, use:

param.Name = 'V(1)';

• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range:

param.Name = 'A';
param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values
of parameters A and b in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

 slLinearizer

13-245

For more information, see “Specify Parameter Samples for Batch Linearization” on page
3-62.

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you also configure sllin.OperatingPoints with
operating point objects only, the software uses single model compilation.

For an example showing how batch linearization with parameter sampling works, see
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32.

To compute the offsets required by the LPV System block, specify param, and set
sllin.Options.StoreOffsets to true. You can then return additional linearization
information when calling linearization functions such as getIOTransfer, and extract the
offsets using getOffsetsForLPV.

op — Operating point for linearizing mdl
operating point object | array of operating point objects | vector of positive scalars

Operating point for linearizing mdl, specified as:

• Operating point object, created using findop with either a single operating point
specification, or a single snapshot time.

• Array of operating point objects, specifying multiple operating points.

To create an array of operating point objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more

information, see “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.

• Batch trim your model using parameter variations. For more information, see
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-
65.

• Vector of positive scalars, specifying simulation snapshot times.

If you configure sllin.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid
specified by the Parameters property. When you batch linearize mdl, the software

13 Alphabetical List

13-246

uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before
linearization. For an example that uses the linearize command, see “Batch
Linearize Model at Multiple Operating Points Derived from Parameter Variations” on
page 3-25.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

blocksub — Substitute linearizations for blocks and model subsystems
structure | structure array

Substitute linearizations for blocks and model subsystems, specified as a structure or an
n-by-1 structure array, where n is the number of blocks for which you want to specify a
linearization. Use blocksub to specify a custom linearization for a block or subsystem.
For example, you can specify linearizations for blocks that do not have analytic
linearizations, such as blocks with discontinuities or triggered subsystems.

You can batch linearize your model by specifying multiple substitute linearizations for a
block. Use this functionality, for example, to study the effects of varying the linearization
of a Saturation block on the model dynamics.

Each substitute linearization structure has the following fields:

Name — Block path

Block path of the block for which you want to specify the linearization, specified as a
character vector or string.

Value — Substitute linearization

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of

gain values, where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O
configuration of the specified model must match the configuration of the block
specified by Name. Using an uncertain model requires Robust Control Toolbox
software.

 slLinearizer

13-247

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch
linearize the model using multiple block substitutions. The I/O configuration of each
model in the array must match the configuration of the block for which you are
specifying a custom linearization. If you:

• Vary model parameters using param and specify Value as a model array, the
dimensions of Value must match the parameter grid size.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI
models for more than one block, the dimensions of the arrays must match.

• Structure with the following fields:

Field Description
Specification Block linearization, specified as a character vector that

contains one of the following

• MATLAB expression
• Name of a “Custom Linearization Function” on page 13-

254 in your current working directory or on the
MATLAB path.

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object

(requires Robust Control Toolbox software)

The I/O configuration of the returned model must match
the configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

13 Alphabetical List

13-248

Field Description
ParameterNames Linearization function parameter names, specified as a cell

array of character vectors. Specify ParameterNames only
when Type = 'Function' and your block linearization
function requires input parameters. These parameters only
impact the linearization of the specified block.

You must also specify the corresponding
blocksub.Value.ParameterValues field.

ParameterValues Linearization function parameter values, specified as an
vector of doubles. The order of parameter values must
correspond to the order of parameter names in
blocksub.Value.ParameterNames. Specify
ParameterValues only when Type = 'Function' and
your block linearization function requires input
parameters.

options — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions option set.

Properties
slLinearizer object properties include:

Parameters

Parameter samples for linearizing mdl, specified as a structure or a structure array.

Set this property using the param input argument or dot notation (sllin.Parameters
= param). param must be one of the following:

• Structure — Vary the value of a single parameter by specifying param as a structure
with the following fields:

• Name — Parameter name, specified as a character vector or string. You can specify
any model parameter that is a variable in the model workspace, the MATLAB
workspace, or a data dictionary. If the variable used by the model is not a scalar

 slLinearizer

13-249

variable, specify the parameter name as an expression that resolves to a numeric
scalar value. For example, to use the first element of vector V as a parameter, use:

param.Name = 'V(1)';
• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range:

param.Name = 'A';
param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values
of parameters A and b in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you also configure sllin.OperatingPoints with
operating point objects only, the software uses single model compilation.

OperatingPoints

Operating points for linearizing mdl, specified as an operating point object, array of
operating point objects, or array of positive scalars.

Set this property using the op input argument or dot notation
(sllin.OperatingPoints = op). op must be one of the following:

• Operating point object, created using findop with either a single operating point
specification, or a single snapshot time.

• Array of operating point objects, specifying multiple operating points.

To create an array of operating point objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more

information, see “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.

13 Alphabetical List

13-250

• Batch trim your model using parameter variations. For more information, see
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-
65.

• Vector of positive scalars, specifying simulation snapshot times.

If you configure sllin.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid
specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before
linearization. For an example that uses the linearize command, see “Batch
Linearize Model at Multiple Operating Points Derived from Parameter Variations” on
page 3-25.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

BlockSubstitutions

Substitute linearizations for blocks and model subsystems, specified as a structure or
structure array.

Use this property to specify a custom linearization for a block or subsystem. You also can
use this syntax for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

Set this property using the blocksub input argument or dot notation
(sllin.BlockSubstitutions = blocksubs). For information about the required
structure, see blocksub.

Options

Linearization algorithm options, specified as an option set created using
linearizeOptions.

Set this property using the options input argument or dot notation (sllin.Options =
options).

 slLinearizer

13-251

Model

Name of the Simulink model to be linearized, specified as a character vector by the input
argument mdl.

TimeUnit

Unit of the time variable. This property specifies the time units for linearized models
returned by getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity. Use any of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Default: 'seconds'

Object Functions
addPoint Add signal to list of analysis points for slLinearizer or slTuner

interface
addOpening Add signal to list of openings for slLinearizer or slTuner interface
getPoints Get list of analysis points for slLinearizer or slTuner interface
getOpenings Get list of openings for slLinearizer or slTuner interface
getIOTransfer Transfer function for specified I/O set using slLinearizer or slTuner

interface
getLoopTransfer Open-loop transfer function at specified point using slLinearizer or

slTuner interface
getSensitivity Sensitivity function at specified point using slLinearizer or slTuner

interface

13 Alphabetical List

13-252

getCompSensitivity Complementary sensitivity function at specified point using
slLinearizer or slTuner interface

removePoint Remove point from list of analysis points in slLinearizer or slTuner
interface

removeAllPoints Remove all points from list of analysis points in slLinearizer or
slTuner interface

removeAllOpenings Remove all openings from list of permanent openings in
slLinearizer or slTuner interface

refresh Resynchronize slLinearizer or slTuner interface with current model
state

Definitions

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

 slLinearizer

13-253

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

Custom Linearization Function
You can specify a substitute linearization for a block or subsystem in your Simulink model
using a custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a
structure that the software creates and passes to the function. BlockData has the
following fields:

Field Description
BlockName Name of the block for which you are specifying a custom linearization.

13 Alphabetical List

13-254

Field Description
Parameters Block parameter values, specified as a structure array with Name and

Value fields. Parameters contains the names and values of the
parameters you specify in the blocksub.Value.ParameterNames and
blocksub.Value.ParameterValues fields.

Inputs Input signals to the block for which you are defining a linearization,
specified as a structure array with one structure for each block input.
Each structure in Inputs has the following fields:

Field Description
BlockName Full block path of the block whose output connects

to the corresponding block input.
PortIndex Output port of the block specified by BlockName

that connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then
Values is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLinea
rization

Current default linearization of the block, specified as a state-space model.
You can specify a block linearization that depends on the default
linearization using BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model
must be one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox

software)

For example, the following function multiplies the current default block linearization, by a
delay of Td = 0.5 seconds. The delay is represented by a Thiran filter with sample time
Ts = 0.1. The delay and sample time are parameters stored in BlockData.

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;

 slLinearizer

13-255

 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize

Topics
“What Is Batch Linearization?” on page 3-2
“How the Software Treats Loop Openings” on page 2-42
“Batch Linearization Efficiency When You Vary Parameter Values” on page 3-10
“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-61
“Specify Parameter Samples for Batch Linearization” on page 3-62
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32

Introduced in R2013b

13 Alphabetical List

13-256

addOpening
Add signal to list of openings for slLinearizer or slTuner interface

Syntax
addOpening(s,pt)

addOpening(s,blk,port_num)
addOpening(s,blk,port_num,bus_elem_name)

Description
addOpening(s,pt) adds the specified point (signal) to the list of permanent openings
on page 13-263 for the slLinearizer or slTuner interface, s.

Use permanent openings to isolate a specific model component for the purposes of
linearization and tuning. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

addOpening(s,blk,port_num) adds the signal at the specified output port of the
specified block as a permanent opening for s.

addOpening(s,blk,port_num,bus_elem_name) adds the specified bus element as a
permanent opening.

Examples

Add Opening Using Signal Name

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model.
Add the outer-loop feedback signal, y1m, as a permanent opening of an slLinearizer
interface.

 addOpening

13-257

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'y1m');

View the currently defined analysis points within sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
1 Permanent openings:

Opening 1:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

Properties with dot notation get/set access:

13 Alphabetical List

13-258

 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Add Opening Using Block Path and Port Number

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model.
Add the outer-loop feedback signal, y1m, as a permanent opening of an slLinearizer
interface.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'scdcascade/Sum',1);

The y1m signal originates at the first (and only) port of the scdcascade/Sum block.

 addOpening

13-259

Add Bus Elements as Openings

Open the scdbusselection model.

mdl = 'scdbusselection';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and data bus elements as openings to sllin. When adding
elements within a nested bus structure, use dot notation to access the elements of the
nested bus, for example limits.upper_saturation_limit.

13 Alphabetical List

13-260

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};
port_num = [1 1];
bus_elem_name = {'limits.upper_saturation_limit','data'};

Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element
twice.

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Opening
character vector | string | cell array of character vectors | string array | vector of
linearization I/O objects

Opening to add to the list of permanent openings on page 13-263 for s, specified as:

• Character vector or string — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or

'Engine Model/torque'
• Cell array of character vectors or string array — Specifies multiple signal identifiers.

For example, pt = {'Motor/PID','Engine Model/1'}.
• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1)
pt(2) = linio('scdcascade/Sum',1,'output')

Here, pt(1) specifies an input, and pt(2) specifies an output. However, the software
ignores the I/O types and adds them both to the list of permanent openings for s.

blk — Block path identifying block where opening originates
character vector (default) | string | cell array of character vectors | string array

 addOpening

13-261

Block path identifying the block where the opening originates, specified as a character
vector or cell array of character vectors.

Dimensions of blk:

• For a single opening, specify blk as a character vector or string.

For example, blk = 'scdcascade/C1'.
• For multiple openings, specify blk as a cell array of character vectors or string array.

blk, port_num, and bus_elem_name (if specified) must have the same size.

For example, blk = {'scdcascade/C1','scdcascade/Sum'}.

port_num — Port where opening originates
positive integer (default) | vector of positive integers

Port where the opening originates, specified as a positive integer or a vector of positive
integers.

Dimensions of port_num:

• For a single opening, specify port_num as a positive integer.

For example, port_num = 1.
• For multiple openings, specify port_num as a vector of positive integers. blk,

port_num, and bus_elem_name (if specified) must have the same size.

For example, port_num = [1 1].

bus_elem_name — Bus element name
character vector (default) | string | cell array of character vectors | string array

Bus element name, specified as a character vector or cell array of character vectors.

Dimensions of bus_elem_name:

• For a single opening, specify bus_elem_name as a character vector or string.

For example, bus_elem_name = 'data'.
• For multiple openings, specify bus_elem_name as a cell array of character vectors or

string array. blk, port_num, and bus_elem_name (if specified) must have the same
size.

13 Alphabetical List

13-262

For example, bus_elem_name =
{'limits.upper_saturation_limit','data'}.

Definitions

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addBlock | addPoint | linio | removeAllOpenings | removeOpening |
slLinearizer | slTuner

Introduced in R2013b

 addOpening

13-263

addPoint
Add signal to list of analysis points for slLinearizer or slTuner interface

Syntax
addPoint(s,pt)

addPoint(s,blk,port_num)
addPoint(s,blk,port_num,bus_elem_name)

Description
addPoint(s,pt) adds the specified point to the list of analysis points on page 13-270 for
the slLinearizer or slTuner interface, s.

Analysis points are model signals that can be used as input, output, or loop-opening
locations for analysis and tuning purposes. You use analysis points as inputs to the
linearization commands of s: getIOTransfer, getLoopTransfer, getSensitivity,
and getCompSensitivity. As inputs to the linearization commands, analysis points can
specify any open- or closed-loop transfer function in a model. You can also use analysis
points to specify tuning goals for systune.

addPoint(s,blk,port_num) adds the point that originates at the specified output port
of the specified block as an analysis point for s.

addPoint(s,blk,port_num,bus_elem_name) adds the specified bus element as an
analysis point.

Examples

Add Analysis Point Using Signal Name

Open the scdcascade model.

13 Alphabetical List

13-264

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add u1 and y1 as analysis points for sllin.

addPoint(sllin,{'u1','y1'});

View the currently defined analysis points within sllin.

sllin

slLinearizer linearization interface for "scdcascade":

2 Analysis points:

Point 1:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1
Point 2:
- Block: scdcascade/G1
- Port: 1
- Signal Name: y1

 addPoint

13-265

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Add Analysis Points Using Block Path and Port Number

Suppose you want to linearize the magball model and obtain a transfer function from the
reference input to the plant output. Add the signals originating at the Desired Height
and Magnetic Ball Plant blocks as analysis points to an slLinearizer interface.

Open the magball model.

mdl = 'magball';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the signals originating at the Design Height and Magnetic Ball Plant blocks
as analysis points of sllin. Both signals originate at the first (and only) port of the
respective blocks.

13 Alphabetical List

13-266

blk = {'magball/Desired Height','magball/Magnetic Ball Plant'};
port_num = [1 1];
addPoint(sllin,blk,port_num);

Add Bus Elements as Analysis Points

Open the scdbusselection model.

mdl = 'scdbusselection';
open_system(mdl);

Create an slLinearizer interface model.

sllin = slLinearizer(mdl);

 addPoint

13-267

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and data bus elements as analysis points to sllin. When
adding elements within a nested bus structure, use dot notation to access the elements of
the nested bus, for example limits.upper_saturation_limit.

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};
port_num = [1 1];
bus_elem_name = {'limits.upper_saturation_limit','data'};
addPoint(sllin,blk,port_num,bus_elem_name);

Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element
twice.

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point
character vector | string | cell array of character vectors | string array | vector of
linearization I/O objects

Analysis point to add to the list of analysis points on page 13-270 for s, specified as:

• Character vector or string — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or

'Engine Model/torque'
• Cell array of character vectors or string array — Specifies multiple signal identifiers.
• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1)
pt(2) = linio('scdcascade/Sum',1,'output')

13 Alphabetical List

13-268

Here, pt(1) specifies an input, and pt(2) specifies an output. The interface adds all
the signals specified by pt and ignores the I/O types. The interface also adds all
'loopbreak' type signals as permanent openings.

blk — Block path identifying block where analysis point originates
character vector (default) | string | cell array of character vectors | string array

Block path identifying the block where the analysis point originates, specified as a:

• Character vector or string to specify a single point, for example blk =
'scdcascade/C1'.

• Cell array of character vectors or string array to specify multiple points, for example
blk = {'scdcascade/C1','scdcascade/Sum'}.

blk, port_num, and bus_elem_name (if specified) must have the same size.

port_num — Port where analysis point originates
positive integer (default) | vector of positive integers

Port where the analysis point originates, specified as a:

• Positive integer to specify a single point, for example port_num = 1.
• Vector of positive integers to specify multiple points, for example port_num = [1

1].

blk, port_num, and bus_elem_name (if specified) must have the same size.

bus_elem_name — Bus element name
character vector (default) | string | cell array of character vectors | string array

Bus element name, specified as a:

• Character vector or string to specify a single point, for example bus_elem_name =
'data'.

• Cell array of character vectors or string array to specify multiple points, for example
bus_elem_name = {'limits.upper_saturation_limit','data'}.

blk, port_num, and bus_elem_name (if specified) must have the same size.

 addPoint

13-269

Definitions

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent

13 Alphabetical List

13-270

openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | linio | removeAllPoints | removePoint | slLinearizer | slTuner

Introduced in R2013b

 addPoint

13-271

getCompSensitivity
Complementary sensitivity function at specified point using slLinearizer or slTuner
interface

Syntax
linsys = getCompSensitivity(s,pt)
linsys = getCompSensitivity(s,pt,temp_opening)
linsys = getCompSensitivity(___ ,mdl_index)

[linsys,info] = getCompSensitivity(___)

Description
linsys = getCompSensitivity(s,pt) returns the complementary sensitivity
function on page 13-284 at the specified analysis point for the model associated with the
slLinearizer or slTuner interface, s.

The software enforces all the permanent openings on page 13-286 specified for s when it
calculates linsys. If you configured either s.Parameters, or s.OperatingPoints, or
both, getCompSensitivity performs multiple linearizations and returns an array of
complementary sensitivity functions.

linsys = getCompSensitivity(s,pt,temp_opening) considers additional,
temporary, openings at the point specified by temp_opening. Use an opening, for
example, to calculate the complementary sensitivity function of an inner loop with the
outer loop open.

linsys = getCompSensitivity(___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the complementary
sensitivity function for only a subset of the batch linearization results.

13 Alphabetical List

13-272

[linsys,info] = getCompSensitivity(___) returns additional linearization
information.

Examples

Obtain Complementary Sensitivity Function at Analysis Point

Obtain the complementary sensitivity function, calculated at the plant output, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the complementary sensitivity function at the plant output, use the y signal
as the analysis point. Add this point to sllin.

addPoint(sllin,'y');

Obtain the complementary sensitivity function at y.

 getCompSensitivity

13-273

sys = getCompSensitivity(sllin,'y');
tf(sys)

ans =

 From input "y" to output "y":
 -3

 s + 8

Continuous-time transfer function.

The software adds a linearization output at y, followed by a linearization input, dy.

sys is the transfer function from dy to y, which is equal to .

Specify Temporary Loop Opening for Complementary Sensitivity Function
Calculation

For the scdcascade model, obtain the complementary sensitivity function for the inner-
loop at y2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

13 Alphabetical List

13-274

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the complementary sensitivity transfer function for the inner loop at y2, use
the y2 signal as the analysis point. To eliminate the effects of the outer loop, break the
outer loop at y1m. Add both these points to sllin.

addPoint(sllin,{'y2','y1m'});

Obtain the complementary sensitivity function for the inner loop at y2.

sys = getCompSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening for the outer loop.

Obtain Complementary Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, calculate the complementary sensitivity
function for the inner loop for the maximum value of Kp2 and Ki2.

Open the scdcascade model.

 getCompSensitivity

13-275

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the complementary sensitivity of the inner loop, use the y2 signal as the
analysis point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add
both these points to sllin.

addPoint(sllin,{'y2','y1m'})

Determine the index for the maximum values of Ki2 and Kp2.

13 Alphabetical List

13-276

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the complementary sensitivity transfer function at y2.

sys = getCompSensitivity(sllin,'y2','y1m',mdl_index);

Obtain Offsets from Complementary Sensitivity Function

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the complementary sensitivity function at y, and obtain the corresponding
linearization offsets.

[sys,info] = getCompSensitivity(sllin,'watertank/Water-Tank System');

 getCompSensitivity

13-277

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 13-285 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose that an analysis point
does not have a signal name, but only a block name and port number. You can specify
pt as the block name. To use a point not in the list of analysis points for s, first add
the point using addPoint.

You can specify pt as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You

13 Alphabetical List

13-278

can specify pt as 'Torque' as long as 'Torque' is not a portion of the signal name
for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization output, followed by a linearization
input at pt.

Consider the following model:

+

-
K G

e u yr

Specify pt as 'y':

+

-
K G

e ur

+

dy

+

 y

The software computes linsys as the transfer function from dy to y.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization output, followed by a linearization input at each point.

 getCompSensitivity

13-279

+

-
K G

er

+

dy

+

 y

+

 u
du

+

du and dy are linearization inputs, and u and y are linearization outputs. The software
computes linsys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for
s. To determine the signal name associated with an analysis point, type s. The
software displays the contents of s in the MATLAB command window, including the
analysis point signal names, block names, and port numbers. Suppose that an analysis
point does not have a signal name, but only a block name and port number. You can
specify temp_opening as the block name. To use a point not in the list of analysis
points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name
or block name. Suppose that the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a portion of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

13 Alphabetical List

13-280

• Array of logical values — Logical array index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments
linsys — Complementary sensitivity function
state-space model

Complementary sensitivity function, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates linsys using the default model parameter values. The software uses the
model initial conditions as the linearization operating point. linsys is returned as a
state-space model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. linsys is returned as a state-space model array of the same
size as the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization for
each specified operating point. linsys is returned as a state-space model array of the
same size as s.OperatingPoints.

 getCompSensitivity

13-281

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter grid
point. The software requires that s.OperatingPoints is the same size as the
parameter grid specified by s.Parameters. The software computes each linearization
using corresponding operating points and parameter grid points. linsys is returned
as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for each
snapshot time and parameter grid point combination. Suppose that you specify a
parameter grid of size p and N snapshot times. linsys is returned as a state-space
model array of size N-by-p.

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise,
Offsets is returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with

the same dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx,

where nx is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length

ny, where ny is the number of outputs in linsys.

13 Alphabetical List

13-282

Field Description
u Input offsets used for linearization, returned as a column vector of length nu,

where nu is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for

discrete-time systems, returned as a column vector of length nx.
StateNam
e

State names, returned as a cell array that contains nx elements that match
the names in linsys.StateName.

InputNam
e

Input names, returned as a cell array that contains nu elements that match
the names in linsys.InputName.

OutputNa
me

Output names, returned as a cell array that contains ny elements that match
the names in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the
sample time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets.
To do so, first convert them to the required format using getOffsetsForLPV. For an
example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor
objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is
false. Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor
object.

• If linsys is an array of state-space models, Advisor is an array of
LinearizationAdvisor objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual
linearized blocks. For an example of troubleshooting linearization results using a
LinearizationAdvisor object, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

 getCompSensitivity

13-283

Definitions

Complementary Sensitivity Function
The complementary sensitivity function at a point is the transfer function from an additive
disturbance at the point to a measurement at the same point. In contrast to the sensitivity
function, the disturbance is added after the measurement.

To compute the complementary sensitivity function at an analysis point, x, the software
adds a linearization output at x, followed by a linearization input, dx. The complementary
sensitivity function is the transfer function from dx to x.

Analysis Point in Simulink
Model

How
getCompSensitivity
Interprets Analysis Point

Complementary
Sensitivity Function

x
dx

+

+

x
Transfer function from dx to
x

For example, consider the following model where you compute the complementary
sensitivity function at y:

13 Alphabetical List

13-284

Here, the software adds a linearization output at y, followed by a linearization input, dy.
The complementary sensitivity function at y, T, is the transfer function from dy to y. T is
calculated as follows:

y GK y dy

y GKy GKdy

I GK y GKdy

y I GK GK

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

()

()

()
1

1 2444 34444
dy.

Here I is an identity matrix of the same size as GK. The complementary sensitivity
transfer function at y is equal to -1 times the closed-loop transfer function from r to y.

Generally, the complementary sensitivity function, T, computed from reference signals to
plant outputs, is equal to I–S. Here S is the sensitivity function at the point, and I is the
identity matrix of commensurate size. However, because getCompSensitivity adds the
linearization output and input at the same point, T, as returned by
getCompSensitivity, is equal to S–I.

The software does not modify the Simulink model when it computes the complementary
sensitivity function.

Analysis Point
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

 getCompSensitivity

13-285

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Loop Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | addPoint | getIOTransfer | getLoopTransfer | getSensitivity |
slLinearizer | slTuner

Topics
“How the Software Treats Loop Openings” on page 2-42

13 Alphabetical List

13-286

“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-48

Introduced in R2013b

 getCompSensitivity

13-287

getIOTransfer
Transfer function for specified I/O set using slLinearizer or slTuner interface

Syntax
linsys = getIOTransfer(s,in,out)
linsys = getIOTransfer(s,in,out,temp_opening)

linsys = getIOTransfer(s,ios)

linsys = getIOTransfer(___ ,mdl_index)

[linsys,info] = getIOTransfer(___)

Description
linsys = getIOTransfer(s,in,out) returns the transfer function for the specified
inputs and outputs on page 13-300 for the model associated with the slLinearizer or
slTuner interface, s.

The software enforces all the permanent openings on page 13-307 specified for s when it
calculates linsys. For information on how getIOTransfer treats in and out, see
“Transfer Functions” on page 13-300. If you configured either s.Parameters, or
s.OperatingPoints, or both, getIOTransfer performs multiple linearizations and
returns an array of transfer functions.

linsys = getIOTransfer(s,in,out,temp_opening) considers additional,
temporary, openings at the point specified by temp_opening. Use an opening, for
example, to obtain the transfer function of the controller in series with the plant, with the
feedback loop open.

linsys = getIOTransfer(s,ios) returns the transfer function for the inputs and
outputs specified by ios for the model associated with s. Use the linio command to
create ios. The software enforces the linearization I/O type of each signal specified in
ios when it calculates linsys. The software also enforces all the permanent loop
openings specified for s.

13 Alphabetical List

13-288

linsys = getIOTransfer(___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the transfer function
for only a subset of the batch linearization results.

[linsys,info] = getIOTransfer(___) returns additional linearization information.

Examples

Obtain Closed-Loop Transfer Function from Reference to Plant Output

Obtain the closed-loop transfer function from the reference signal, r, to the plant output,
y, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

 getIOTransfer

13-289

To obtain the closed-loop transfer function from the reference signal, r, to the plant
output, y, add both points to sllin.

addPoint(sllin,{'r','y'});

Obtain the closed-loop transfer function from r to y.

sys = getIOTransfer(sllin,'r','y');
tf(sys)

ans =

 From input "r" to output "y":
 3

 s + 8

Continuous-time transfer function.

The software adds a linearization input at r, dr, and a linearization output at y.

sys is the transfer function from dr to y, which is equal to .

Specify Temporary Loop Opening to Get Plant Model

Obtain the plant model transfer function, G, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

13 Alphabetical List

13-290

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the plant model transfer function, use u as the input point and y as the output
point. To eliminate the effects of feedback, you must break the loop. You can break the
loop at u, e, or y. For this example, break the loop at u. Add these points to sllin.

addPoint(sllin,{'u','y'});

Obtain the plant model transfer function.

sys = getIOTransfer(sllin,'u','y','u');
tf(sys)

ans =

 From input "u" to output "y":
 1

 s + 5

Continuous-time transfer function.

The second input argument specifies u as the input, while the fourth input argument
specifies u as a temporary loop opening.

 getIOTransfer

13-291

sys is the transfer function from du to y, which is equal to .

Obtain Open-Loop Response Transfer Function for Specific Parameter
Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, calculate the open-loop response transfer
function for the inner loop, from e2 to y2, for the maximum value of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

13 Alphabetical List

13-292

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the open-loop transfer function for the inner loop, use e2 and y2 as analysis
points. To eliminate the effects of the outer loop, break the loop at e2. Add e2 and y2 to
sllin as analysis points.

addPoint(sllin,{'e2','y2'})

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the open-loop transfer function from e2 to y2.

sys = getIOTransfer(sllin,'e2','y2','e2',mdl_index);

Obtain Offsets from Input/Output Transfer Function

Open Simulink model.

mdl = 'scdcascade';
open_system(mdl)

 getIOTransfer

13-293

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add analysis points to calculate the closed-loop transfer function.

addPoint(sllin,{'r','y1m'});

Calculate the input/output transfer function, and obtain the corresponding linearization
offsets.

[sys,info] = getIOTransfer(sllin,'r','y1m');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [6x1 double]
 dx: [6x1 double]

13 Alphabetical List

13-294

 u: 1
 y: 0
 StateName: {6x1 cell}
 InputName: {'r'}
 OutputName: {'y1m'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

in — Input analysis point signal name
character vector | string | cell array of character vectors | string array

Input analysis point on page 13-306 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose that an analysis point
does not have a signal name, but only a block name and port number. You can specify
in as the block name. To use a point not in the list of analysis points for s, first add
the point using addPoint.

You can specify in as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You
can specify in as 'Torque' as long as 'Torque' is not a portion of the signal name
for any other analysis point of s.

For example, in = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, in = {'y1m','y2m'}.

out — Output analysis point signal name
character vector | string | cell array of character vectors | string array

 getIOTransfer

13-295

Output analysis point on page 13-306 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose that an analysis point
does not have a signal name, but only a block name and port number. You can specify
out as the block name. To use a point not in the list of analysis points for s, first add
the point using addPoint.

You can specify out as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You
can specify out as 'Torque' as long as 'Torque' is not a portion of the signal name
for any other analysis point of s.

For example, out = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, out = {'y1m','y2m'}.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for
s. To determine the signal name associated with an analysis point, type s. The
software displays the contents of s in the MATLAB command window, including the
analysis point signal names, block names, and port numbers. Suppose that an analysis
point does not have a signal name, but only a block name and port number. You can
specify temp_opening as the block name. To use a point not in the list of analysis
points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name
or block name. Suppose that the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a portion of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.

13 Alphabetical List

13-296

• Cell array of character vectors or string array — Specifies multiple analysis point
names. For example, temp_opening = {'y1m','y2m'}.

ios — Linearization I/Os
linearization I/O object

Linearization I/Os, created using linio, specified as a linearization I/O object.

ios must specify signals that are in the list of analysis points for s. To view the list of
analysis points, type s. To use a point that is not in the list of analysis points for s, you
must first add the point to the list using addPoint.

For example:

ios(1) = linio('scdcascade/setpoint',1,'input');
ios(2) = linio('scdcascade/Sum',1,'output');

Here, ios(1) specifies an input, and ios(2) specifies an output.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

 getIOTransfer

13-297

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments
linsys — Transfer function for specified I/Os
state-space model

Transfer function for specified I/Os, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates linsys using the default model parameter values. The software uses the
model initial conditions as the linearization operating point. linsys is returned as a
state-space model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. linsys is returned as a state-space model array of the same
size as the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization for
each specified operating point. linsys is returned as a state-space model array of the
same size as s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter grid
point. The software requires that s.OperatingPoints is the same size as the
parameter grid specified by s.Parameters. The software computes each linearization
using corresponding operating points and parameter grid points. linsys is returned
as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for each
snapshot time and parameter grid point combination. Suppose that you specify a
parameter grid of size p and N snapshot times. linsys is returned as a state-space
model array of size N-by-p.

13 Alphabetical List

13-298

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise,
Offsets is returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with

the same dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx,

where nx is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length

ny, where ny is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu,

where nu is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for

discrete-time systems, returned as a column vector of length nx.
StateNam
e

State names, returned as a cell array that contains nx elements that match
the names in linsys.StateName.

InputNam
e

Input names, returned as a cell array that contains nu elements that match
the names in linsys.InputName.

OutputNa
me

Output names, returned as a cell array that contains ny elements that match
the names in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the
sample time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets.
To do so, first convert them to the required format using getOffsetsForLPV. For an

 getIOTransfer

13-299

example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor
objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is
false. Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor
object.

• If linsys is an array of state-space models, Advisor is an array of
LinearizationAdvisor objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual
linearized blocks. For an example of troubleshooting linearization results using a
LinearizationAdvisor object, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

Definitions
Transfer Functions
A transfer function is an LTI system response at a linearization output point to a
linearization input. You perform linear analysis on transfer functions to understand the
stability, time-domain characteristics, or frequency-domain characteristics of a system.

You can calculate multiple transfer functions for a given block diagram. Consider the
ex_scd_simple_fdbk model:

13 Alphabetical List

13-300

You can calculate the transfer function from the reference input signal to the plant output
signal. The reference input (also referred to as setpoint), r, originates at the Reference
block, and the plant output, y, originates at the G block. This transfer function is also
called the overall closed-loop transfer function. To calculate this transfer function, the
software adds a linearization input at r, dr, and a linearization output at y.

+

-
K G

e u

 y

+

dr

+
r

The software calculates the overall closed-loop transfer function as the transfer function
from dr to y, which is equal to (I+GK)-1GK.

Observe that the transfer function from r to y is equal to the transfer function from dr to
y.

You can calculate the plant transfer function from the plant input, u, to the plant output,
y. To isolate the plant dynamics from the effects of the feedback loop, introduce a loop
break (or opening) at y, e, or, as shown, at u.

+

-
K G

e ur

 y
du

The software breaks the loop and adds a linearization input, du, at u, and a linearization
output at y. The plant transfer function is equal to the transfer function from du to y,
which is G.

Similarly, to obtain the controller transfer function, calculate the transfer function from
the controller input, e, to the controller output, u. Break the feedback loop at y, e, or u.

 getIOTransfer

13-301

You can use getIOTransfer to obtain various open-loop and closed-loop transfer
functions. To configure the transfer function, specify analysis points on page 13-306 as
inputs, outputs, and openings (temporary or permanent on page 13-307), in any
combination. The software treats each combination uniquely. Consider the following code
that shows some different ways that you can use the analysis point, u, to obtain a transfer
function:

sllin = slLinearizer('ex_scd_simple_fdbk')

addPoint(sllin,{'u','e','y'})

T0 = getIOTransfer(sllin,'e','y','u');
T1 = getIOTransfer(sllin,'u','y');
T2 = getIOTransfer(sllin,'u','y','u');
T3 = getIOTransfer(sllin,'y','u');
T4 = getIOTransfer(sllin,'y','u','u');
T5 = getIOTransfer(sllin,'u','u');
T6 = getIOTransfer(sllin,'u','u','u');

In T0, u specifies a loop break. In T1, u specifies only an input, whereas in T2, u specifies
an input and an opening, also referred to as an open-loop input. In T3, u specifies only an
output, whereas in T4, u specifies an output and an opening, also referred to as an open-
loop output. In T5, u specifies an input and an output, also referred to as a
complementary sensitivity point. In T6, u specifies an input, an output, and an opening,
also referred to as a loop transfer point. The table describes how getIOTransfer treats
the analysis points, with an emphasis on the different uses of u.

13 Alphabetical List

13-302

u Specifies... How getIOTransfer
Treats Analysis Points

Transfer Function

Loop break

Example code:

T0 = getIOTransfer(sllin,'e','y','u')
+

-
K G

ur

de

+

 y

The software stops the
signal flow at u, adds a
linearization input, de, at e,
and a linearization output at
y.

y G

y
T

=

Æ =

0

0

0

{

Input

Example code:

T1 = getIOTransfer(sllin,'u','y')
+

-
K G

er

+

du

+

 y

The software adds a
linearization input, du, at u,
and a linearization output at
y.

y G du Ky

y Gdu GKy

I GK y Gdu

y I GK G du

T

= -

Æ = -

Æ + =

Æ = +
-

()

()

()
1

1

1 244 344

 getIOTransfer

13-303

u Specifies... How getIOTransfer
Treats Analysis Points

Transfer Function

Open-loop input

Example code:

T2 = getIOTransfer(sllin,'u','y','u')
+

-
K G

e ur

 y
du

The software breaks the
signal flow and adds a
linearization input, du, at u,
and a linearization output at
y.

y G du

y G du
T

= +

Æ =

()0

2

{

Output

Example code:

T3 = getIOTransfer(sllin,'y','u')
+

-
K G

er

 u

+

dy

+

The software adds a
linearization input, dy, at y
and a linearization output at
u.

u K dy Gu

u Kdy KGu

I KG u Kdy

u I KG K d

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

()

()

()
1

3

1 244 344
yy

13 Alphabetical List

13-304

u Specifies... How getIOTransfer
Treats Analysis Points

Transfer Function

Open-loop output

Example code:

T4 = getIOTransfer(sllin,'y','u','u')
+

-
K G

er

 u
+

dy

+

The software adds a
linearization input, dy, at y
and adds a linearization
output and breaks the signal
flow at u.

u K dy G

u K dy
T

= - +

Æ = -

()0

4

{

Complementary
sensitivity point

Example code:

T5 = getIOTransfer(sllin,'u','u')

Tip You also can obtain the
complementary sensitivity
function using
getCompSensitivity.

+

-
K G

e yr

du

+

+

u

The software adds a
linearization output and a
linearization input, du, at u.

u KG du u

u KGdu KGu

I KG u KGdu

u I KG KG

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

()

()

()
1

5

1 2444 33444
du

 getIOTransfer

13-305

u Specifies... How getIOTransfer
Treats Analysis Points

Transfer Function

Loop transfer function
point

Example code:

T6 = getIOTransfer(sllin,'u','u','u')

Tip You also can obtain the
loop transfer function using
getLoopTransfer.

+

-
K G

e yr

u

du

The software adds a
linearization output, breaks
the loop, and adds a
linearization input, du, at u.

u KG du

u KG du

T

= - +

Æ = -

()0

6

{

The software does not modify the Simulink model when it computes the transfer function.

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

13 Alphabetical List

13-306

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | addPoint | getCompSensitivity | getLoopTransfer |
getSensitivity | slLinearizer | slTuner

Topics
“How the Software Treats Loop Openings” on page 2-42
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32

 getIOTransfer

13-307

“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-48

Introduced in R2013b

13 Alphabetical List

13-308

getLoopTransfer
Open-loop transfer function at specified point using slLinearizer or slTuner interface

Syntax
linsys = getLoopTransfer(s,pt)
linsys = getLoopTransfer(s,pt,sign)

linsys = getLoopTransfer(s,pt,temp_opening)
linsys = getLoopTransfer(s,pt,temp_opening,sign)

linsys = getLoopTransfer(___ ,mdl_index)

[linsys,info] = getLoopTransfer(___)

Description
linsys = getLoopTransfer(s,pt) returns the point-to-point open-loop transfer
function on page 13-323 at the specified analysis point for the model associated with the
slLinearizer or slTuner interface, s.

The software enforces all the permanent loop openings on page 13-325 specified for s
when it calculates linsys. If you configured either s.Parameters, or
s.OperatingPoints, or both, getLoopTransfer performs multiple linearizations and
returns an array of loop transfer functions.

linsys = getLoopTransfer(s,pt,sign) specifies the feedback sign for computing
the open-loop response. By default, linsys is the positive-feedback open-loop transfer
function.

Set sign to -1 to compute the negative-feedback open-loop transfer function for
applications that assume the negative-feedback definition of linsys. Many classical
design and analysis techniques, such as the Nyquist or root locus design techniques, use
the negative-feedback convention.

The closed-loop sensitivity at pt is equal to feedback(1,linsys,sign).

 getLoopTransfer

13-309

linsys = getLoopTransfer(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to
calculate the loop transfer function of an inner loop, measured at the plant input, with the
outer loop open.

linsys = getLoopTransfer(s,pt,temp_opening,sign) specifies temporary
openings and the feedback sign.

linsys = getLoopTransfer(___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the loop transfer
function for only a subset of the batch linearization results.

[linsys,info] = getLoopTransfer(___) returns additional linearization
information.

Examples

Obtain Loop Transfer Function at Analysis Point

Obtain the loop transfer function, calculated at e, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

13 Alphabetical List

13-310

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e');
tf(sys)

ans =

 From input "e" to output "e":
 -3

 s + 5

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input,
de, at e.

sys is the transfer function from de to e. Because the software assumes positive-
feedback, it returns sys as .

 getLoopTransfer

13-311

Obtain Negative-Feedback Loop Transfer Function at Analysis Point

Obtain the negative-feedback loop transfer function, calculated at e, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e',-1);
tf(sys)

ans =

 From input "e" to output "e":
 3

13 Alphabetical List

13-312

 s + 5

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input,
de, at e.

sys is the transfer function from de to e. Because the third input argument indicates
negative-feedback, the software returns sys as .

Specify Temporary Loop Opening for Loop Transfer Function Calculation

Obtain the loop transfer function for the inner loop, calculated at e2, for the scdcascade
model.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

 getLoopTransfer

13-313

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the loop transfer function for the inner loop, use the e2 signal as the analysis
point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add these
points to sllin.

addPoint(sllin,{'e2','y1m'});

Obtain the inner-loop loop transfer function at e2.

sys = getLoopTransfer(sllin,'e2','y1m');

Here, 'y1m', the third input argument, specifies a temporary loop opening. The software
assumes positive-feedback when it calculates sys.

Obtain Loop Transfer Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller, in the 10% range. For this example, calculate the loop transfer function for the
inner loop at e2 for the maximum values of Kp2 and Ki2.

Open the scdcascade model.

13 Alphabetical List

13-314

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the loop transfer function for the inner loop, use the e2 signal as the analysis
point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add these
points to sllin.

addPoint(sllin,{'e2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

 getLoopTransfer

13-315

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the inner-loop loop transfer function at e2, with the outer loop open.

sys = getLoopTransfer(sllin,'e2','y1m',-1,mdl_index);

The fourth input argument specifies negative-feedback for the loop transfer calculation.

Obtain Offsets from Loop Transfer Function

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the loop transfer function at the analysis point, and obtain the corresponding
linearization offsets.

13 Alphabetical List

13-316

[sys,info] = getLoopTransfer(sllin,'watertank/Water-Tank System');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 13-324 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose that an analysis point
does not have a signal name, but only a block name and port number. You can specify
pt as the block name. To use a point not in the list of analysis points for s, first add
the point using addPoint.

 getLoopTransfer

13-317

You can specify pt as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You
can specify pt as 'Torque' as long as 'Torque' is not a portion of the signal name
for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization output, followed by a loop break,
and then a linearization input at pt. Consider the following model:

+

-
K G

e u yr

Specify pt as 'u'.

+

-
K G

e yr

u

du

The software computes linsys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization output, loop break, and a linearization input at each point.

13 Alphabetical List

13-318

+

-
K G

er

u
du

y

dy

du and dy are linearization inputs, and, u and y are linearization outputs. The software
computes linsys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

sign — Feedback sign
+1 (default) | -1

Feedback sign, specified as one of the following values:

• +1 (default) — getLoopTransfer returns the positive-feedback open-loop transfer
function.

• -1 — getLoopTransfer returns the negative-feedback open-loop transfer function.
The negative-feedback transfer function is -1 times the positive-feedback transfer
function.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for
s. To determine the signal name associated with an analysis point, type s. The
software displays the contents of s in the MATLAB command window, including the
analysis point signal names, block names, and port numbers. Suppose that an analysis
point does not have a signal name, but only a block name and port number. You can
specify temp_opening as the block name. To use a point not in the list of analysis
points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name
or block name. Suppose that the full signal name of an analysis point is

 getLoopTransfer

13-319

'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a portion of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments
linsys — Point-to-point open-loop transfer function
state-space object

Point-to-point open-loop transfer function, returned as described in the following:

13 Alphabetical List

13-320

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates linsys using the default model parameter values. The software uses the
model initial conditions as the linearization operating point. linsys is returned as a
state-space model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. linsys is returned as a state-space model array of the same
size as the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization for
each specified operating point. linsys is returned as a state-space model array of the
same size as s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter grid
point. The software requires that s.OperatingPoints is the same size as the
parameter grid specified by s.Parameters. The software computes each linearization
using corresponding operating points and parameter grid points. linsys is returned
as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for each
snapshot time and parameter grid point combination. Suppose that you specify a
parameter grid of size p and N snapshot times. linsys is returned as a state-space
model array of size N-by-p.

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise,
Offsets is returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.

 getLoopTransfer

13-321

• If linsys is an array of state-space models, then Offsets is a structure array with
the same dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx,

where nx is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length

ny, where ny is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu,

where nu is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for

discrete-time systems, returned as a column vector of length nx.
StateNam
e

State names, returned as a cell array that contains nx elements that match
the names in linsys.StateName.

InputNam
e

Input names, returned as a cell array that contains nu elements that match
the names in linsys.InputName.

OutputNa
me

Output names, returned as a cell array that contains ny elements that match
the names in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the
sample time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets.
To do so, first convert them to the required format using getOffsetsForLPV. For an
example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor
objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is
false. Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor
object.

13 Alphabetical List

13-322

• If linsys is an array of state-space models, Advisor is an array of
LinearizationAdvisor objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual
linearized blocks. For an example of troubleshooting linearization results using a
LinearizationAdvisor object, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

Definitions

Loop Transfer Function
The loop transfer function at a point is the point-to-point open-loop transfer function from
an additive disturbance at a point to a measurement at the same point.

To compute the loop transfer function at an analysis point, x, the software adds a
linearization output, inserts a loop break, and adds a linearization input, dx. The software
computes the transfer function from dx to x, which is equal to the loop transfer function
at x.

Analysis Point in Simulink
Model

How getLoopTransfer
Interprets Analysis Point

Loop Transfer Function

x
dx

x
Transfer function from dx to
x

For example, consider the following model where you compute the loop transfer function
at e:

 getLoopTransfer

13-323

K yr
+

-

e G
u

Loop transfer

Controller Plant

Here, at e, the software adds a linearization output, inserts a loop break, and adds a
linearization input, de. The loop transfer function at e, L, is the transfer function from de
to e. L is calculated as follows:

e GK de

L

= -
{

.

To compute -KG, use u as the analysis point for getLoopTransfer.

The software does not modify the Simulink model when it computes the loop transfer
function.

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

13 Alphabetical List

13-324

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getSensitivity | slLinearizer | slTuner

Topics
“How the Software Treats Loop Openings” on page 2-42

 getLoopTransfer

13-325

“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-48

Introduced in R2013b

13 Alphabetical List

13-326

getOpenings
Get list of openings for slLinearizer or slTuner interface

Syntax
op_names = getOpenings(s)

Description
op_names = getOpenings(s) returns the names of the permanent openings of s,
which can be either an slLinearizer interface or an slTuner interface.

Examples

Obtain Permanent Opening Names of slLinearizer Interface

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

 getOpenings

13-327

Create an slLinearizer interface to the model, and add some analysis points to the
interface.

sllin = slLinearizer(mdl,{'u1','y1'});

Suppose you are interested in analyzing only the inner loop. To do so, add y1m as a
permanent opening of sllin.

addOpening(sllin,'y1m');

In larger models, you may want to open multiple loops to isolate the system of interest.

After performing some additional steps, such as adding more points of interest and
extracting transfer functions, suppose you want a list of all the openings of sllin.

op_names = getOpenings(sllin)

op_names =

 1x1 cell array

 {'scdcascade/Sum/1[y1m]'}

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Output Arguments
op_names — Permanent opening names
cell array of character vectors

Permanent opening names, returned as a cell array of character vectors.

13 Alphabetical List

13-328

Each entry of op_names follows the pattern, full block path/outport number/
[signal name].

See Also
addOpening | getIOTransfer | removeOpening | slLinearizer | slTuner

Introduced in R2014a

 getOpenings

13-329

getPoints
Get list of analysis points for slLinearizer or slTuner interface

Syntax
pt_names = getPoints(s)

Description
pt_names = getPoints(s) returns the names of the analysis points of s, which can be
either an slLinearizer interface or an slTuner interface. Use the analysis point
names to extract transfer functions using commands such as getIOTransfer and to
specify tuning goals for an slTuner interface.

Examples

Obtain Analysis Point Names of slLinearizer Interface

Open Simulink model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl)

13 Alphabetical List

13-330

Create an slLinearizer interface to the model, and add some analysis points to the
interface.

sllin = slLinearizer(mdl,{'r','e','u','y'});

Get the names of all the analysis points associated with sllin.

pt_names = getPoints(sllin)

pt_names =

 4x1 cell array

 {'ex_scd_simple_fdbk/Reference/1[r]' }
 {'ex_scd_simple_fdbk/Sum/1[e]' }
 {'ex_scd_simple_fdbk/K (controller)/1[u]'}
 {'ex_scd_simple_fdbk/G (plant)/1[y]' }

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Output Arguments
pt_names — Analysis point names
cell array of character vectors

Analysis point names, returned as a cell array of character vectors.

Each entry of pt_names follows the pattern, full block path/outport number/
[signal name].

 getPoints

13-331

See Also
addPoint | getIOTransfer | removePoint | slLinearizer | slTuner

Topics
“Mark Signals of Interest for Control System Analysis and Design” on page 2-51

Introduced in R2014a

13 Alphabetical List

13-332

getSensitivity
Sensitivity function at specified point using slLinearizer or slTuner interface

Syntax
linsys = getSensitivity(s,pt)
linsys = getSensitivity(s,pt,temp_opening)
linsys = getSensitivity(___ ,mdl_index)

[linsys,info] = getSensitivity(___)

Description
linsys = getSensitivity(s,pt) returns the sensitivity function on page 13-345 at
the specified analysis point for the model associated with the slLinearizer or slTuner
interface, s.

The software enforces all the permanent openings on page 13-347 specified for s when it
calculates linsys. If you configured either s.Parameters, or s.OperatingPoints, or
both, getSensitivity performs multiple linearizations and returns an array of
sensitivity functions.

linsys = getSensitivity(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to
calculate the sensitivity function of an inner loop, with the outer loop open.

linsys = getSensitivity(___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the sensitivity function
for only a subset of the batch linearization results.

[linsys,info] = getSensitivity(___) returns additional linearization
information.

 getSensitivity

13-333

Examples

Sensitivity Function at Analysis Point

For the ex_scd_simple_fdbk model, obtain the sensitivity at the plant input, u.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the sensitivity at the plant input, u, add u as an analysis point to sllin.

addPoint(sllin,'u');

Obtain the sensitivity at the plant input, u.

sys = getSensitivity(sllin,'u');
tf(sys)

ans =

13 Alphabetical List

13-334

 From input "u" to output "u":
 s + 5

 s + 8

Continuous-time transfer function.

The software uses a linearization input, du, and linearization output u to compute sys.

sys is the transfer function from du to u, which is equal to .

Specify Temporary Loop Opening for Sensitivity Function Calculation

For the scdcascade model, obtain the inner-loop sensitivity at the output of G2, with the
outer loop open.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

 getSensitivity

13-335

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add both these points
to sllin.

addPoint(sllin,{'y2','y1m'});

Obtain the sensitivity at y2 with the outer loop open.

sys = getSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening of the outer loop.

Obtain Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, obtain the sensitivity at the output of G2,
with the outer loop open, for the maximum values of Kp2 and Ki2.

Open the scdcascade model.

13 Alphabetical List

13-336

mdl = 'scdcascade';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add both these points
to sllin as analysis points.

addPoint(sllin,{'y2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

 getSensitivity

13-337

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the sensitivity at the output of G2 for the specified parameter combination.

sys = getSensitivity(sllin,'y2','y1m',mdl_index);

Obtain Offsets from Sensitivity Function

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the sensitivity function at the analysis point, and obtain the corresponding
linearization offsets.

[sys,info] = getSensitivity(sllin,'watertank/Water-Tank System');

13 Alphabetical List

13-338

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 13-346 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose that an analysis point
does not have a signal name, but only a block name and port number. You can specify
pt as the block name. To use a point not in the list of analysis points for s, first add
the point using addPoint.

You can specify pt as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You

 getSensitivity

13-339

can specify pt as 'Torque' as long as 'Torque' is not a portion of the signal name
for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization input, followed by a linearization
output at pt.

Consider the following model:

+

-
K G

e u yr

Specify pt as 'u':

+

-
K G

er

+

du

+

u

The software computes linsys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization input, followed by a linearization output at each point.

13 Alphabetical List

13-340

+

-
K G

er

+

du

+

u

+

dy

+

y

du and dy are linearization inputs, and, u and y are linearization outputs. The software
computes linsys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for
s. To determine the signal name associated with an analysis point, type s. The
software displays the contents of s in the MATLAB command window, including the
analysis point signal names, block names, and port numbers. Suppose that an analysis
point does not have a signal name, but only a block name and port number. You can
specify temp_opening as the block name. To use a point not in the list of analysis
points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name
or block name. Suppose that the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a portion of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

 getSensitivity

13-341

• Array of logical values — Logical array index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that
you vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments
linsys — Sensitivity function
state-space model

Sensitivity function, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates linsys using the default model parameter values. The software uses the
model initial conditions as the linearization operating point. linsys is returned as a
state-space model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. linsys is returned as a state-space model array of the same
size as the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization for
each specified operating point. linsys is returned as a state-space model array of the
same size as s.OperatingPoints.

13 Alphabetical List

13-342

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter grid
point. The software requires that s.OperatingPoints is the same size as the
parameter grid specified by s.Parameters. The software computes each linearization
using corresponding operating points and parameter grid points. linsys is returned
as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for each
snapshot time and parameter grid point combination. Suppose that you specify a
parameter grid of size p and N snapshot times. linsys is returned as a state-space
model array of size N-by-p.

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise,
Offsets is returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with

the same dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx,

where nx is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length

ny, where ny is the number of outputs in linsys.

 getSensitivity

13-343

Field Description
u Input offsets used for linearization, returned as a column vector of length nu,

where nu is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for

discrete-time systems, returned as a column vector of length nx.
StateNam
e

State names, returned as a cell array that contains nx elements that match
the names in linsys.StateName.

InputNam
e

Input names, returned as a cell array that contains nu elements that match
the names in linsys.InputName.

OutputNa
me

Output names, returned as a cell array that contains ny elements that match
the names in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the
sample time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets.
To do so, first convert them to the required format using getOffsetsForLPV. For an
example, see “Approximating Nonlinear Behavior Using an Array of LTI Systems” on page
3-91.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor
objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is
false. Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor
object.

• If linsys is an array of state-space models, Advisor is an array of
LinearizationAdvisor objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual
linearized blocks. For an example of troubleshooting linearization results using a
LinearizationAdvisor object, see “Troubleshoot Linearization Results at Command
Line” on page 4-42.

13 Alphabetical List

13-344

Definitions

Sensitivity Function
The sensitivity function, also referred to simply as sensitivity, measures how sensitive a
signal is to an added disturbance. Sensitivity is a closed-loop measure. Feedback reduces
the sensitivity in the frequency band where the open-loop gain is greater than 1.

To compute the sensitivity at an analysis point, x, the software injects a disturbance
signal, dx, at the point. Then, the software computes the transfer function from dx to x,
which is equal to the sensitivity function at x.

Analysis Point in Simulink
Model

How getSensitivity
Interprets Analysis Point

Sensitivity Function

x
dx

+

+

 x
Transfer function from dx to
x

For example, consider the following model where you compute the sensitivity function at
u:

K yr
+

-

e
G

u

Sensitivity

Controller Plant

Here, the software injects a disturbance signal (du) at u. The sensitivity at u, Su, is the
transfer function from du to u. The software calculates Su as follows:

 getSensitivity

13-345

u du KGu

I KG u du

u I KG du

S
u

= -

Æ + =

Æ = +
-

()

() .
1

1 24 34

Here, I is an identity matrix of the same size as KG.

Similarly, to compute the sensitivity at y, the software injects a disturbance signal (dy) at
y. The software computes the sensitivity function as the transfer function from dy to y.
This transfer function is equal to (I+GK)-1, where I is an identity matrix of the same size
as GK.

The software does not modify the Simulink model when it computes the sensitivity
transfer function.

Analysis Point
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

13 Alphabetical List

13-346

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | slLinearizer | slTuner

Topics
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer
Interface” on page 3-41
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-48
“How the Software Treats Loop Openings” on page 2-42

 getSensitivity

13-347

Introduced in R2013b

13 Alphabetical List

13-348

refresh
Resynchronize slLinearizer or slTuner interface with current model state

Syntax
refresh(s)

Description
refresh(s) resynchronizes the slLinearizer or slTuner interface, s, with the
current state of the model. The interface recompiles the model for the next call to
functions that either return transfer functions (such as getIOTransfer and
getLoopTransfer) or functions that tune model parameters (such as systune or
looptune). This model recompilation ensures that the interface uses the current model
state when computing linearizations. Block parameterizations and values for tuned blocks
are preserved. Use setBlockParam to sync blocks with the model.

Use this command after you make changes to the model that impact linearization.
Changes that impact linearization include modifying parameter values and reconfiguring
blocks and signals.

Examples

Resynchronize slLinearizer Interface with Current Model State

Create an slLinearizer interface.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. Then, you linearize the model using the getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity commands. The first
time you call one of these commands with sllin, the software stores the state of the
model in sllin and uses it to compute the linearization.

 refresh

13-349

You can change the model after your first call to getIOTransfer, getLoopTransfer,
getSensitivity, or getCompSensitivity with sllin. Some changes impact the
linearization, such as changing parameter values. If your change impacts the
linearization, call refresh to get expected linearization results. For this example, change
the proportional gain of the C2 PID controller block.

set_param('scdcascade/C2','P','10')

Trigger the interface to recompile the model for the next call to getIOTransfer,
getLoopTransfer, getSensitivity, or getCompSensitivity.

refresh(sllin);

Resynchronize slTuner Interface with Current Model State

Create an slTuner interface.

st = slTuner('scdcascade','C2');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. Then, you tune the model block parameters using the systune
and looptune commands. You can also analyze various transfer functions in the model
using commands such as getIOTransfer and getLoopTransfer. The first time you call
one of these commands with st, the software stores the state of the model in st and uses
it to compute the linearization.

You can change the model after your first call to one of these commands. Some changes
impact the linearization, such as changing parameter values. If your change impacts the
linearization, call refresh to get expected linearization results. For this example, change
the proportional gain of the C1 PID controller block.

set_param('scdcascade/C1','P','10')

Trigger the interface to recompile the model for the next call to commands such as
getIOTransfer, getLoopTransfer, or systune.

refresh(st);

13 Alphabetical List

13-350

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

See Also
getCompSensitivity | getIOTransfer | getLoopTransfer | getSensitivity |
looptune | slLinearizer | slTuner | systune

Introduced in R2013b

 refresh

13-351

removeAllOpenings
Remove all openings from list of permanent openings in slLinearizer or slTuner
interface

Syntax
removeAllOpenings(s)

Description
removeAllOpenings(s) removes all openings from the list of permanent openings on
page 13-353 in the slLinearizer or slTuner interface, s. This function does not
modify the Simulink model associated with s.

Examples

Remove All Openings from slLinearizer Interface

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add two openings to the interface.

addOpening(sllin,{'y2m','y1m'});

'y2m' and 'y1m' are the names of two feedback signals in the scdcascade model. The
addOpening command adds these signals to the list of openings for sllin.

Remove all the openings from sllin.

removeAllOpenings(sllin);

13 Alphabetical List

13-352

To verify that all openings have been removed, display the contents of sllin, and
examine the information about the interface openings.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Definitions

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

 removeAllOpenings

13-353

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | removeOpening | slLinearizer | slTuner

Introduced in R2013b

13 Alphabetical List

13-354

removeAllPoints
Remove all points from list of analysis points in slLinearizer or slTuner interface

Syntax
removeAllPoints(s)

Description
removeAllPoints(s) removes all points from the list of analysis points on page 13-356
for the slLinearizer or slTuner interface, s. This function does not modify the model
associated with s.

Examples

Remove All Analysis Points

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove all signals from the list of interface analysis points.

removeAllPoints(sllin);

To verify that all analysis points have been removed, display the contents of sllin, and
examine the information about the interface analysis points.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.

 removeAllPoints

13-355

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Definitions

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

13 Alphabetical List

13-356

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

See Also
addPoint | removePoint | slLinearizer | slTuner

Introduced in R2013b

 removeAllPoints

13-357

removeOpening
Remove opening from list of permanent loop openings in slLinearizer or slTuner
interface

Syntax
removeOpening(s,op)

Description
removeOpening(s,op) removes the specified opening, op, from the list of permanent
openings on page 13-363 for the slLinearizer or slTuner interface, s. You can specify
op to remove either a single or multiple openings.

removeOpening does not modify the model associated with s.

Examples

Remove Opening Using Signal Name

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Remove the 'y1m' opening from sllin.

removeOpening(sllin,'y1m');

13 Alphabetical List

13-358

Remove Multiple Openings Using Signal Names

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Remove the 'y1m' and 'y2m' openings from sllin.

removeOpening(sllin,{'y1m','y2m'});

Remove Opening Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, loop openings, operating
points, and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Determine the index number of the opening you want to remove. To do this, display the
contents of the interface, which includes opening index numbers, in the Command
Window.

For this example, remove the 'y1m' opening from sllin.

sllin

 removeOpening

13-359

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
3 Permanent openings:

Opening 1:
- Block: scdcascade/Sum3
- Port: 1
- Signal Name: y2m
Opening 2:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m
Opening 3:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1

Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that 'y1m' is the second opening of sllin .

Remove the opening from the interface.

removeOpening(sllin,2);

Remove Multiple Openings Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

13 Alphabetical List

13-360

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Determine the index numbers of the openings you want to remove. To do this, display the
contents of the interface, which includes opening index numbers, in the Command
Window.

For this example, remove the 'y2m' and 'y1m' openings from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
3 Permanent openings:

Opening 1:
- Block: scdcascade/Sum3
- Port: 1
- Signal Name: y2m
Opening 2:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m
Opening 3:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1

Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that 'y2m' and 'y1m' are the first and second openings of sllin .

Remove the openings from the interface.

removeOpening(sllin,[1 2]);

 removeOpening

13-361

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

op — Opening
character vector | string | cell array of character vectors | string array | positive integer |
vector of positive integers

Opening on page 13-363 to remove from the list of permanent openings for s, specified
as:

• Character vector or string — Opening signal name.

To determine the signal name associated with an opening, type s. The software
displays the contents of s in the MATLAB command window, including the opening
signal names, block names, and port numbers. Suppose an opening does not have a
signal name, but only a block name and port number. You can specify op as the block
name.

You can specify op as a uniquely matching portion of the full signal name or block
name. Suppose the full signal name of an opening is 'LoadTorque'. You can specify
op as 'Torque' as long as 'Torque' is not a portion of the signal name for any other
opening of s.

For example, op = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple opening names.

For example, op = {'y1m','y2m'}.
• Positive integer — Opening index.

To determine the index of an opening, type s. The software displays the contents of s
in the MATLAB command window, including the opening indices. For example, op =
1.

• Vector of positive integers — Specifies multiple opening indices. For example, op =
[1 2].

13 Alphabetical List

13-362

Definitions

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent
openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

See Also
addOpening | removeAllOpenings | removePoint | slLinearizer | slTuner

Introduced in R2013b

 removeOpening

13-363

removePoint
Remove point from list of analysis points in slLinearizer or slTuner interface

Syntax
removePoint(s,pt)

Description
removePoint(s,pt) removes the specified point, pt, from the list of analysis points on
page 13-368 for the slLinearizer or slTuner interface, s. You can specify pt to
remove either a single or multiple points.

removePoint does not modify the model associated with s.

Examples

Remove Analysis Point Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m point from the interface.

removePoint(sllin,'y1m');

Remove Multiple Analysis Points Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

13 Alphabetical List

13-364

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m and e1 points from the interface.

removePoint(sllin,{'y1m','e1'});

Remove Analysis Point Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Determine the index number of the point you want to remove. To do this, display the
contents of the interface, which includes analysis point index numbers, in the Command
Window.

For this example, remove the y1m point from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

3 Analysis points:

Point 1:
- Block: scdcascade/setpoint
- Port: 1
- Signal Name: r
Point 2:
- Block: scdcascade/Sum1
- Port: 1
- Signal Name: e1
Point 3:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []

 removePoint

13-365

 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that y1m is the third analysis point of sllin .

Remove the point from the interface.

removePoint(sllin,3);

Remove Multiple Analysis Points Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Determine the index numbers of the points you want to remove. To do this, display the
contents of the interface, which includes analysis point index numbers, in the Command
Window.

For this example, remove the e1 and y1m points from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

3 Analysis points:

Point 1:
- Block: scdcascade/setpoint
- Port: 1
- Signal Name: r
Point 2:
- Block: scdcascade/Sum1
- Port: 1
- Signal Name: e1
Point 3:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

13 Alphabetical List

13-366

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that e1 and y1m are the second and third analysis points of sllin .

Remove the points from the interface.

removePoint(sllin,[2 3]);

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point
character vector | string | cell array of character vectors | string array | positive integer |
vector of positive integers

Analysis point on page 13-368 to remove from the list of analysis points for s, specified
as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify pt as
the block name.

You can specify pt as a uniquely matching portion of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify pt as 'Torque' as long as 'Torque' is not a portion of the signal name for
any other analysis point of s.

 removePoint

13-367

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point

names. For example, pt = {'y1m','y2m'}.
• Positive integer or — Analysis point index.

To determine the index of an analysis point, type s. The software displays the contents
of s in the MATLAB command window, including the analysis points indices.

For example, pt = 1.
• Vector of positive integers — Specifies multiple analysis point indices. For example, pt

= [1 2].

Definitions
Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

13 Alphabetical List

13-368

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

See Also
addPoint | removeAllPoints | removeOpening | slLinearizer | slTuner

Introduced in R2013b

 removePoint

13-369

addBlock
Add block to list of tuned blocks for slTuner interface

Syntax
addBlock(st,blk)

Description
addBlock(st,blk) adds the block referenced by blk to the list of tuned blocks on page
13-371 of the slTuner interface, st.

Examples

Add Block to slTuner Interface

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl);

13 Alphabetical List

13-370

Create an slTuner interface for the Simulink model, and add a block to the list of tuned
blocks of the interface.

st = slTuner(mdl,'C1');
addBlock(st,'C2');

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
character vector | string | cell array of character vectors | string array

Block to add to the list of tuned blocks on page 13-371 for st, specified as:

• Character vector or string — Block path. You can specify the full block path or a
partial path. The partial path must match the end of the full block path and
unambiguously identify the block to add. For example, you can refer to a block by its
name, provided the block name appears only once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of character vectors or string array — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

Definitions

Tuned Block
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem

 addBlock

13-371

or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

See Also
addOpening | addPoint | removeBlock | slTuner

Introduced in R2014a

13 Alphabetical List

13-372

getBlockParam
Get parameterization of tuned block in slTuner interface

getBlockParam lets you retrieve the current parameterization of a tuned block on page
13-377 in an slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design
Block (Control System Toolbox), or a generalized parametric model of type genmat or
genss. This parameterization specifies the tuned variables“Tuned Variables” on page 13-
378 for commands such as systune.

Syntax
blk_param = getBlockParam(st,blk)
[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN)

S = getBlockParam(st)

Description
blk_param = getBlockParam(st,blk) returns the parameterization used to tune the
Simulink block, blk.

[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN) returns
the parameterizations of one or more specified blocks.

S = getBlockParam(st) returns a structure containing the parameterizations of all
the tuned blocks of st.

Examples

Get Parameterization of Tuned Block

Create an slTuner interface for the scdcascade model.

 getBlockParam

13-373

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Examine the block parameterization of one of the tuned blocks.

blk_param = getBlockParam(st,'C1')

blk_param =

 Parametric continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

 and tunable parameters Kp, Ki.

Type "pid(blk_param)" to see the current value and "get(blk_param)" to see all properties.

The block C1 is a PID Controller block. Therefore, its parameterization in st is a
tunablePID Control Design Block.

Get Parameterizations of Multiple Tuned blocks

Create an slTuner interface for the scdhelicopter model.

13 Alphabetical List

13-374

open_system('scdhelicopter')
st = slTuner('scdhelicopter',{'PI1','PI2','PI3','SOF'});

Retrieve the parameterizations for the PI controllers in the model.

[parPI1,parPI2,parPI3] = getBlockParam(st,'PI1','PI2','PI3');

Get Parameterizations of All Tuned Blocks

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

 getBlockParam

13-375

Retrieve the parameterizations for both tuned blocks in st.

blockParams = getBlockParam(st)

blockParams =

 struct with fields:

 C1: [1x1 tunablePID]
 C2: [1x1 tunablePID]

blockParams is a structure with field names corresponding to the names of the tunable
blocks in st. The field values of blockParams are tunablePID models, because C1 and
C2 are both PID Controller blocks.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

13 Alphabetical List

13-376

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
blk_param — Parameterization of tuned block
control design block | generalized model | tunable surface | []

Parameterization of the specified tuned block, returned as one of the following:

• A tunable Control Design Block (Control System Toolbox).
• A tunable genss model, tunable genmat matrix, or tunableSurface, if you specified

such a parameterization for blk using setBlockParam.
• An empty array ([]), if slTuner cannot parameterize blk. You can use

setBlockParam to specify a parameterization for such blocks.

S — Parameterizations of all tuned blocks
structure

Parameterization of all tuned blocks in st, returned as a structure. The field names in S
are the names of the tuned blocks in st, and the corresponding field values are block
parameterizations as described in blk_param.

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem

 getBlockParam

13-377

or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

13 Alphabetical List

13-378

See Also
genss | getBlockValue | getTunedValue | setBlockParam | slTuner | tunablePID

Topics
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2011b

 getBlockParam

13-379

getBlockRateConversion
Get rate conversion settings for tuned block in slTuner interface

When you use systune with Simulink, tuning is performed at the sampling rate specified
by the Ts property of the slTuner interface. When you use writeBlockValue to write
tuned parameters back to the Simulink model, each tuned block value is automatically
converted from the sample time used for tuning, to the sample time of the Simulink block.
The rate conversion method associated with each tuned block specifies how this
resampling operation should be performed. Use getBlockRateConversion to query the
block conversion rate and use setBlockRateConversion to modify it.

Syntax
method = getBlockRateConversion(st,blk)
[method,pwf] = getBlockRateConversion(st,blk)

[IF,DF] = getBlockRateConversion(st,blk)

Description
method = getBlockRateConversion(st,blk) returns the rate conversion method
associated with the tuned block on page 13-383, blk.

[method,pwf] = getBlockRateConversion(st,blk) also returns the prewarp
frequency. When method is not 'tustin', the prewarp frequency is always 0.

[IF,DF] = getBlockRateConversion(st,blk) returns the discretization methods
for the integrator and derivative filter terms when blk is a PID Controller block.

Examples

13 Alphabetical List

13-380

Get Rate Conversion Settings of Tuned PID Block

Create an slTuner interface for the Simulink model scdcascade. Examine the block
rate conversion settings of one of the tuned blocks.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

[IF,DF] = getBlockRateConversion(st,'C1')

IF =

 'Trapezoidal'

DF =

 'Trapezoidal'

C1 is a PID block. Therefore, its rate-conversion settings are expressed in terms of
integrator and derivative filter methods. For a continuous-time PID block, the rate-
conversion methods are set to Trapezoidal by default. To override this setting, use
setBlockRateConversion.

• “Tuning of a Digital Motion Control System” (Control System Toolbox)

 getBlockRateConversion

13-381

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
method — Rate conversion method
'zoh' | 'foh' | 'tustin' | 'matched'

Rate conversion method associated with blk, returned as one of the following:

• 'zoh' — Zero-order hold on the inputs
• 'foh — Linear interpolation of inputs
• 'tustin' — Bilinear (Tustin) approximation
• 'matched' — Matched pole-zero method (for SISO blocks only)

pwf — Prewarp frequency for Tustin method
positive scalar

Prewarp frequency for the Tustin method, returned as a positive scalar.

If the rate conversion method associated with blk is zero-order hold or Tustin without
prewarp, then pwf is 0.

IF,DF — Integrator and filter methods
'ForwardEuler' | 'BackwardEuler' | 'Trapezoidal'

13 Alphabetical List

13-382

Integrator and filter methods for rate conversion of PID Controller block, each returned
as 'ForwardEuler', 'BackwardEuler', or 'Trapezoidal'. For continuous-time PID
blocks, the default methods are 'Trapezoidal' for both integrator and derivative filter.
For discrete-time PID blocks, IF and DF are determined by the Integrator method and
Filter method settings in the Simulink block. See the PID Controller and pid reference
pages for more details about integrator and filter methods.

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

 getBlockRateConversion

13-383

See Also
setBlockRateConversion | slTuner | writeBlockValue

Topics
“Tuning of a Digital Motion Control System” (Control System Toolbox)
“Continuous-Discrete Conversion Methods” (Control System Toolbox)

Introduced in R2014a

13 Alphabetical List

13-384

getBlockValue
Get current value of tuned block parameterization in slTuner interface

getBlockValue lets you access the current value of the parameterization of a tuned
block on page 13-390 in an slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design
Block (Control System Toolbox), or a generalized parametric model of type genmat or
genss. This parameterization specifies the tuned variables on page 13-390 for commands
such as systune.

Syntax
value = getBlockValue(st,blk)
[val1,val2,...] = getBlockValue(st,blk1,blk2,...)

S = getBlockValue(st)

Description
value = getBlockValue(st,blk) returns the current value of the parameterization
of a tunable block, blk, in an slTuner interface.

[val1,val2,...] = getBlockValue(st,blk1,blk2,...) returns the current
values of the parameterizations of one or more tuned blocks of st.

S = getBlockValue(st) returns a structure containing the current values of the
parameterizations of all tuned blocks of st.

Examples

Get Current Value of Tuned Block Parameterization

Create an slTuner interface for the scdcascade model.

 getBlockValue

13-385

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Examine the current parameterization value of one of the tuned blocks.

val = getBlockValue(st,'C1')

val =

 1
 Kp + Ki * ---
 s

 with Kp = 0.158, Ki = 0.042

Name: C1
Continuous-time PI controller in parallel form.

Get Current Values of Multiple Tuned Block Parameterizations

Create an slTuner interface for the scdhelicopter model.

open_system('scdhelicopter')
st = slTuner('scdhelicopter',{'PI1','PI2','PI3','SOF'});

13 Alphabetical List

13-386

Retrieve the values of parameterizations for the PI controller blocks in the model.

[valPI1,valPI2,valPI3] = getBlockParam(st,'PI1','PI2','PI3');

Get Current Values of All Tuned Block Parameterizations

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

 getBlockValue

13-387

Retrieve the parameterization values for both tuned blocks in st.

blockValues = getBlockValue(st)

blockValues =

 struct with fields:

 C1: [1x1 pid]
 C2: [1x1 pid]

blockValues is a structure with field names corresponding to the names of the tunable
blocks in st. The field values of blockValues are pid models, because C1 and C2 are
both PID Controller blocks.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

13 Alphabetical List

13-388

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
value — Current value of block parameterization
numeric LTI model

Current value of block parameterization, returned as a numeric LTI model (Control
System Toolbox), such as pid, ss, or tf.

When the tuning results have not been applied to the Simulink model using
writeBlockValue, the value returned by getBlockValue can differ from the actual
Simulink block value.

Note Use writeBlockValue to align the block parameterization values with the actual
block values in the Simulink model.

S — Current values of all block parameterizations
structure

Current values of all block parameterizations in st, returned as a structure. The names of
the fields in S are the names of the tuned blocks in st, and the field values are the
corresponding numeric LTI models.

You can use this structure to transfer the tuned values from one slTuner interface to
another slTuner interface with the same tuned block parameterizations.

S = getBlockValue(st1);
setBlockValue(st2,S);

 getBlockValue

13-389

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

13 Alphabetical List

13-390

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

See Also
getBlockParam | getTunedValue | setBlockValue | slTuner

Topics
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2011b

 getBlockValue

13-391

getTunedValue
Get current value of tuned variable in slTuner interface

getTunedValue lets you access the current value of a tuned variable on page 13-398
within an slTuner interface.

An slTuner interface parameterizes each tuned block on page 13-398 as a Control
Design Block (Control System Toolbox), or a generalized parametric model of type
genmat or genss. This parameterization specifies the tuned variables for commands such
as systune.

Syntax
value = getTunedValue(st,var)
[value1,value2,...] = getTunedValue(st,var1,var2,...)

S = getTunedValue(st)

Description
value = getTunedValue(st,var) returns the current value of the tuned variable,
var, in the slTuner interface, st.

[value1,value2,...] = getTunedValue(st,var1,var2,...) returns the current
values of multiple tuned variables.

S = getTunedValue(st) returns a structure containing the current values of all tuned
variables in st.

Examples

Query Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model.

13 Alphabetical List

13-392

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing two tunable parameters, Ki and Kp.

Typically, you would use a tuning command such as systune to tune the values of the
parameters in the custom parameterization.

After tuning, use getTunedValue to query the tuned value of Ki.

KiTuned = getTunedValue(st,'Ki')

KiTuned =

 1

To query the value of the tuned block as a whole, C1, use getBlockValue.

 getTunedValue

13-393

Query Value of Multiple Tunable Elements within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing tunable parameters Kp and Ki.

Typically, you would use a tuning command such as systune to tune the values of the
parameters in the custom parameterization.

After tuning, use getTunedValue to query the tuned values of both Kp and Ki.

[KiTuned,KpTuned] = getTunedValue(st,'Ki','Kp')

KiTuned =

 1

13 Alphabetical List

13-394

KpTuned =

 1

Query Value of All Tuned Elements in slTuner Interface with Custom
Parameterizations

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Set a custom parameterization for tuned block C1.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

Typically, you would use a tuning command such as systune to tune the values of the
parameters in the custom parameterization.

After tuning, use getTunedValue to query the tuned values of the parameterizations of
all the tuned blocks in st.

S = getTunedValue(st)

 getTunedValue

13-395

S =

 struct with fields:

 C2: [1x1 pid]
 Ki: 1
 Kp: 1

The tuned values are returned in a structure that contains fields for:

• The tuned block, C2, which is parameterized as a Control Design Block.
• The tunable elements, Kp and Ki, within block C2, which is parameterized as a custom

genss model.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

var — Tuned variable
character vector | string

Tuned variable within st, specified as a character vector or string. A tuned variable is any
Control Design Block, such realp, tunableSS, or tunableGain, involved in the
parameterization of a tuned Simulink block, either directly or through a generalized
parametric model. To get a list of all tuned variables within st, use
getTunedValue(st).

var can refer to the following:

• For a block parameterized by a Control Design Block, the name of the block. For
example, if the parameterization of the block is

C = tunableSS('C')

then set var = 'C'.

13 Alphabetical List

13-396

• For a block parameterized by a genmat/genss model, M, the name of any Control
Design Block listed in M.Blocks. For example, if the parameterization of the block is

a = realp('a',1);
C = tf(a,[1 a]);

then set var = 'a'.

Output Arguments
value — Current value of tuned variable
numeric scalar | numeric array | state-space model

Current value of tuned variable in st, returned as a numeric scalar or array or a state-
space model. When the tuning results have not been applied to the Simulink model using
writeBlockValue, the value returned by getTunedValue can differ from the Simulink
block value.

Note Use writeBlockValue to align the block parameterization values with the actual
block values in the Simulink model.

S — Current values of all tuned variables
structure

Current values of all tuned variables in st, returned as a structure. The names of the
fields in S are the names of the tuned variables in st, and the field values are the
corresponding numeric scalars or arrays.

You can use this structure to transfer the tuned variable values from one slTuner
interface to another slTuner interface with the same tuned variables, as follows:

S = getTunedValue(st1);
setTunedValue(st2,S);

 getTunedValue

13-397

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

13 Alphabetical List

13-398

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

See Also
getBlockParam | getBlockValue | setTunedValue | slTuner | tunableSurface

Topics
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2015b

 getTunedValue

13-399

looptune
Tune MIMO feedback loops in Simulink using slTuner interface

Syntax
[st,gam,info] = looptune(st0,controls,measurements,wc)
[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN)
[st,gam,info] = looptune(___ ,opt)

Description
[st,gam,info] = looptune(st0,controls,measurements,wc) tunes the free
parameters on page 13-406 of the control system of the Simulink model associated with
the slTuner interface, st0, to achieve the following goals:

• Bandwidth — Gain crossover for each loop falls in the frequency interval wc
• Performance — Integral action at frequencies below wc
• Robustness — Adequate stability margins and gain roll-off at frequencies above wc

controls and measurements specify the controller output signals and measurement
signals that are subject to the goals, respectively. st is the updated slTuner interface,
gam indicates the measure of success in satisfying the goals, and info gives details
regarding the optimization run.

Tuning is performed at the sample time specified by the Ts property of st0. For tuning
algorithm details, see “Algorithms” on page 13-407.

[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN)
tunes the feedback loop to meet additional goals specified in one or more tuning goal
objects, req. Omit wc to drop the default loop shaping goal associated with wc. Note that
the stability margin goals remain in force.

[st,gam,info] = looptune(___ ,opt) specifies further options, including target
gain and phase margins, number of runs, and computation options for the tuning
algorithm. Use looptuneOptions to create opt.

13 Alphabetical List

13-400

If you specify multiple runs using the RandomStarts property of opt, looptune
performs only as many runs required to achieve the target objective value of 1. Note that
all tuning goals should be normalized so that a maximum value of 1 means that all design
goals are met.

Examples

Tune Controller to Achieve Specified Bandwidth

Tune the PID Controller in the rct_engine_speed model to achieve the specified
bandwidth.

Open the Simulink model.

mdl = 'rct_engine_speed';
open_system(mdl);

Create an slTuner interface for the model.

st0 = slTuner(mdl,'PID Controller');

Add the PID Controller output, u, as an analysis point to st0.

addPoint(st0,'u');

Based on first-order characteristics, the crossover frequency should exceed 1 rad/s for the
closed-loop response to settle in less than 5 seconds. So, tune the PID loop using 1 rad/s
as the target 0 dB crossover frequency.

 looptune

13-401

wc = 1;
st = looptune(st0,'u','Speed',wc);

Final: Peak gain = 0.979, Iterations = 4
Achieved target gain value TargetGain=1.

In the call to looptune, 'u' specifies the control signal, and 'Speed' specifies the
measured signal.

Compare the tuned and initial response.

stepplot(getIOTransfer(st0,'Ref','Speed'),getIOTransfer(st,'Ref','Speed'));
legend('Initial','Speed');

View the tuned block value.

13 Alphabetical List

13-402

showTunable(st)

Block 1: rct_engine_speed/PID Controller =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.00062, Ki = 0.00303, Kd = 0.000168, Tf = 0.01

Name: PID_Controller
Continuous-time PIDF controller in parallel form.

To write the tuned values back to the Simulink model, use writeBlockValue.

• “Tune Control Systems in Simulink” (Control System Toolbox)
• “Decoupling Controller for a Distillation Column” (Control System Toolbox)
• “Tuning of a Digital Motion Control System” (Control System Toolbox)
• “Tuning of a Two-Loop Autopilot” (Control System Toolbox)

Input Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

controls — Controller output
character vector | cell array of character vectors

Controller output name, specified as one of the following:

• Character vector — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st0.

For example, 'u'.

 looptune

13-403

• Cell array of character vectors — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
character vector | cell array of character vectors

Measurement signal name, specified as one of the following:

• Character vector — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st0.

For example, 'u'.
• Cell array of character vector — Multiple analysis point names.

For example, {'u','y'}.

wc — Target crossover region
[wcmin,wcmax] | positive scalar

Target crossover region, specified as one of the following:

• [wcmin,wcmax] — looptune attempts to tune all loops in the control system so that
the open-loop gain crosses 0 dB within the target crossover region.

• Positive scalar — Specifies the target crossover region as [wc/10^0.1,wc*10^0.1]
or wc +/- 0.1 decades.

Specify wc in the working time units, that is, the time units of the model.

req1,...,reqN — Design goals
TuningGoal objects

Design goals, specified as one or more TuningGoal objects.

For a complete list of the design goals you can specify, see “Tuning Goals” (Control
System Toolbox).

opt — Tuning algorithm options
options set created using looptuneOptions

Tuning algorithm options, specified as an options set created using looptuneOptions.

13 Alphabetical List

13-404

Available options include:

• Number of additional optimizations to run starting from random initial values of the
free parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing
• Specification of target gain and phase margin

Output Arguments
st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

gam — Parameter indicating degree of success at meeting all tuning constraints
scalar

Parameter indicating degree of success at meeting all tuning constraints, returned as a
scalar.

A value of gam <= 1 indicates that all goals are satisfied. A value of gam >> 1 indicates
failure to meet at least one requirement. Use loopview to visualize the tuned result and
identify the unsatisfied requirement.

For best results, use the RandomStart option in looptuneOptions to obtain several
minimization runs. Setting RandomStart to an integer N > 0 causes looptune to run
the optimization N additional times, beginning from parameter values it chooses
randomly. You can examine gam for each run to help identify an optimization result that
meets your design goals.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure with the
following fields:

Di,Do — Optimal input and output scalings
state-space models

 looptune

13-405

Optimal input and output scalings, return as state-space models.

The scaled plant is given by Do\G*Di.

Specs — Design goals used for tuning
vector of TuningGoal requirement objects

Design goals used for tuning, returned as a vector of TuningGoal requirement objects.

Runs — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure. For details, see
“Algorithms” on page 13-407.

The contents of Runs are the info output of the call to systune performed by
looptune. For information about the fields of Runs, see the info output argument
description on the systune reference page.

Definitions
Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

13 Alphabetical List

13-406

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Algorithms
looptune automatically converts target bandwidth, performance goals, and additional
design goals into weighting functions that express the goals as an H∞ optimization
problem. looptune then uses systune to optimize tunable parameters to minimize the
H∞ norm.

For information about the optimization algorithms, see [1].

looptune computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library, see
http://slicot.org.

References
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on

Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
TuningGoal.Gain | TuningGoal.Margins | TuningGoal.Tracking | addPoint |
getIOTransfer | getLoopTransfer | hinfstruct | looptune (for genss) |
looptuneOptions | slTuner | systune | writeBlockValue

Topics
“Tune Control Systems in Simulink” (Control System Toolbox)
“Decoupling Controller for a Distillation Column” (Control System Toolbox)

 looptune

13-407

http://slicot.org

“Tuning of a Digital Motion Control System” (Control System Toolbox)
“Tuning of a Two-Loop Autopilot” (Control System Toolbox)
“Structure of Control System for Tuning With looptune” (Control System Toolbox)
“Set Up Your Control System for Tuning with looptune” (Control System Toolbox)

Introduced in R2014a

13 Alphabetical List

13-408

looptuneSetup
Construct tuning setup for looptune to tuning setup for systune using slTuner
interface

Syntax
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

Description
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)
converts a tuning setup for looptune into an equivalent tuning setup for systune. The
argument looptuneInputs is a sequence of input arguments for looptune that
specifies the tuning setup. For example,

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt)

generates a set of arguments such that looptune(st0,wc,Req1,Req2,loopopt) and
systune(st0,SoftReqs,HardReqs,sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative
to looptune. For example, looptune requires that you tune all channels of a MIMO
feedback loop to the same target bandwidth. Converting to systune allows you to specify
different crossover frequencies and loop shapes for each loop in your control system.
Also, looptune treats all tuning requirements as soft requirements, optimizing them, but
not requiring that any constraint be exactly met. Converting to systune allows you to
enforce some tuning requirements as hard constraints, while treating others as soft
requirements.

You can also use this command to probe into the tuning requirements enforced by
looptune.

Examples

 looptuneSetup

13-409

Convert looptune Problem into systune Problem

Convert a set of looptune inputs for tuning a Simulink model into an equivalent set of
inputs for systune.

Suppose you have created and configured an slTuner interface, st0, for tuning with
looptune. Suppose also that you used looptune to tune the feedback loop defined in
st0 to within a bandwidth of wc = [wmin,wmax]. Convert these variables into a form
that allows you to use systune for further tuning.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,controls,measurements);

The command returns the closed-loop system and tuning requirements for the equivalent
systune command, systune(st0,SoftReqs,HardReqs,sysopt). The arrays
SoftReqs and HardReqs contain the tuning requirements implicitly imposed by
looptune. These requirements enforce the target bandwidth and default stability
margins of looptune.

If you used additional tuning requirements when tuning the system with looptune, add
them to the input list of looptuneSetup. For example, suppose you used a
TuningGoal.Tracking requirement, Req1, and a TuningGoal.Rejection
requirement, Req2. Suppose also that you set algorithm options for looptune using
looptuneOptions. Incorporate these requirements and options into the equivalent
systune command.
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt);

The resulting arguments allow you to construct the equivalent tuning problem for
systune.

Convert Distillation Column Problem for Tuning With systune

Set up the control system of the Simulink® model rct_distillation for tuning with
looptune. Then, convert the setup to a systune problem, and examine the resulting
arguments. The results reflect the tuning requirements implicitly enforced when tuning
with looptune.

Create an slTuner interface to the Simulink model, and specify the blocks to be tuned.
Configure the interface for tuning with looptune by adding analysis points that define
the separation between the plant and the controller. Also add the analysis points needed
for imposing tuning requirements.

13 Alphabetical List

13-410

open_system('rct_distillation')

tuned_blocks = {'PI_L','PI_V','DM'};
st0 = slTuner('rct_distillation',tuned_blocks);

addPoint(st0,{'L','V','y','r','dL','dV'});

This system is now ready for tuning with looptune, using tuning goals that you specify.
For example, specify a target bandwidth range. Create a tuning requirement that imposes
reference tracking in both channels of the system, and a disturbance rejection
requirement.

wc = [0.1,0.5];
req1 = TuningGoal.Tracking('r','y',15,0.001,1);
max_disturbance_gain = frd([0.05 5 5],[0.001 0.1 10],'TimeUnit','min');
req2 = TuningGoal.Gain({'dL','dV'},'y',max_disturbance_gain);

controls = {'L','V'};
measurement = 'y';

[st,gam,info] = looptune(st0,controls,measurement,wc,req1,req2);

Final: Peak gain = 1.03, Iterations = 92

looptune successfully tunes the system to these requirements. However, you might want
to switch to systune to take advantage of additional flexibility in configuring your
problem. For example, instead of tuning both channels to a loop bandwidth inside wc, you

 looptuneSetup

13-411

might want to specify different crossover frequencies for each loop. Or, you might want to
enforce the tuning requirements, req1 and req2, as hard constraints, and add other
requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,controls,measurement,wc,req1,req2);

This command returns a set of arguments you can feed to systune for equivalent results
to tuning with looptune. In other words, the following command is equivalent to the
looptune command.

[st,fsoft,ghard,info] = systune(st0,SoftReqs,HardReqs,sysopt);

Final: Peak gain = 1.03, Iterations = 92

Examine the tuning requirements returned by looptuneSetup. When tuning this control
system with looptune, all requirements are treated as soft requirements. Therefore,
HardReqs is empty. SoftReqs is an array of TuningGoal requirements. These
requirements together enforce the bandwidth and margins of the looptune command,
plus the additional requirements that you specified.

SoftReqs

SoftReqs =

 5x1 heterogeneous SystemLevel (LoopShape, Tracking, Gain, ...) array with properties:

 Models
 Openings
 Name

For example, examine the first entry in SoftReqs.

SoftReqs(1)

ans =

 LoopShape with properties:

 LoopGain: [1x1 zpk]
 CrossTol: 0.3495

13 Alphabetical List

13-412

 Focus: [0 Inf]
 Stabilize: 1
 LoopScaling: 'on'
 Location: {'y'}
 Models: NaN
 Openings: {0x1 cell}
 Name: 'Open loop GC'

looptuneSetup expresses the target crossover frequency range wc as a
TuningGoal.LoopShape requirement. This requirement constrains the open-loop gain
profile to the loop shape stored in the LoopGain property, with a crossover frequency and
crossover tolerance (CrossTol) determined by wc. Examine this loop shape.

bodemag(SoftReqs(1).LoopGain,logspace(-2,0)),grid

 looptuneSetup

13-413

The target crossover is expressed as an integrator gain profile with a crossover between
0.1 and 0.5 rad/s, as specified by wc. If you want to specify a different loop shape, you can
alter this TuningGoal.LoopShape requirement before providing it to systune.

looptune also tunes to default stability margins that you can change using
looptuneOptions. For systune, stability margins are specified using
TuningGoal.Margins requirements. Here, looptuneSetup has expressed the default
stability margins as soft TuningGoal.Margins requirements. For example, examine the
fourth entry in SoftReqs.

SoftReqs(4)

ans =

13 Alphabetical List

13-414

 Margins with properties:

 GainMargin: 7.6000
 PhaseMargin: 45
 ScalingOrder: 0
 Focus: [0 Inf]
 Location: {2x1 cell}
 Models: NaN
 Openings: {0x1 cell}
 Name: 'Margins at plant inputs'

The last entry in SoftReqs is a similar TuningGoal.Margins requirement constraining
the margins at the plant outputs. looptune enforces these margins as soft requirements.
If you want to convert them to hard constraints, pass them to systune in the input vector
HardReqs instead of the input vector SoftReqs.

Input Arguments
looptuneInputs — Control system and requirements configured for tuning with
looptune
valid looptune input sequence

Control system and requirements configured for tuning with looptune, specified as a
valid looptune input sequence. For more information about the arguments in a valid
looptune input sequence, see the looptune reference page.

Output Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, returned as an slTuner
interface. st0 is identical to the slTuner interface you use as input to looptuneSetup.

SoftReqs — Soft tuning requirements
vector of TuningGoal requirement objects

 looptuneSetup

13-415

Soft tuning requirements for tuning with systune, returned as a vector of TuningGoal
requirement objects.

looptune expresses most of its implicit tuning requirements as soft tuning requirements.
For example, a specified target loop bandwidth is expressed as a
TuningGoal.LoopShape requirement with integral gain profile and crossover at the
target frequency. Additionally, looptune treats all of the explicit requirements you
specify (Req1,...ReqN) as soft requirements. SoftReqs contains all of these tuning
requirements.

HardReqs — Hard tuning requirements
vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning with systune, returned as a vector of
TuningGoal requirement objects.

Because looptune treats most tuning requirements as soft requirements, HardReqs is
usually empty. However, if you change the default MaxFrequency option of the
looptuneOptions set, loopopt, then this requirement appears as a hard
TuningGoal.Poles constraint.

sysopt — Algorithm options for systune tuning
systuneOptions options set

Algorithm options for systune tuning, returned as a systuneOptions options set.

Some of the options in the looptuneOptions set, loopopt, are converted into hard or
soft requirements that are returned in HardReqs and SoftReqs. Other options
correspond to options in the systuneOptions set.

See Also
looptune | looptuneOptions | looptuneSetup (for genss) | slTuner | systune
| systuneOptions

Introduced in R2014a

13 Alphabetical List

13-416

loopview
Graphically analyze results of control system tuning using slTuner interface

Syntax
loopview(st,controls,measurements)

loopview(st,info)

Description
loopview(st,controls,measurements) plots characteristics of the control system
described by the slTuner interface st. Use loopview to analyze the performance of a
tuned control system you obtain using looptune.

loopview plots:

• The gains of the open-loop frequency response measured at the plant inputs
(controls analysis points) and at plant outputs (measurements analysis points)

• The (largest) gain of the sensitivity and complementary sensitivity functions at the
plant inputs or outputs

loopview(st,info) uses the info structure returned by looptune and also plots the
target and tuned values of tuning constraints imposed on the system. Use this syntax to
assist in troubleshooting when tuning fails to meet all requirements.

Additional plots with this syntax include:

• Normalized multi-loop disk margins (see loopmargin) at the plant inputs and outputs
• Target vs. achieved response for any additional tuning goal you used with looptune

Examples

 loopview

13-417

Graphically Analyze Results of Control System Tuning

Tune the Simulink® model, rct_engine_speed, to achieve a specified settling time. Use
loopview to graphically analyze the tuning results.

Open the model.

mdl = 'rct_engine_speed';
open_system(mdl);

Create an slTuner interface for the model and specify the PID Controller block to be
tuned.

st0 = slTuner(mdl,'PID Controller');

Specify a requirement to achieve a 2 second settling time for the Speed signal when
tracking the reference signal.

req = TuningGoal.Tracking('Ref','Speed',2);

Tune the PID Controller block.

addPoint(st0,'u')

control = 'u';
measurement = 'Speed';

wc = 1;

[st1,gam,info] = looptune(st0,control,measurement,wc);

13 Alphabetical List

13-418

Final: Peak gain = 0.979, Iterations = 4
Achieved target gain value TargetGain=1.

View the response of the model for the tuned block values.

loopview(st1,control,measurement);

Compare the performance of the tuned block against the tuning goals.

figure
loopview(st1,info);

 loopview

13-419

• “Decoupling Controller for a Distillation Column” (Control System Toolbox)
• “Tuning of a Two-Loop Autopilot” (Control System Toolbox)
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-51

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

13 Alphabetical List

13-420

controls — Controller output
character vector | cell array of character vectors

Controller output name, specified as one of the following:

• Character vector — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st.

For example, 'u'.
• Cell array of character vectors — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
character vector | cell array of character vectors

Measurement signal name, specified as one of the following:

• Character vector — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st.

For example, 'u'.
• Cell array of character vector — Multiple analysis point names.

For example, {'u','y'}.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, specified as the structure returned by
looptune.

Alternative Functionality
For analyzing Control System Toolbox models tuned with looptune, use loopview.

 loopview

13-421

See Also
looptune | loopview | slTuner

Topics
“Decoupling Controller for a Distillation Column” (Control System Toolbox)
“Tuning of a Two-Loop Autopilot” (Control System Toolbox)
“Mark Signals of Interest for Control System Analysis and Design” on page 2-51

Introduced in R2014a

13 Alphabetical List

13-422

removeBlock
Remove block from list of tuned blocks in slTuner interface

Syntax
removeBlock(st,blk)

Description
removeBlock(st,blk) removes the specified block from the list of tuned blocks on
page 13-424 for the slTuner interface, st. You can specify blk to remove either a single
or multiple blocks.

removeBlock does not modify the Simulink model associated with st.

Examples

Remove Block From List of Tuned Blocks of slTuner Interface

Create an slTuner interface for the scdcascade model. Add C1 and C2 as tuned blocks
to the interface.

st = slTuner('scdcascade',{'C1','C2'});

Remove C1 from the list of tuned blocks of st.

removeBlock(st,'C1');

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

 removeBlock

13-423

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
character vector | string | cell array of character vectors | string array | positive integer |
vector of positive integers

Block to remove from the list of tuned blocks on page 13-424 for st, specified as one of
the following:

• Character vector or string — Full block path or any portion of the block path that
uniquely identifies the block among the other tuned blocks of st. For example, blk =
'scdcascade/C1'.

• Cell array of character vectors or string array — Specifies multiple blocks. For
example, blk = {'C1','C2'}.

• Positive integer — Block index. For example, blk = 1.
• Vector of positive integers — Specifies multiple block indices. For example, blk = [1

2].

To determine the name or index associated with a tuned block, type st. The software
displays the contents of st in the MATLAB command window, including the tuned block
names.

Definitions
Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

13 Alphabetical List

13-424

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

See Also
addBlock | addOpening | addPoint | slTuner

Introduced in R2014a

 removeBlock

13-425

setBlockParam
Set parameterization of tuned block in slTuner interface

setBlockParam lets you override the default parameterization for a tuned block on page
13-430 in an slTuner interface. You can also specify the parameterization for non-atomic
components such as Subsystem or S-Function blocks.

An slTuner interface parameterizes each tuned Simulink block as a Control Design
Block (Control System Toolbox), or a generalized parametric model of type genmat or
genss. This parameterization specifies the tuned variables on page 13-431 for commands
such as systune.

Syntax
setBlockParam(st,blk,tunable_mdl)
setBlockParam(st,blk1,tunable_mdl1,blk2,tunable_mdl2,...,blkN,
tunable_mdlN)

setBlockParam(st,blk)
setBlockParam(st)

Description
setBlockParam(st,blk,tunable_mdl) assigns a tunable model as the
parameterization of the specified block of an slTuner interface.

setBlockParam(st,blk1,tunable_mdl1,blk2,tunable_mdl2,...,blkN,
tunable_mdlN) assigns parameterizations to multiple blocks at once.

setBlockParam(st,blk) reverts to the default parameterization for the block
referenced by blk and initializes the block with the current block value in Simulink.

setBlockParam(st) reverts all the tuned blocks of st to their default
parameterizations.

13 Alphabetical List

13-426

Examples

Set Parameterization of Tuned Block

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

ans =

 Parametric continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

 and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

 setBlockParam

13-427

The default parameterization is a tunable PI controller (tunablePID).

Reparameterize C1 as a proportional controller. Initialize the proportional gain to 4.2, and
assign the parameterization to the block.

G = tunableGain('C1',4.2);
setBlockParam(st,'C1',G);

Tuning commands, such as systune, now use this proportional controller
parameterization of the C1 block of st. The custom parameterization is compatible with
the default parameterization of the Simulink® block. Therefore, you can use
writeBlockValue to write the tuned values back to the block.

You can also use setBlockParam to set multiple block parameterizations at once,
without requiring multiple recompilations of the model. For example, reparameterize both
C1 and C2 as PID controllers.

C1PID = tunablePID('C1PID','PID');
C2PID = tunablePID('C2PID','PID');
setBlockParam(st,'C1',C1PID,'C2',C2PID);

Revert Parameterization of Tuned Block to Default

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

13 Alphabetical List

13-428

Modify the parameterization of C2 to be a tunable gain and examine the result.

G = tunableGain('C2',5);
setBlockParam(st,'C2',G);
getBlockParam(st,'C2')

ans =

 Parametric gain "C2" with 1 outputs, 1 inputs, and 1 tunable parameters.

Type "ss(ans)" to see the current value and "get(ans)" to see all properties.

Revert the parameterization of C2 back to the default PI controller and examine the
result.

setBlockParam(st,'C2');
getBlockParam(st,'C2')

ans =

 Parametric continuous-time PID controller "C2" with formula:

 1
 Kp + Ki * ---
 s

 and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

 setBlockParam

13-429

blk — Block
character vector | string | cell array of character vectors | string array

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

When reverting to the default block parameterization using setBlockParam(st,blk),
you can specify blk as a cell array of character vectors or string array to revert multiple
blocks.
Example: {'C1','C2'}

tunable_mdl — Block parameterization
control design block | generalized state-space model | generalized matrix | tunable gain
surface

Block parameterization, specified as one of the following:

• Control Design Block (Control System Toolbox)
• Generalized state-space (genss) model
• Generalized matrix (genmat)
• Tunable gain surface, modeled by tunableSurface

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

13 Alphabetical List

13-430

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

See Also
genss | getBlockParam | setBlockValue | setTunedValue | slTuner | systune |
writeBlockValue

 setBlockParam

13-431

Topics
“How Tuned Simulink Blocks Are Parameterized” on page 9-36

Introduced in R2011b

13 Alphabetical List

13-432

setBlockRateConversion
Set rate conversion settings for tuned block in slTuner interface

When you use systune with Simulink, tuning is performed at the sampling rate specified
by the Ts property of the slTuner interface. When you use writeBlockValue to write
tuned parameters back to the Simulink model, each tuned block value is automatically
converted from the sample time used for tuning, to the sample time of the Simulink block.
The rate conversion method associated with each tuned block specifies how this
resampling operation should be performed. Use getBlockRateConversion to query the
block conversion rate and use setBlockRateConversion to modify it.

Syntax
setBlockRateConversion(st,blk,method)
setBlockRateConversion(st,blk,'tustin',pwf)

setBlockRateConversion(st,blk,IF,DF)

Description
setBlockRateConversion(st,blk,method) sets the rate conversion method of a
tuned block on page 13-436 in the slTuner interface, st.

setBlockRateConversion(st,blk,'tustin',pwf) sets the Tustin method as the
rate conversion method for blk, with pwf as the prewarp frequency.

setBlockRateConversion(st,blk,IF,DF) sets the discretization methods for the
integrator and derivative filter terms when blk is a continuous-time PID Controller block.
For discrete-time PID blocks, these methods are specified in the Simulink block and
cannot be modified in the slTuner interface.

Examples

 setBlockRateConversion

13-433

Set Rate Conversion Settings of Tuned PID Block

Create an slTuner interface for the Simulink model scdcascade. Set the block rate
conversion settings of one of the tuned blocks.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Examine the default block rate conversion for the PID Controller block C1.

[IF,DF] = getBlockRateConversion(st,'C1')

IF =

 'Trapezoidal'

DF =

 'Trapezoidal'

By default, both the integrator and derivative filter controller methods are Trapezoidal.
Set the integrator to BackwardEuler and the derivative to ForwardEuler.

13 Alphabetical List

13-434

IF = 'BackwardEuler';
DF = 'ForwardEuler';
setBlockRateConversion(st,'C1',IF,DF);

• “Tuning of a Digital Motion Control System” (Control System Toolbox)

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

method — Rate conversion method
'zoh' | 'foh' | 'tustin' | 'matched'

Rate conversion method associated with blk, specified as one of the following:

• 'zoh' — Zero-order hold on the inputs. This method is the default rate-conversion
method for most dynamic blocks.

• 'foh' — Linear interpolation of inputs.
• 'tustin' — Bilinear (Tustin) approximation. Optionally, specify a prewarp frequency

with the pwf argument for better frequency-domain matching between the original
and rate-converted dynamics near the prewarp frequency.

• 'matched' — Matched pole-zero method. This method is available for SISO blocks
only.

For more detailed information about these rate-conversion methods, see “Continuous-
Discrete Conversion Methods” (Control System Toolbox).

 setBlockRateConversion

13-435

pwf — Prewarp frequency for Tustin method
positive scalar

Prewarp frequency for the Tustin method, specified as a positive scalar.

IF,DF — Integrator and filter methods
'ForwardEuler' | 'BackwardEuler' | 'Trapezoidal'

Integrator and filter methods for rate conversion of PID Controller block, each specified
as one of the following:

• 'ForwardEuler' — Integrator or derivative-filter state discretized as Ts/(z-1)
• 'BackwardEuler' — Ts*z/(z-1)
• 'Trapezoidal' — (Ts/2)*(z+1)/(z-1)

For continuous-time PID blocks, the default methods are 'Trapezoidal' for both
integrator and derivative filter. This method is the same as the Tustin method.

For discrete-time PID blocks, IF and DF are determined by the Integrator method and
Filter method settings in the Simulink block and cannot be changed with
setBlockRateConversion.

See the PID Controller and pid reference pages for more details about integrator and
filter methods.

Definitions

Tuned Block
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

13 Alphabetical List

13-436

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tips
• For Model Discretizer blocks, the rate conversion method is specified in the Simulink

block and cannot be modified with setBlockRateConversion.
• For static blocks such as Gain or Lookup Table blocks, the block rate conversion

method is ignored.

See Also
getBlockRateConversion | slTuner | writeBlockValue

Topics
“Tuning of a Digital Motion Control System” (Control System Toolbox)
“Continuous-Discrete Conversion Methods” (Control System Toolbox)

Introduced in R2014a

 setBlockRateConversion

13-437

setBlockValue
Set value of tuned block parameterization in slTuner interface

setBlockValue lets you initialize or modify the current value of the parameterization of
a tuned block on page 13-443 in an slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design
Block (Control System Toolbox), or a generalized parametric model of type genmat or
genss. This parameterization specifies the tuned variables on page 13-444 for commands
such as systune.

Syntax
setBlockValue(st,blk,value)

setBlockValue(st,blkValues)

Description
setBlockValue(st,blk,value) sets the current value of the parameterization of a
block in the slTuner interface, st.

setBlockValue(st,blkValues) updates the values of the parameterizations of
multiple blocks using the structure, blkValues.

Examples

Set Value of Tuned Block Parameterization

Create an slTuner interface for the scdcascade model, and set the value of the
parametrization of one of the tuned blocks.

Create an slTuner interface.

13 Alphabetical List

13-438

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

ans =

 Parametric continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

 and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

The default parameterization is a PI controller with two tunable parameters, Kp and Ki.

Set the value of the parameterization of C1.

C = pid(4.2);
setBlockValue(st,'C1',C);

Examine the value of the parameterization of C1.

 setBlockValue

13-439

getBlockValue(st,'C1')

ans =

 Kp = 4.2

Name: C1
P-only controller.

Examine the parameterization of C1.

getBlockParam(st,'C1')

ans =

 Parametric continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

 and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

Observe that although the current block value is a P-only controller, the block
parameterization continues to be a PI-controller.

Set Value of Multiple Tuned Block Parameterizations

Create an slTuner interface.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

13 Alphabetical List

13-440

Create a block value structure with field names that correspond to the tunable blocks in
st.

blockValues = getBlockValue(st);
blockValues.C1 = pid(0.2,0.1);
blockValues.C2 = pid(2.3);

Set the values of the parameterizations of the tunable blocks in st using the defined
structure.

setBlockValue(st,blockValues);

• “Fixed-Structure Autopilot for a Passenger Jet” (Control System Toolbox)

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
character vector | string

 setBlockValue

13-441

Block in the list of tuned blocks for st, specified as a character vector or string. You can
specify the full block path or any portion of the path that uniquely identifies the block
among the other tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Note setBlockValue allows you to modify only the overall value of the
parameterization of blk. To modify the values of elements within custom block
parameterizations, such as generalized state-space models, use setTunedValue.

value — Value of block parameterization
numeric LTI model | control design block

Value of block parameterization, specified as a numeric LTI model (Control System
Toolbox) or a Control Design Block (Control System Toolbox), such tunableGain or
tunablePID. The value of value must be compatible with the parameterization of blk.
For example, if blk is parameterized as a PID controller, then value must be an
tunablePID block, a numeric pid model, or a numeric tf model that represents a PID
controller.

setBlockValue updates the value of the parameters of the tuned block based on the
parameters of value. Using setBlockValue does not change the structure of the
parameterization of the tuned block. To change the parameterization of blk, use
setBlockParam. For example, you can use setBlockParam to change a block
parameterization from tunablePID to a three-pole tunableTF model.

blkValues — Values of multiple block parameterizations
structure

Values of multiple block parameterizations, specified as a structure with fields specified
as numeric LTI models or Control Design Blocks. The field names are the names of blocks
in st. Only blocks common to st and blkValues are updated, while all other blocks in
st remain unchanged.

To specify blkValues, you can retrieve and modify the block parameterization value
structure from st.

blkValues = getblockValue(st);
blkValues.C1 = pid(0.1,0.2);

13 Alphabetical List

13-442

Note For Simulink blocks whose names are not valid field names, specify the
corresponding field name in blkValues as it appears in the block parameterization.

blockParam = getBlockParam(st,'B-1');
fieldName = blockParam.Name;
blockValues = struct(fieldName,newB1);

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

 setBlockValue

13-443

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or
setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

See Also
getBlockValue | setBlockParam | setTunedValue | slTuner | writeBlockValue

Topics
“Fixed-Structure Autopilot for a Passenger Jet” (Control System Toolbox)
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2011b

13 Alphabetical List

13-444

setTunedValue
Set current value of tuned variable in slTuner interface

setTunedValue lets you initialize or modify the current value of a tuned variable on
page 13-451 within an slTuner interface.

An slTuner interface parameterizes each tuned block on page 13-450 as a Control
Design Block (Control System Toolbox), or a generalized parametric model of type
genmat or genss. This parameterization specifies the tuned variables for commands such
as systune.

Syntax
setTunedValue(st,var,value)
setTunedValue(st,varValues)
setTunedValue(st,model)

Description
setTunedValue(st,var,value) sets the current value of the tuned variable, var, in
the slTuner interface, st.

setTunedValue(st,varValues) sets the values of multiple tuned variables in st using
the structure, varValues.

setTunedValue(st,model) updates the values of the tuned variables in st to match
their values in the generalized model model. To propagate tuned values from one model
to another, use this syntax.

Examples

Set Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model.

 setTunedValue

13-445

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing two tunable parameters, Ki and Kp.

Initialize the value of Ki to 10 without changing the value of Kp.

setTunedValue(st,'Ki',10);

Set Value of Multiple Tunable Elements within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

13 Alphabetical List

13-446

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing two tunable parameters, Ki and Kp.

Create a structure of tunable element values, setting Kp to 5 and Ki to 10.

S = struct('Kp',5,'Ki',10);

Set the values of the tunable elements in st.

setTunedValue(st,S);

Set Value of Tuned Block Parameterization Using Generalized State-Space Model

Convert an slTuner interface for the Simulink® model rct_diskdrive to a genss
model to tune the model blocks using hinfstruct. After tuning, update the slTuner
interface with the tuned parameters and write the parameter values to the Simulink
model for validation.

Use of hinfstruct requires a Robust Control Toolbox license.

 setTunedValue

13-447

Create an slTuner interface for rct_diskdrive. Add C and F as tuned blocks of the
interface.

open_system('rct_diskdrive');
st = slTuner('rct_diskdrive',{'C','F'});

The default parameterization of the transfer function block, F, is a transfer function with
two free parameters. Because F is a low-pass filter, you must constrain its coefficients. To
do so, specify a custom parameterization of F with filter coefficient a.

a = realp('a',1);
setBlockParam(st,'F',tf(a,[1 a]));

Convert st to a genss model.

m = getIOTransfer(st,{'r','n'},{'y','e'});

Typically, for tuning with hinfstruct, you append weighting functions to the genss
model that depend on your design requirements. You then tune the augmented model. For
more information, see “Fixed-Structure H-infinity Synthesis with HINFSTRUCT” (Robust
Control Toolbox).

For this example, instead of tuning the model, manually adjust the tuned variable values.

13 Alphabetical List

13-448

m.Blocks.C.Kp.Value = 0.00085;
m.Blocks.C.Ki.Value = 0.01;
m.Blocks.a.Value = 5500;

After tuning, update the block parameterization values in st.

setTunedValue(st,m);

This is equivalent to setBlockValue(st,m.Blocks).

To validate the tuning result in Simulink, first update the Simulink model with the tuned
values.

writeBlockValue(st);

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

var — Tuned variable
character vector | string

Tuned variable within st, specified as a character vector or string. A tuned variable is any
Control Design Block, such realp, tunableSS, or tunableGain, involved in the
parameterization of a tuned Simulink block, either directly or through a generalized
parametric model. To get a list of all tuned variables within st, use
getTunedValue(st).

var can refer to the following:

• For a block parameterized by a Control Design Block, the name of the block. For
example, if the parameterization of the block is

C = tunableSS('C')

then set var = 'C'.
• For a block parameterized by a genmat/genss model, M, the name of any Control

Design Block listed in M.Blocks. For example, if the parameterization of the block is

 setTunedValue

13-449

a = realp('a',1);
C = tf(a,[1 a]);

then set var = 'a'.

value — Value of tuned variable
numeric scalar | numeric array | state-space model

Value of tuned variable in st, specified as a numeric scalar, a numeric array or a state-
space model that is compatible with the tuned variable. For example, if var is a scalar
element such as a PID gain, value must be a scalar. If var is a 2–by–2 tunableGain,
then value must be a 2–by–2 scalar array.

varValues — Values of multiple tuned variables
structure

Values of multiple tuned variables in st, specified as a structure with fields specified as
numeric scalars, numeric arrays, or state-space models. The field names are the names of
tuned variables in st. Only blocks common to st and varValues are updated, while all
other blocks in st remain unchanged.

To specify varValues, you can retrieve and modify the tuned variable structure from st.

varValues = getTunedValue(st);
varValues.Ki = 10;

model — Tuned model
generalized LTI model

Tuned model that has some parameters in common with st, specified as a Generalized
LTI Model (Control System Toolbox). Only variables common to st and model are
updated, while all other variables in st remain unchanged.

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.

13 Alphabetical List

13-450

(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Tuned Variables
Within an slTuner interface, tuned variables are any Control Design Blocks (Control
System Toolbox) involved in the parameterization of a tuned Simulink block, either
directly or through a generalized parametric model. Tuned variables are the parameters
manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To
access the values of the tuned variables within the block parameterization, use
getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of
tuned variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned
variable. To modify the block value, you can use either setBlockValue or

 setTunedValue

13-451

setTunedValue. Similarly, you can retrieve the block value using either
getBlockValue or getTunedValue.

See Also
getTunedValue | setBlockParam | setBlockValue | slTuner | tunableSurface |
writeBlockValue

Topics
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2015b

13 Alphabetical List

13-452

showTunable
Show value of parameterizations of tunable blocks of slTuner interface

Syntax
showTunable(st)

Description
showTunable(st) displays the values of the parameteric models associated with each
tunable block on page 13-455 in the slTuner interface, st.

Examples

Display Tunable Block Values

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl);

 showTunable

13-453

Create an slTuner interface for the model, and add C1 and C2 as tuned blocks of the
interface.

st = slTuner(mdl,{'C1','C2'});

Display the default values of the tuned blocks.

showTunable(st);

Block 1: scdcascade/C1 =

 1
 Kp + Ki * ---
 s

 with Kp = 0.158, Ki = 0.042

Name: C1
Continuous-time PI controller in parallel form.

Block 2: scdcascade/C2 =

 1
 Kp + Ki * ---
 s

 with Kp = 1.48, Ki = 4.76

Name: C2
Continuous-time PI controller in parallel form.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

13 Alphabetical List

13-454

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

See Also
getBlockValue | setBlockValue | slTuner | writeBlockValue

Introduced in R2014a

 showTunable

13-455

systune
Tune control system parameters in Simulink using slTuner interface

systune tunes fixed-structure control systems subject to both soft and hard design goals.
systune can tune multiple fixed-order, fixed-structure control elements distributed over
one or more feedback loops. For an overview of the tuning workflow, see “Automated
Tuning Workflow” (Control System Toolbox).

This command tunes control systems modeled in Simulink. For tuning control systems
represented in MATLAB, systune for genss models.

Syntax
[st,fSoft] = systune(st0,SoftGoals)
[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals)
[st,fSoft,gHard] = systune(___ ,opt)
[st,fSoft,gHard,info] = systune(___)

Description
[st,fSoft] = systune(st0,SoftGoals) tunes the free parameters of the control
system in Simulink. The Simulink model, tuned blocks on page 13-464, and analysis points
on page 13-465 of interest are specified by the slTuner interface, st0. systune tunes
the control system parameters to best meet the performance goals, SoftGoals. The
command returns a tuned version of st0 as st. The best achieved soft constraint values
are returned as fSoft.

If the st0 contains real parameter uncertainty, systune automatically performs robust
tuning to optimize the constraint values for worst-case parameter values. systune also
performs robust tuning against a set of plant models obtained at different operating
points or parameter values. See “Input Arguments” on page 13-459.

Tuning is performed at the sample time specified by the Ts property of st0.

[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals) tunes the control
system to best meet the soft goals, subject to satisfying the hard goals. It returns the best

13 Alphabetical List

13-456

achieved values, fSoft and gHard, for the soft and hard goals. A goal is met when its
achieved value is less than 1.

[st,fSoft,gHard] = systune(___ ,opt) specifies options for the optimization for
any of the input argument combinations in previous syntaxes.

[st,fSoft,gHard,info] = systune(___) also returns detailed information about
each optimization run for any of the input argument combinations in previous syntaxes.

Examples

Tune Control System to Soft Constraints

Tune the control system in the rct_airframe2 model to soft goals for tracking, roll off,
stability margin, and disturbance rejection.

Open the Simulink model.

mdl = 'rct_airframe2';
open_system(mdl);

 systune

13-457

Create and configure an slTuner interface to the model.

st0 = slTuner(mdl,'MIMO Controller');

st0 is an slTuner interface to the rct_aircraft2 model with the MIMO Controller
block specified as the tunable portion of the control system.

The model already has linearization input points on the signals az ref, delta fin, az,
q, and e. These signals are therefore available as analysis points for tuning goals and
linearization.

Specify the tracking requirement, roll-off requirement, stability margins, and disturbance
rejection requirement.

req1 = TuningGoal.Tracking('az ref','az',1);
req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
req3 = TuningGoal.Margins('delta fin',7,45);
max_gain = frd([2 200 200],[0.02 2 200]);
req4 = TuningGoal.Gain('delta fin','az',max_gain);

req1 constrains az to track az ref. The next requirement, req2, imposes a roll-off
requirement by specifying a gain profile for the open-loop, point-to-point transfer function
measured at delta fin. The next requirement, req3, imposes open-loop gain and phase
margins on that same point-to-point transfer function. Finally, req4 rejects disturbances
to az injected at delta fin, by specifying a maximum gain profile between those two
points.

Tune the model using these tuning goals.

opt = systuneOptions('RandomStart',3);
rng(0);
[st,fSoft,~,info] = systune(st0,[req1,req2,req3,req4],opt);

Final: Soft = 1.14, Hard = -Inf, Iterations = 46
Final: Soft = 1.13, Hard = -Inf, Iterations = 73
Final: Soft = 1.13, Hard = -Inf, Iterations = 72
Final: Soft = 40, Hard = -Inf, Iterations = 94

st is a tuned version of st0.

The RandomStart option specifies that systune must perform three independent
optimization runs that use different (random) initial values of the tunable parameters.
These three runs are in addition to the default optimization run that uses the current

13 Alphabetical List

13-458

value of the tunable parameters as the initial value. The call to rng seeds the random
number generator to produce a repeatable sequence of numbers.

systune displays the final result for each run. The displayed value, Soft, is the
maximum of the values achieved for each of the four performance goals. The software
chooses the best run overall, which is the run yielding the lowest value of Soft. The last
run fails to achieve closed-loop stability, which corresponds to Soft = Inf.

Examine the best achieved values of the soft constraints.

fSoft

fSoft =

 1.1327 1.1327 0.5140 1.1327

Only req3, the stability margin requirement, is met for all frequencies. The other values
are close to, but exceed, 1, indicating violations of the goals for at least some frequencies.

Use viewGoal to visualize the tuned control system performance against the goals and to
determine whether the violations are acceptable. To evaluate specific open-loop or closed-
loop transfer functions for the tuned parameter values, you can use linearization
commands such as getIOTransfer and getLoopTransfer. After validating the tuned
parameter values, if you want to apply these values to the Simulink® model, you can use
writeBlockValue.

• “Tune Control Systems in Simulink” (Control System Toolbox)
• “Control of a Linear Electric Actuator” (Control System Toolbox)
• “Interpret Numeric Tuning Results” on page 9-184

Input Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

If you specify parameter variation or linearization at multiple operating points when you
create st0, then systune performs robust tuning against all the plant models. If you

 systune

13-459

specify an uncertain (uss) model as a block substitution when you create st0, then
systune performs robust tuning, optimizing the parameters against the worst-case
parameter values. For more information about robust tuning approaches, see “Robust
Tuning Approaches” (Robust Control Toolbox). (Using uncertain models requires a Robust
Control Toolbox license.)

SoftGoals — Soft goals (objectives)
vector of TuningGoal objects

Soft goals (objectives) for tuning the control system described by st0, specified as a
vector of TuningGoal objects. For a complete list, see “Tuning Goals”.

systune tunes the tunable parameters of the control system to minimize the maximum
value of the soft tuning goals, subject to satisfying the hard tuning goals (if any).

HardGoals — Hard goals (constraints)
vector of TuningGoal objects

Hard goals (constraints) for tuning the control system described by st0, specified as a
vector of TuningGoal objects. For a complete list, see “Tuning Goals”.

A hard goal is satisfied when its value is less than 1. systune tunes the tunable
parameters of the control system to minimize the maximum value of the soft tuning goals,
subject to satisfying all the hard tuning goals.

opt — Tuning algorithm options
options set created using systuneOptions

Tuning algorithm options, specified as an options set created using systuneOptions.

Available options include:

• Number of additional optimizations to run starting from random initial values of the
free parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing

See the systuneOptions reference page for more details about all available options.

13 Alphabetical List

13-460

Output Arguments
st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

fSoft — Best achieved values of soft goals
vector

Best achieved values of soft goals, returned as a vector.

Each tuning goal evaluates to a scalar value, and systune minimizes the maximum value
of the soft goals, subject to satisfying all the hard goals.

fSoft contains the value of each soft goal for the best overall run. The best overall run is
the run that achieved the smallest value for max(fSoft), subject to max(gHard)<1.

gHard — Achieved values of hard goals
vector

Achieved values of hard goals, returned as a vector.

gHard contains the value of each hard goal for the best overall run (the run that achieved
the smallest value for max(fSoft), subject to max(gHard)<1. All entries of gHard are
less than 1 when all hard goals are satisfied. Entries greater than 1 indicate that
systune could not satisfy one or more design constraints.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure. The fields of
info are:

Run — Run number
scalar

Run number, returned as a scalar. If you use the RandomStart option of
systuneOptions to perform multiple optimization runs, info is a struct array, and
info.Run is the index.

 systune

13-461

Iterations — Total number of iterations performed during run
scalar

Total number of iterations performed during run, returned as a scalar.

fBest — Best overall soft constraint value
scalar

Best overall soft constraint value, returned as a scalar. systune converts the soft goals to
a function of the free parameters of the control system. The command then tunes the
parameters to minimize that function subject to the hard constraints. (See “Algorithms”
on page 13-466.) info.fBest is the maximum soft constraint value at the final iteration.
This value is only meaningful when the hard constraints are satisfied.

gBest — Best overall hard constraint value
scalar

Best overall hard constraint value, returned as a scalar. systune converts the hard goals
to a function of the free parameters of the control system. The command then tunes the
parameters to drive those values below 1. (See “Algorithms” on page 13-466.)
info.gBest is the maximum hard constraint value at the final iteration. This value must
be less than 1 for the hard constraints to be satisfied.

fSoft — Individual soft constraint values
vector

Individual soft constraint values, returned as a vector. systune converts each soft
requirement to a normalized value that is a function of the free parameters of the control
system. The command then tunes the parameters to minimize that value subject to the
hard constraints. (See “Algorithms” on page 13-466.) info.fSoft contains the individual
values of the soft constraints at the end of each run. These values appear in fSoft in the
same order that the constraints are specified in SoftGoals.

gHard — Individual hard constraint values
vector

Individual hard constraint values, returned as a vector. systune converts each hard
requirement to a normalized value that is a function of the free parameters of the control
system. The command then tunes the parameters to minimize those values. A hard
requirement is satisfied if its value is less than 1. (See “Algorithms” on page 13-466.)
info.gHard contains the individual values of the hard constraints at the end of each run.

13 Alphabetical List

13-462

These values appear in gHard in the same order that the constraints are specified in
HardGoals.

MinDecay — Minimum decay rate of closed-loop poles
vector

Minimum decay rate of closed-loop poles, returned as a vector.

By default, closed-loop pole locations of the tuned system are constrained to satisfy Re(p)
< –10–7. Use the MinDecay option of systuneOptions to change this constraint.

Blocks — Tuned values of tunable blocks and parameters
structure

Tuned values of tunable blocks and parameters, returned as a structure.

In case of multiple runs, you can try the results of any particular run other than the best
run. To do so, you can use either getBlockValue or showTunable to access the tuned
parameter values. For example, to use the results from the third run, type
getBlockValue(st,Info(3).Blocks).

LoopScaling — Optimal diagonal scaling for evaluating MIMO tuning goals
state-space model

Optimal diagonal scaling for evaluating MIMO tuning goals, returned as a state-space
model.

When applied to multiloop control systems, tuning goals such as
TuningGoal.LoopShape and TuningGoal.Margins can be sensitive to the scaling of
the individual loop transfer functions to which they apply. systune automatically corrects
scaling issues and returns the optimal diagonal scaling matrix d as a state-space model in
info.LoopScaling.

The loop channels associated with each diagonal entry of D are listed in
info.LoopScaling.InputName. The scaled loop transfer is D\L*D, where L is the
open-loop transfer measured at the locations info.LoopScaling.InputName.

wcPert — Worst combinations of uncertain parameters
structure array

Worst combinations of uncertain parameters, returned as a structure array. (Applies for
robust tuning of control systems with uncertainty only.) Each structure contains one set of

 systune

13-463

uncertain parameter values. The perturbations with the worst performance are listed
first.

wcf — Worst objective value
positive scalar

Largest soft goal value over the uncertainty range when using the tuned controller.
(Applies for robust tuning of control systems with uncertainty only.)

wcg — Worst constraint value
positive scalar

Largest hard goal value over the uncertainty range when using the tuned controller.
(Applies for robust tuning of control systems with uncertainty only.)

wcDecay — Worst decay rate
scalar

Smallest closed-loop decay rate over the uncertainty range when using the tuned
controller. (Applies for robust tuning of control systems with uncertainty only.) A positive
value indicates robust stability. See MinDecay option in systuneOptions for details.

Definitions

Tuned Blocks
Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks Are
Parameterized” on page 9-36). You can also tune more complex blocks such as SubSystem
or S-Function blocks by specifying an equivalent tunable linear model (Control System
Toolbox).

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface.

st = slTuner('scdcascade',{'C1','C2'})

13 Alphabetical List

13-464

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values
of the tuned block parameterizations.

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

 systune

13-465

Algorithms
x is the vector of tunable parameters in the control system to tune. systune converts
each soft and hard tuning requirement SoftReqs(i) and HardReqs(j) into normalized
values fi(x) and gj(x), respectively. systune then solves the constrained minimization
problem:

Minimize max

i
if x() subject to max

j
jg x() < 1 , for x x x

min max
< < .

xmin and xmax are the minimum and maximum values of the free parameters of the control
system.

When you use both soft and hard tuning goals, the software approaches this optimization
problem by solving a sequence of unconstrained subproblems of the form:

min max , .
x

f x g xa () ()()

The software adjusts the multiplier α so that the solution of the subproblems converges to
the solution of the original constrained optimization problem.

systune returns the slTuner interface with parameters tuned to the values that best
solve the minimization problem. systune also returns the best achieved values of fi(x)
and gj(x), as fSoft and gHard respectively.

For information about the functions fi(x) and gj(x) for each type of constraint, see the
reference pages for each TuningGoal requirement object.

systune uses the nonsmooth optimization algorithms described in [1],[2],[3],[4]

systune computes the H∞ norm using the algorithm of [5] and structure-preserving
eigensolvers from the SLICOT library. For information about the SLICOT library, see
http://slicot.org.

Alternative Functionality
Tune interactively using Control System Tuner.

13 Alphabetical List

13-466

http://slicot.org

References
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on

Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Apkarian, P. and D. Noll, "Nonsmooth Optimization for Multiband Frequency-Domain
Control Design," Automatica, 43 (2007), pp. 724–731.

[3] Apkarian, P., P. Gahinet, and C. Buhr, "Multi-model, multi-objective tuning of fixed-
structure controllers," Proceedings ECC (2014), pp. 856–861.

[4] Apkarian, P., M.-N. Dao, and D. Noll, "Parametric Robust Structured Control Design,"
IEEE Transactions on Automatic Control, 2015.

[5] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
addPoint | getIOTransfer | getLoopTransfer | hinfstruct | looptune | slTuner
| systune (for genss) | systuneOptions | writeBlockValue

Topics
“Tune Control Systems in Simulink” (Control System Toolbox)
“Control of a Linear Electric Actuator” (Control System Toolbox)
“Interpret Numeric Tuning Results” on page 9-184
“Tuning Goals”
“Robust Tuning Approaches” (Robust Control Toolbox)

Introduced in R2014a

 systune

13-467

writeBlockValue
Update block values in Simulink model

Syntax
writeBlockValue(st)
writeBlockValue(st,blockid)
writeBlockValue(st,m)

Description
writeBlockValue(st) writes tuned parameter values from the slTuner interface, st,
to the Simulink model that st describes. Use this command, for example, to validate
parameters of a control system that you tuned using systune or looptune.

writeBlockValue skips blocks that cannot represent their tuned value in a
straightforward and lossless manner. For example, suppose you tune an user defined
Subsystem or S-Function block. writeBlockValue will skip this block because there is
no clear way to map the tuned value to a Subsystem or S-Function block. Similarly, if you
parameterize a Gain block as a second-order transfer function, writeBlockValue will
skip this block, unless the transfer function value is a static gain.

writeBlockValue(st,blockid) only updates the block or blocks referenced by
blockid.

writeBlockValue(st,m) writes tuned parameter values from a generalized model, m,
to the Simulink model described by the slTuner interface, st.

Examples

Update Simulink Model with All Tuned Parameters

Create an slTuner interface for the model.

13 Alphabetical List

13-468

st = slTuner('scdcascade',{'C1','C2'});

Specify the tuning goals and necessary analysis points.

tg1 = TuningGoal.StepTracking('r','y1m',5);

addPoint(st,{'r','y1m'});

tg2 = TuningGoal.Poles();
tg2.MaxFrequency = 10;

Tune the controller.

[sttuned,fSoft] = systune(st,[tg1 tg2]);

Final: Soft = 1.28, Hard = -Inf, Iterations = 37

After validating the tuning results, update the model to use the tuned controller values.

writeBlockValue(sttuned);

• “Tuning of a Digital Motion Control System” (Control System Toolbox)
• “Control of a Linear Electric Actuator” (Control System Toolbox)

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blockid — Blocks to update
character vector | string | cell array of character vectors | string array

Blocks to update with tuned values, specified as a:

• Character vector or string, to update one block.
• Cell array of character vectors or string array, to update multiple blocks.

 writeBlockValue

13-469

The blocks in blockid must be in the TunedBlocks property of the slTuner interface
st. You can specify a full block path, or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.
Example: blk = {'scdcascade/C1','scdcascade/C2'}
Example: "C1"

m — Tuned control system
generalized state-space

Tuned control system, specified as a generalized state-space model (genss).

Typically, m is the output of a tuning function like systune, looptune, or hinfstruct.
The model m must have some tunable parameters in common with st. For example, m can
be a generalized model that you obtained by linearizing your Simulink model, and then
tuned to meet some design requirements.

See Also
getBlockValue | setBlockValue | showTunable | slTuner |
writeLookupTableData

Topics
“Tuning of a Digital Motion Control System” (Control System Toolbox)
“Control of a Linear Electric Actuator” (Control System Toolbox)
“How Tuned Simulink Blocks Are Parameterized” (Control System Toolbox)

Introduced in R2014a

13 Alphabetical List

13-470

slTuner
Interface for control system tuning of Simulink models

Syntax
st = slTuner(mdl,tuned_blocks)
st = slTuner(mdl,tuned_blocks,pt)
st = slTuner(mdl,tuned_blocks,param)
st = slTuner(mdl,tuned_blocks,op)
st = slTuner(mdl,tuned_blocks,blocksub)
st = slTuner(mdl,tuned_blocks,options)
st = slTuner(mdl,tuned_blocks,pt,op,param,blocksub,options)

Description
st = slTuner(mdl,tuned_blocks) creates an slTuner interface, st, for tuning the
control system blocks of the Simulink model, mdl. The interface adds the linear analysis
points marked in the model as analysis points on page 13-485 of st. The interface also
adds the linear analysis points that imply an opening as permanent openings on page 13-
485. When the interface performs linearization, for example, to tune the blocks, it uses
the model initial condition as the operating point.

st = slTuner(mdl,tuned_blocks,pt) adds the specified point to the list of analysis
points for st, ignoring linear analysis points marked in the model.

st = slTuner(mdl,tuned_blocks,param) specifies the parameters whose values
you want to vary when tuning the model blocks.

st = slTuner(mdl,tuned_blocks,op) specifies the operating points for tuning the
model blocks.

st = slTuner(mdl,tuned_blocks,blocksub) specifies substitute linearizations of
blocks and subsystems. Use this syntax, for example, to specify a custom linearization for
a block. You can also use this syntax for blocks that do not linearize successfully, such as
blocks with discontinuities or triggered subsystems.

 slTuner

13-471

st = slTuner(mdl,tuned_blocks,options) configures the linearization algorithm
options.

st = slTuner(mdl,tuned_blocks,pt,op,param,blocksub,options) uses any
combination of the input arguments pt, op, param, blocksub, and options to create
st. For example, you can use:

• st = slTuner(mdl,tuned_blocks,pt,param)
• st = slTuner(mdl,tuned_blocks,op,param).

Object Description
slTuner provides an interface between a Simulink model and the tuning commands
systune and looptune. slTuner allows you to:

• Specify the control architecture.
• Designate and parameterize blocks to be tuned.
• Tune the control system.
• Validate design by computing (linearized) open-loop and closed-loop responses.
• Write tuned values back to the model.

Because tuning commands such as systune operate on linear models, the slTuner
interface automatically computes and stores a linearization of your Simulink model. This
linearization is automatically updated when you change any properties of the slTuner
interface. The update occurs when you call commands that query the linearization stored
in the interface. Such commands include systune, looptune, getIOTransfer, and
getLoopTransfer. For more information about linearization, see “What Is
Linearization?” on page 2-3

Examples

Create and Configure slTuner Interface for Control System Tuning

Create and configure an slTuner interface for a Simulink® model that specifies which
blocks to tune with systune or looptune.

Open the Simulink model.

13 Alphabetical List

13-472

mdl = 'scdcascade';
open_system(mdl);

The control system consists of two feedback loops, an inner loop with PI controller C2,
and an outer loop with PI controller C1. Suppose you want to tune this model to meet the
following control objectives:

• Track setpoint changes to r at the system output y1m with zero steady-state error and
specified rise time.

• Reject the disturbance represented by d2.

The systune command can jointly tune the controller blocks to meet these design
requirements, which you specify using TuningGoal objects. The slTuner interface sets
up this tuning task.

Create an slTuner interface for the model.

st = slTuner(mdl,{'C1','C2'});

This command initializes the slTuner interface and designates the two PI controller
blocks as tunable. Each tunable block is automatically parameterized according to its type
and initialized with its value in the Simulink model. A linearization of the remaining,
nontunable portion of the model is computed and stored in the slTuner interface.

To configure the slTuner interface, designate as analysis points any signal locations of
relevance to your design requirements. Add the output and reference input for the
tracking requirement. Also, add the disturbance-rejection location.

 slTuner

13-473

addPoint(st,{'r','y1m','d2'});

These locations in your model are now available for referencing in TuningGoal objects
that capture your design goals.

Display a summary of the slTuner interface configuration in the command window.

st

slTuner tuning interface for "scdcascade":

2 Tuned blocks: (Read-only TunedBlocks property)

Block 1: scdcascade/C1
Block 2: scdcascade/C2

3 Analysis points:

Point 1: Signal "r", located at port 1 of scdcascade/setpoint
Point 2: Signal "y1m", located at port 1 of scdcascade/Sum
Point 3: Port 1 of scdcascade/d2

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.SlTunerOptions]
 Ts : 0

The display lists the designated tunable blocks, analysis points, and other information
about the interface. In the command window, click on any highlighted signal to see its
location in the Simulink model. Note that specifying the block name 'd2' in the
addPoint command is equivalent to designating that block’s single output signal as the
analysis point.

You can now capture your design goals with TuningGoal objects and use systune or
looptune to tune the control system to meet those design goals.

In addition to specifying design goals, you can use analysis points for extracting system
responses. For example, extract and plot the step response between the reference signal
'r' and the output 'y1m'.

13 Alphabetical List

13-474

T = getIOTransfer(st,'r','y1m');
stepplot(T)

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string.
Example: 'scdcascade'

 slTuner

13-475

tuned_blocks — Blocks to be tuned
character vector | string | cell array of character vectors | string array

Blocks to be added to the list of tuned blocks of st, specified as:

• Character vector or string — Block path. You can specify the full block path or a
partial path. The partial path must match the end of the full block path and
unambiguously identify the block to add. For example, you can refer to a block by its
name, provided the block name appears only once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of character vectors or string array — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

pt — Analysis point
character vector | string | cell array of character vectors | string array | vector of
linearization I/O objects

Analysis point on page 13-485 to be added to the list of analysis points for st, specified
as:

• Character vector or string — Analysis point identifier that can be any of the following:

• Signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Block path and port originating the signal, for example pt = 'Engine Model/1'

• Cell array of character vectors or string array — Specifies multiple analysis point
identifiers. For example:

pt = {'torque','Motor/PID','Engine Model/1'}
• Vector of linearization I/O objects — Create pt using linio. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');
pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The
interface also adds all 'loopbreak' type signals as permanent openings on page 13-
485.

13 Alphabetical List

13-476

param — Parameter samples
structure | structure array

Parameter samples for linearizing mdl, specified as:

• Structure — Vary the value of a single parameter by specifying param as a structure
with the following fields:

• Name — Parameter name, specified as a character vector or string. You can specify
any model parameter that is a variable in the model workspace, the MATLAB
workspace, or a data dictionary. If the variable used by the model is not a scalar
variable, specify the parameter name as an expression that resolves to a numeric
scalar value. For example, to use the first element of vector V as a parameter, use:

param.Name = 'V(1)';
• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range:

param.Name = 'A';
param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values
of parameters A and b in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

For more in information, see “Specify Parameter Samples for Batch Linearization” on
page 3-62.

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you also configure st.OperatingPoints with operating
point objects only, the software uses single model compilation.

For an example showing how batch linearization with parameter sampling works, see
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32. That
example uses slLinearizer, but the process is the same for slTuner.

To compute the offsets required by the LPV System block, specify param, and set
st.Options.StoreOffsets to true. You can then return additional linearization

 slTuner

13-477

information when calling linearization functions such as getIOTransfer, and extract the
offsets using getOffsetsForLPV.

op — Operating point for linearizing mdl
operating point object | array of operating point objects | vector of positive scalars

Operating point for linearizing mdl, specified as:

• Operating point object, created using findop with either a single operating point
specification, or a single snapshot time.

• Array of operating point objects, specifying multiple operating points.

To create an array of operating point objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more

information, see “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.

• Batch trim your model using parameter variations. For more information, see
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-
65.

• Vector of positive scalars, specifying simulation snapshot times.

If you configure st.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid
specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before
linearization. For an example that uses the linearize command, see “Batch
Linearize Model at Multiple Operating Points Derived from Parameter Variations” on
page 3-25.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

blocksub — Substitute linearizations for blocks and model subsystems
structure | structure array

13 Alphabetical List

13-478

Substitute linearizations for blocks and model subsystems, specified as a structure or an
n-by-1 structure array, where n is the number of blocks for which you want to specify a
linearization. Use blocksub to specify a custom linearization for a block or subsystem.
For example, you can specify linearizations for blocks that do not have analytic
linearizations, such as blocks with discontinuities or triggered subsystems.

You can batch linearize your model by specifying multiple substitute linearizations for a
block. Use this functionality, for example, to study the effects of varying the linearization
of a Saturation block on the model dynamics.

Each substitute linearization structure has the following fields:

Name — Block path

Block path of the block for which you want to specify the linearization, specified as a
character vector.

Value — Substitute linearization

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of

gain values, where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O
configuration of the specified model must match the configuration of the block
specified by Name. Using an uncertain model requires Robust Control Toolbox
software.

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch
linearize the model using multiple block substitutions. The I/O configuration of each
model in the array must match the configuration of the block for which you are
specifying a custom linearization. If you:

• Vary model parameters using param and specify Value as a model array, the
dimensions of Value must match the parameter grid size.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI
models for more than one block, the dimensions of the arrays must match.

• Structure with the following fields:

 slTuner

13-479

Field Description
Specification Block linearization, specified as a character vector that

contains one of the following

• MATLAB expression
• Name of a “Custom Linearization Function” on page 13-

486 in your current working folder or on the MATLAB
path.

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object

(requires Robust Control Toolbox software)

The I/O configuration of the returned model must match
the configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

ParameterNames Linearization function parameter names, specified as a cell
array of character vectors. Specify ParameterNames only
when Type = 'Function' and your block linearization
function requires input parameters. These parameters only
impact the linearization of the specified block.

You must also specify the corresponding
blocksub.Value.ParameterValues field.

ParameterValues Linearization function parameter values, specified as a
vector of doubles. The order of parameter values must
correspond to the order of parameter names in
blocksub.Value.ParameterNames. Specify
ParameterValues only when Type = 'Function' and
your block linearization function requires input
parameters.

13 Alphabetical List

13-480

options — slTuner options
slTunerOptions option set

slTuner options, specified as an slTunerOptions option set.
Example: options = slTunerOptions('IgnoreDiscreteStates','on')

Properties
slTuner object properties include:

TunedBlocks

Blocks to be tuned in mdl, specified as a cell array of character vectors.

When you create an slTuner interface, the TunedBlocks property is automatically
populated with the blocks you specify in the tuned_blocks input argument. To specify
additional tunable blocks in an existing slTuner interface, use addBlock.

Ts

Sampling time for analyzing and tuning mdl, specified as nonnegative scalar.

Set this property using dot notation (st.Ts = Ts).

Default: 0 (implies continuous-time)

Parameters

Parameter samples for linearizing mdl, specified as a structure or a structure array.

Set this property using the param input argument or dot notation (st.Parameters =
param). param must be one of the following:

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you also configure st.OperatingPoints with operating
point objects only, the software uses single model compilation.

OperatingPoints

Operating points for linearizing mdl, specified as an operating point object, array of
operating point objects, or array of positive scalars.

 slTuner

13-481

Set this property using the op input argument or dot notation (st.OperatingPoints =
op). op must be one of the following:

• Operating point object, created using findop with either a single operating point
specification, or a single snapshot time.

• Array of operating point objects, specifying multiple operating points.

To create an array of operating point objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more

information, see “Batch Compute Steady-State Operating Points for Multiple
Specifications” on page 1-61.

• Batch trim your model using parameter variations. For more information, see
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-
65.

• Vector of positive scalars, specifying simulation snapshot times.

If you configure st.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid
specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before
linearization. For an example that uses the linearize command, see “Batch
Linearize Model at Multiple Operating Points Derived from Parameter Variations” on
page 3-25.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

BlockSubstitutions

Substitute linearizations for blocks and model subsystems, specified as a structure or
structure array.

Use this property to specify a custom linearization for a block or subsystem. You also can
use this syntax for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

13 Alphabetical List

13-482

Set this property using the blocksub input argument or dot notation
(st.BlockSubstitutions = blocksubs). For information about the required
structure, see blocksub.

Options

Linearization algorithm options, specified as an option set created using
slTunerOptions.

Set this property using the opt input argument or dot notation (st.Options = opt).

Model

Name of the Simulink model to be linearized, specified as a character vector by the input
argument mdl.

TimeUnit

Unit of the time variable. This property specifies the time units for linearized models
returned by getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity. Use any of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Default: 'seconds'

Object Functions
addBlock Add block to list of tuned blocks for slTuner interface

 slTuner

13-483

addPoint Add signal to list of analysis points for slLinearizer or slTuner
interface

addOpening Add signal to list of openings for slLinearizer or slTuner
interface

getPoints Get list of analysis points for slLinearizer or slTuner interface
getOpenings Get list of openings for slLinearizer or slTuner interface
getBlockParam Get parameterization of tuned block in slTuner interface
getBlockValue Get current value of tuned block parameterization in slTuner

interface
getTunedValue Get current value of tuned variable in slTuner interface
getBlockRateConversion Get rate conversion settings for tuned block in slTuner

interface
setBlockParam Set parameterization of tuned block in slTuner interface
setBlockValue Set value of tuned block parameterization in slTuner interface
setBlockRateConversion Set rate conversion settings for tuned block in slTuner

interface
systune Tune control system parameters in Simulink using slTuner

interface
looptune Tune MIMO feedback loops in Simulink using slTuner

interface
showTunable Show value of parameterizations of tunable blocks of slTuner

interface
getIOTransfer Transfer function for specified I/O set using slLinearizer or

slTuner interface
getLoopTransfer Open-loop transfer function at specified point using

slLinearizer or slTuner interface
getSensitivity Sensitivity function at specified point using slLinearizer or

slTuner interface
getCompSensitivity Complementary sensitivity function at specified point using

slLinearizer or slTuner interface
writeBlockValue Update block values in Simulink model
writeLookupTableData Update portion of tuned lookup table

13 Alphabetical List

13-484

Definitions

Analysis Points
Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You use
analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open-loop or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements when
tuning control systems using commands such as systune.

Location refers to a specific block output port within a model or to a bus element in such
an output port. For convenience, you can use the name of the signal that originates from
this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface
contents. For each analysis point of s, the display includes the block name and port
number and the name of the signal that originates at this point. You can also
programmatically obtain a list of all the analysis points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of
Interest for Control System Analysis and Design” on page 2-51 and “Mark Signals of
Interest for Batch Linearization” on page 3-13.

Permanent Openings
Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software enforces
these openings for linearization and tuning. Use permanent openings to isolate a specific
model component. Suppose that you have a large-scale model capturing aircraft dynamics
and you want to perform linear analysis on the airframe only. You can use permanent

 slTuner

13-485

openings to exclude all other components of the model. Another example is when you
have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and port
number and the name of the signal that originates at this location. You can also
programmatically obtain a list of all the permanent loop openings using getOpenings.

Custom Linearization Function
You can specify a substitute linearization for a block or subsystem in your Simulink model
using a custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a
structure that the software creates and passes to the function. BlockData has the
following fields:

Field Description
BlockName Name of the block for which you are specifying a custom linearization.
Parameters Block parameter values, specified as a structure array with Name and

Value fields. Parameters contains the names and values of the
parameters you specify in the blocksub.Value.ParameterNames and
blocksub.Value.ParameterValues fields.

13 Alphabetical List

13-486

Field Description
Inputs Input signals to the block for which you are defining a linearization,

specified as a structure array with one structure for each block input.
Each structure in Inputs has the following fields:

Field Description
BlockName Full block path of the block whose output connects

to the corresponding block input.
PortIndex Output port of the block specified by BlockName

that connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then
Values is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLinea
rization

Current default linearization of the block, specified as a state-space model.
You can specify a block linearization that depends on the default
linearization using BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model
must be one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox

software)

For example, the following function multiplies the current default block linearization, by a
delay of Td = 0.5 seconds. The delay is represented by a Thiran filter with sample time
Ts = 0.1. The delay and sample time are parameters stored in BlockData.

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;
 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

 slTuner

13-487

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

Algorithms
slTuner linearizes your Simulink model using the algorithms described in “Exact
Linearization Algorithm” on page 2-209.

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | looptune | systune

Topics
“Mark Signals of Interest for Control System Analysis and Design” on page 2-51
“How the Software Treats Loop Openings” on page 2-42
“Create and Configure slTuner Interface to Simulink Model” (Control System Toolbox)
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-32
“Tune Control Systems in Simulink” (Control System Toolbox)
“Fault-Tolerant Control of a Passenger Jet” (Control System Toolbox)
“PID Tuning for Setpoint Tracking vs. Disturbance Rejection” (Control System Toolbox)

Introduced in R2014a

13 Alphabetical List

13-488

slTunerOptions
Set slTuner interface options

Syntax
options = slTunerOptions
options = slTunerOptions(Name,Value)

Description
options = slTunerOptions returns the default slTuner interface option set.

options = slTunerOptions(Name,Value) returns an option set with additional
options specified by one or more Name,Value pair arguments.

Examples

Create Option Set for slTuner Interface

Create an option set for an slTuner interface that sets the rate conversion method to the
Tustin method with prewarping at a frequency of 10 rad/s.

options = slTunerOptions('RateConversionMethod','prewarp',...
 'PreWarpFreq',10);

Alternatively, use dot notation to set the values of options.

options = slTunerOptions;
options.RateConversionMethod = 'prewarp';
options.PreWarpFreq = 10;

 slTunerOptions

13-489

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RateConversionMethod','prewarp' sets the rate conversion method to
the Tustin method with prewarping.

UseFullBlockNameLabels — Flag indicating whether to truncate names of I/Os
and states
'off' (default) | 'on'

Flag indicating whether to truncate names of I/Os and states in the linearized model,
specified as the comma-separated pair consisting of 'UseFullBlockNameLabels' and
either:

• 'off' — Use truncated names for the I/Os and states in the linearized model.
• 'on' — Use the full block path to name the I/Os and states in the linearized model.

UseBusSignalLabels — Flag indicating whether to use bus signal channel
numbers or names
'off' (default) | 'on'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in
the linearized model, specified as the comma-separated pair consisting of
'UseBusSignalLabels' and one of the following:

• 'off' — Use bus signal channel numbers to label I/Os on bus signals in the linearized
model.

• 'on' — Use bus signal names to label I/Os on bus signals in the linearized model. Bus
signal names appear in the results when the I/O points are located at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block

13 Alphabetical List

13-490

• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing

through only virtual or nonvirtual subsystem boundaries

StoreOffsets — Flag indicating whether to compute linearization offsets
false (default) | true

Flag indicating whether to compute linearization offsets for inputs, outputs, states, and
state derivatives or updated states, specified as the comma-separated pair consisting of
'StoreOffsets' and one of the following:

• false — Do not compute linearization offsets.
• true — Compute linearization offsets.

You can configure an LPV System block using linearization offsets. For an example, see
“Approximating Nonlinear Behavior Using an Array of LTI Systems” on page 3-91

StoreAdvisor — Flag indicating whether to store diagnostic information
false (default) | true

Flag indicating whether to store diagnostic information during linearization, specified as
the comma-separated pair consisting of 'StoreAdvisor' and one of the following:

• false — Do not store linearization diagnostic information.
• true — Store linearization diagnostic information.

Linearization commands store and return diagnostic information in a
LinearizationAdvisor object. For an example of troubleshooting linearization results
using a LinearizationAdvisor object, see “Troubleshoot Linearization Results at
Command Line” on page 4-42.

RateConversionMethod — Rate conversion method
'zoh' (default) | 'tustin' | 'prewarp' | 'upsampling_zoh' |
'upsampling_tustin' | 'upsampling_prewarp'

Method used for rate conversion when linearizing a multirate system, specified as the
comma-separated pair consisting of 'RateConversionMethod' and one of the
following:

• 'zoh' — Zero-order hold rate conversion method

 slTunerOptions

13-491

• 'tustin' — Tustin (bilinear) method
• 'prewarp' — Tustin method with frequency prewarp. When you use this method, set

the PreWarpFreq option to the desired prewarp frequency.
• 'upsampling_zoh' — Upsample discrete states when possible, and use 'zoh'

otherwise.
• 'upsampling_tustin' — Upsample discrete states when possible, and use

'tustin' otherwise.
• 'upsampling_prewarp' — Upsample discrete states when possible, and use

'prewarp' otherwise. When you use this method, set the PreWarpFreq option to the
desired prewarp frequency.

For more information on rate conversion and linearization of multirate models, see:

• “Linearization of Multirate Models”.
• “Linearization Using Different Rate Conversion Methods”.
• “Continuous-Discrete Conversion Methods” (Control System Toolbox) .

Note If you use a rate conversion method other than 'zoh', the converted states no
longer have the same physical meaning as the original states. As a result, the state names
in the resulting LTI system change to '?'.

PreWarpFreq — Prewarp frequency
0 (default) | positive scalar

Prewarp frequency in rad/s, specified as the comma-separated pair consisting of
'PreWarpFreq' and a nonnegative scalar. This option applies only when
RateConversionMethod is either 'prewarp' or 'upsampling_prewarp'.

AreParamsTunable — Flag indicating whether to recompile the model when
varying parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for
linearization, specified as the comma-separated pair consisting of 'AreParamsTunable'
and one of the following:

• true — Do not recompile the model when all varying parameters are tunable. If any
varying parameters are not tunable, recompile the model for each parameter grid
point, and issue a warning message.

13 Alphabetical List

13-492

• false — Recompile the model for each parameter grid point. Use this option when
you vary the values of nontunable parameters.

For more information about model compilation when you linearize with parameter
variation, see “Batch Linearization Efficiency When You Vary Parameter Values” on page
3-10.

Output Arguments
options — slTuner interface options
slTunerOptions option set

slTuner interface options, returned as an slTunerOptions option set.

See Also
slTuner

Introduced in R2014a

 slTunerOptions

13-493

update
Update operating point object with structural changes in model

Syntax
update(op)

Description
update(op) updates an operating point object, op, to reflect any changes in the
associated Simulink model, such as states being added or removed.

Examples
Open the magball model:

magball

Create an operating point object for the model:

op=operpoint('magball')

This syntax returns:

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt

13 Alphabetical List

13-494

 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Add an Integrator block to the model, as shown in the following figure.

Update the operating point to include this new state:

update(op)

The new operating point appears:

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05
(6.) magball/Integrator
 x: 0

 update

13-495

Inputs: None

Alternatives
As an alternative to the update function, update operating point objects using the Sync
with Model button in the Linear Analysis Tool.

See Also
operpoint | operspec

Introduced before R2006a

13 Alphabetical List

13-496

writeLookupTableData
Update portion of tuned lookup table

When tuning lookup table blocks with systune, use this function to update only a portion
of the table data in the Simulink model. This function is useful when retuning a single
point or a portion of the lookup table. To update the entire lookup table, use
writeBlockValue.

Syntax
writeLookupTableData(st,blockid,breakpoints)
writeLookupTableData(st,blockid,ix1,…,ixN)

Description
writeLookupTableData(st,blockid,breakpoints) writes tuned gain values from
an slTuner interface to a portion of a lookup table in the associated Simulink model.
Each row of breakpoints identifies an entry in the lookup table to update. blockid
must identify a single block in the TunedBlocks property of the slTuner interface.

writeLookupTableData(st,blockid,ix1,…,ixN) updates a rectangular portion of
the table data. The index vectors ix1,…,ixN select specific breakpoints along each table
dimension.

Examples

Update Specific Entries in Lookup Table

Suppose you have an slTuner interface st to a Simulink model that contains a 2-D
Lookup Table block Kp Lookup. The block is listed in slTuner.TunedBlocks. Suppose
further that you have retuned for design points corresponding to the (3,5) and (4,6)
breakpoints in the lookup table. Update the lookup table with the new values.

 writeLookupTableData

13-497

breakpoints = [3 5;4 6];
writeLookupTableData(st,'Kp Lookup',breakpoints)

Update Rectangular Portion of Lookup Table

Suppose you have retuned design points between the third and fifth values of the first
scheduling variable, and the seventh and tenth values of the second scheduling variables.
Update the lookup table with the new values.

ix1 = 3:5;
ix2 = 7:10;
writeLookupTableData(st,'Kp Lookup',ix1,ix2)

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blockid — Lookup table
character vector | string

Lookup table to update with tuned values, specified as a character vector or string. The
block identified by blockid must be a lookup-table block in the TunedBlocks property
of the slTuner interface st. You can specify a full block path, or any portion of the block
path that uniquely identifies the block among the other tuned blocks of st.
Example: 'scdcascade/Kp Lookup'
Example: "Kp Lookup"

breakpoints — Lookup-table entries
integer array

Lookup-table entries to update, specified as an integer array. Each row of breakpoints
specifies a table entry by its (i1,i2,…,iN) subscripts. For instance:

• To update the data associated with the first and third breakpoints in a 1-D Lookup
Table block, use breakpoints = [1;3].

13 Alphabetical List

13-498

• To update the data associated with the (3,5) and (4,6) entries in a 2-D Lookup Table
block, use breakpoints = [3 5;4 6].

ix1,…,ixN — Portion of lookup table
vectors

Portion of lookup table to update, specified as index vectors that select specific
breakpoints along each table dimension. For instance, to update a 2-D Lookup Table
block, specify two index vectors that identify the rows and columns to update. If you want
to update the portion of the table blocked out by entries 3 through 5 in the first dimension
and 7 through 10 in the second dimension, use ix1 = 3:5 and ix2 = 7:10.

Tips
• If you use writeBlockValue to update other retuned blocks in your model, exclude

the lookup table blockid from the list of blocks to update with that function.

See Also
writeBlockValue

Topics
“Validate Gain-Scheduled Control Systems” on page 10-46

Introduced in R2017b

 writeLookupTableData

13-499

Blocks — Alphabetical List

14

Bode Plot
Bode plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Bode Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on a
Bode plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the magnitude and phase of the linear system.

The Simulink model can be continuous- or discrete-time or multirate, and can have time
delays. The linear system can be Single-Input Single-Output (SISO) or Multi-Input Multi-
Output (MIMO). For MIMO systems, the plots for all input/output combinations are
displayed.

You can specify piecewise-linear frequency-dependent upper and lower magnitude bounds
and view them on the Bode plot. You can also check that the bounds are satisfied during
simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

14 Blocks — Alphabetical List

14-2

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the Bode responses of linear systems computed
for all input/output combinations.

You can add multiple Bode Plot blocks to compute and plot the magnitude and phase of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Bode Plot block parameters, accessible via the block
parameter dialog box.

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• “Linearization inputs/outputs” on page 14-
5.

• “Click a signal in the model to select it” on
page 14-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page 14-10.
• “Snapshot times” on page 14-11.
• “Trigger type” on page 14-11.

 Bode Plot

14-3

Task Parameters
Specify algorithm
options.

In Algorithm Options of Linearizations tab:

• “Enable zero-crossing detection” on page
14-12.

• “Use exact delays” on page 14-14.
• “Linear system sample time” on page 14-

14.
• “Sample time rate conversion method” on

page 14-15.
• “Prewarp frequency (rad/s)” on page 14-

17.
Specify labels for
linear system I/Os
and state names.

In Labels of Linearizations tab:

• “Use full block names” on page 14-18.
• “Use bus signal names” on page 14-19.

Plot the linear system. Show Plot on page 14-35
(Optional) Specify bounds on magnitude
of the linear system for assertion.

In Bounds tab:

• “Include upper magnitude bound in
assertion” on page 14-20.

• “Include lower magnitude bound in
assertion” on page 14-24.

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• “Enable assertion” on page 14-30.
• “Simulation callback when assertion fails

(optional)” on page 14-32.
• “Stop simulation when assertion fails” on

page 14-32.
• “Output assertion signal” on page 14-33.

Save linear system to MATLAB
workspace.

“Save data to workspace” on page 14-27 in
Logging tab.

14 Blocks — Alphabetical List

14-4

Task Parameters
Display plot window instead of block
parameters dialog box on double-clicking
the block.

“Show plot on block open” on page 14-34.

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on

page 14-7 area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

 Bode Plot

14-5

Filtering Options

• “Enable regular expression” on page 14-8
• “Show filtered results as a flat list” on page 14-9

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

14 Blocks — Alphabetical List

14-6

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

 Bode Plot

14-7

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-5.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

14 Blocks — Alphabetical List

14-8

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

 Bode Plot

14-9

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-11.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
11.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

14 Blocks — Alphabetical List

14-10

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-10 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

 Bode Plot

14-11

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-10 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-11.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may
lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-11.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger

14 Blocks — Alphabetical List

14-12

signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Bode Plot

14-13

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-15.

14 Blocks — Alphabetical List

14-14

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
14 is not auto.

Default: Zero-Order Hold

 Bode Plot

14-15

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

14 Blocks — Alphabetical List

14-16

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-17.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-15 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

 Bode Plot

14-17

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-18

matlab: open_system('scdcstr')

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Bode Plot

14-19

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include upper magnitude bound in assertion
Check that the Bode response satisfies upper magnitude bounds, specified in
Frequencies (rad/sec) on page 14-21 and Magnitude (dB) on page 14-22, during
simulation. The software displays a warning if the magnitude violates the upper bounds.

This parameter is used for assertion only if Enable assertion on page 14-30 in the
Assertion tab is selected.

You can specify multiple upper magnitude bounds on the linear system. The bounds also
appear on the Bode magnitude plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Default:

• Off for Bode Plot block.
• On for Check Bode Characteristics block.

 On
Check that the magnitude satisfies the specified upper bounds, during simulation.

 Off
Do not check that the magnitude satisfies the specified upper bounds, during
simulation.

• Clearing this parameter disables the upper magnitude bounds and the software stops
checking that the bounds are satisfied during simulation. The bound segments are also
greyed out on the plot.

14 Blocks — Alphabetical List

14-20

• If you specify both upper and lower magnitude bounds on page 14-24 but want to
include only the lower bounds for assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Parameter: EnableUpperBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Frequencies (rad/sec)
Frequencies for one or more upper magnitude bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 14-22.

Default:
[] for Bode Plot block
[10 100] for Check Bode Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

 Bode Plot

14-21

For example, type [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds

• To assert that magnitudes that correspond to the frequencies are satisfied, select both
Include upper magnitude bound in assertion on page 14-20 and Enable
assertion on page 14-30.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Parameter: UpperBoundFrequencies
Type: character vector
Value: [] | [10 100]| positive finite numbers | matrix of positive finite numbers | cell
array of matrices with positive finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[10 100]' for Check Bode Characteristics block

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Magnitudes (dB)
Magnitude values for one or more upper magnitude bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec) on page 14-21.

Default:
[] for Bode Plot block

14 Blocks — Alphabetical List

14-22

[-20 -20] for Check Bode Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [–10 –10; –20 –20] for two edges at magnitudes [–10 –10] and [–20 –
20].

• Cell array of matrices with finite numbers for multiple bounds

• To assert that magnitude bounds are satisfied, select both Include upper magnitude
bound in assertion on page 14-20 and Enable assertion on page 14-30.

• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
magnitude in the Magnitude column. Specify the corresponding frequencies in the
Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Parameter: UpperBoundMagnitudes
Type: character vector
Value: [] | [-20 -20] | finite number | matrix of finite numbers | cell array of matrices
with finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[-20 -20]' for Check Bode Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Bode Plot

14-23

Include lower magnitude bound in assertion
Check that the Bode response satisfies lower magnitude bounds, specified in
Frequencies (rad/sec) on page 14-25 and Magnitude (dB) on page 14-26, during
simulation. The software displays a warning if the magnitude violates the lower bounds.

This parameter is used for assertion only if Enable assertion on page 14-30 in the
Assertion tab is selected.

You can specify multiple lower magnitude bounds on the linear system computed during
simulation. The bounds also appear on the Bode magnitude plot. If you clear Enable
assertion, the bounds are not used for assertion but continue to appear on the plot.

Default:

• Off for Bode Plot block.
• On for Check Bode Characteristics block

 On
Check that the magnitude satisfies the specified lower bounds during simulation.

 Off
Do not check that the magnitude satisfies the specified upper bounds during
simulation.

• Clearing this parameter disables the lower magnitude bound and the software stops
checking that the bounds are satisfied during simulation. The bound segments are also
greyed out on the plot.

14 Blocks — Alphabetical List

14-24

• If you specify both upper and lower magnitude bounds on the Bode magnitude but
want to include only the upper bound for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Parameter: EnableLowerBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Frequencies (rad/sec)
Frequencies for one or more lower magnitude bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 14-26.

Default:
[] for Bode Plot block
[0.1 1] for Check Bode Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] to specify two edges with frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds

• To assert that magnitude bounds that correspond to the frequencies are satisfied,
select both Include lower magnitude bound in assertion on page 14-24 and
Enable assertion on page 14-30.

• You can add or modify frequencies from the plot window:

• To add a new frequencies, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type, and specify the

 Bode Plot

14-25

frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Parameter: LowerBoundFrequencies
Type: character vector
Value: [] | [0.1 1] | positive finite number | matrix of positive finite numbers | cell
array of matrices with positive finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[0.1 1]' for Check Bode Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Magnitudes (dB)
Magnitude values for one or more lower magnitude bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec) on page 14-25.

Default:
[] for Bode Plot block
[20 20] for Check Bode Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [20 20; 40 40] for two edges with magnitudes [20 20] and [40 40].
• Cell array of matrices with finite numbers for multiple bounds

• To assert that magnitude bounds are satisfied, select both Include lower magnitude
bound in assertion on page 14-24 and Enable assertion on page 14-30.

14 Blocks — Alphabetical List

14-26

• If Include lower magnitude bound in assertion is not selected, the bound segment
is disabled on the plot.

• To only view the bound on the plot, clear Enable assertion.
• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type and specify the
magnitude in the Magnitude column. Specify the corresponding frequencies in the
Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitude values in
the Magnitude column.

You must click Update Block before simulating the model.

Parameter: LowerBoundMagnitudes
Type: character vector
Value: [] | [20 20] | finite number | matrix of finite numbers | cell array of matrices
with finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[20 20]' for Check Bode Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

 Bode Plot

14-27

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-29.

Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-28

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-27 enables this parameter.

Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a

 Bode Plot

14-29

field named operatingPoints to the data structure that stores the saved linear
systems.

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Save data to workspace on page 14-27 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-32.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-32.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

14 Blocks — Alphabetical List

14-30

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Bode Plot

14-31

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

A MATLAB expression.

Enable assertion on page 14-30 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

14 Blocks — Alphabetical List

14-32

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-30 enables this parameter.

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Bode Plot

14-33

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen

14 Blocks — Alphabetical List

14-34

Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

 Bode Plot

14-35

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Bode Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120

14 Blocks — Alphabetical List

14-36

• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

 Bode Plot

14-37

Check Bode Characteristics
Check that Bode magnitude bounds are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Bode Plot block except for different default parameter settings
in the Bounds tab.

Check that upper and lower magnitude bounds on the Bode response of a linear system,
computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multi-rate and can have time
delays. The computed linear system can be Single-Input Single-Output (SISO) or Multi-
Input Multi-Output (MIMO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the Bode magnitude and phase, and checks
that the magnitude satisfies the specified bounds.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-38

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the Bode responses computed for all input/output
combinations.

You can add multiple Check Bode Characteristics blocks in your model to check upper
and lower Bode magnitude bounds on various portions of the model.

You can also plot the magnitude and phase on a Bode plot and graphically verify that the
magnitude satisfies the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Check Bode Characteristics block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 14-3 in the Bode Plot block reference page.

 Check Bode Characteristics

14-39

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include upper magnitude bound in
assertion

• Include lower magnitude bound in
assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

14 Blocks — Alphabetical List

14-40

Task Parameters
Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also
Bode Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Bode Characteristics

14-41

Check Gain and Phase Margins
Check that gain and phase margin bounds are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Gain and Phase Margin Plot block except for different default
parameter settings in the Bounds tab.

Check that bounds on gain and phase margins of a linear system, computed from a
nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the gain and phase margins, and checks that
the gain and phase margins satisfy the specified bounds.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-42

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Gain and Phase Margins blocks in your model to check gain
and phase margin bounds on various portions of the model.

You can also plot the gain and phase margins on a Bode, Nichols or Nyquist plot or view
the margins in a table and verify that the gain and phase margins satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Gain and Phase Margin Plot block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 14-81 in the Gain and Phase Margin Plot block reference page.

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

 Check Gain and Phase Margins

14-43

Task Parameters
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on gain and phase
margins of the linear system for assertion.

Include gain and phase margins in
assertion in Bounds tab.

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

14 Blocks — Alphabetical List

14-44

See Also
Gain and Phase Margin Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Gain and Phase Margins

14-45

Check Linear Step Response Characteristics
Check that step response bounds on linear system are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Linear Step Response Plot block except for different default
parameter settings in the Bounds tab.

Check that bounds on step response characteristics of a linear system, computed from a
nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the step response and checks that the step
response satisfies the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-46

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Linear Step Response Characteristics blocks in your model to
check step response bounds on various portions of the model.

You can also plot the step response and graphically verify that the step response satisfies
the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Linear Step Response Plot block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 14-114 in the Linear Step Response Plot block reference page.

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

 Check Linear Step Response Characteristics

14-47

Task Parameters
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

Include step response bounds in
assertion in Bounds tab.

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

14 Blocks — Alphabetical List

14-48

See Also
Linear Step Response Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Linear Step Response Characteristics

14-49

Check Nichols Characteristics
Check that gain and phase bounds on Nichols response are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Nichols Plot block except for different default parameter
settings in the Bounds tab.

Check that open- and closed-loop gain and phase bounds on Nichols response of a linear
system, computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the magnitude and phase, and checks that the
gain and phase satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-50

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Nichols Characteristics blocks in your model to check gain
and phase bounds on various portions of the model.

You can also plot the linear system on a Nichols plot and graphically verify that the
Nichols response satisfies the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Nichols Plot block parameters, accessible via the
block parameter dialog box. For more information, see “Parameters” on page 14-150 in
the Nichols Plot block reference page.

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

 Check Nichols Characteristics

14-51

Task Parameters
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on gains and phases of the
linear system for assertion.

In Bounds tab:

• Include gain and phase margins in
assertion

• Include closed-loop peak gain in
assertion

• Include open-loop gain-phase bound
in assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

14 Blocks — Alphabetical List

14-52

Task Parameters
View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also
Nichols Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Nichols Characteristics

14-53

Check Pole-Zero Characteristics
Check that bounds on pole locations are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Pole-Zero Plot block except for different default parameter
settings in the Bounds tab.

Check that approximate second-order bounds on the pole locations of a linear system,
computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the poles and zeros, and checks that the poles
satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-54

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Pole-Zero Characteristics blocks in your model to check
approximate second-order bounds on various portions of the model.

You can also plot the poles and zeros on a pole-zero map and graphically verify that the
poles satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Pole-Zero Plot block parameters, accessible via the
block parameter dialog box. For more information, see “Parameters” on page 14-208 in
the Pole-Zero Plot block reference page.

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

 Check Pole-Zero Characteristics

14-55

Task Parameters
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include settling time bound in
assertion

• Include percent overshoot bound in
assertion

• Include damping ratio bound in
assertion

• Include natural frequency bound in
assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

14 Blocks — Alphabetical List

14-56

Task Parameters
Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also
Pole-Zero Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Pole-Zero Characteristics

14-57

Check Singular Value Characteristics
Check that singular value bounds are satisfied during simulation

Library
Simulink Control Design

Description
This block is same as the Singular Value Plot block except for default parameter settings
in the Bounds tab:

Check that upper and lower bounds on singular values of a linear system, computed from
a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multi-rate and can have time
delays. The computed linear system can be Single-Input Single-Output (SISO) or Multi-
Input Multi-Output (MIMO).

During simulation, the software linearizes the portion of the model between specified
linearization input and output, computes the singular values, and checks that the values
satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

14 Blocks — Alphabetical List

14-58

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values computed for all input/output
combinations.

You can add multiple Check Singular Value Characteristics blocks in your model to check
upper and lower singular value bounds on various portions of the model.

You can also plot the singular values on a singular value plot and graphically verify that
the values satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software
to optimize the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Singular Value Plot block parameters, accessible via
the block parameter dialog box. For more information, see “Parameters” on page 14-248
in the Singular Value Plot block reference page.

 Check Singular Value Characteristics

14-59

Task Parameters
Configure
linearization.

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include upper singular value bound
in assertion

• Include lower singular value bound
in assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

14 Blocks — Alphabetical List

14-60

Task Parameters
Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also
Singular Value Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 12-6
• “Verify Model at Multiple Simulation Snapshots” on page 12-15
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on

page 12-25
• “Verifying Frequency-Domain Characteristics of an Aircraft”

How To
“Monitor Linear System Characteristics in Simulink Models” on page 12-2

Introduced in R2010b

 Check Singular Value Characteristics

14-61

Closed-Loop PID Autotuner
Automatically tune PID gains based on plant frequency responses estimated from closed-
loop experiment in real time
Library: Simulink Control Design

Description
The Closed-Loop PID Autotuner block lets you tune a PID controller in real time against a
physical plant for which you have an initial PID controller that yields a stable loop. The
plant remains under closed-loop control of the initial PID controller during the entire
autotuning process. The block can tune the PID controller to achieve a specified
bandwidth and phase margin without a parametric plant model. If you have a code-
generation product such as Simulink Coder, you can generate code that implements the
tuning algorithm on hardware, letting you tune in real time with or without using
Simulink to manage the autotuning process..

If you have a plant modeled in Simulink and an initial PID controller, you can perform
closed-loop PID autotuning against the modeled plant. Doing so lets you preview plant
response and adjust the settings for PID autotuning before tuning the controller in real
time.

To achieve model-free tuning, the Closed-Loop PID Autotuner block:

1 Injects a test signal into the plant to collect plant input-output data and estimate
frequency response in real time. The test signal is combination of sinusoidal
perturbation signals added on top of the plant input.

2 At the end of the experiment, tunes PID controller parameters based on estimated
plant frequency responses near the target bandwidth.

3 Updates a PID Controller block or a custom PID controller with the tuned
parameters, allowing you to validate closed-loop performance in real time.

14 Blocks — Alphabetical List

14-62

Unlike with the Open-Loop PID Autotuner block, the loop remains closed throughout the
experiment. Keeping the loop closed helps to maintain safe operation of the plant during
the estimation experiment.

You can use the Closed-Loop PID Autotuner block to tune PID controllers for:

• Any stable plant
• Any continuous-time plant with one or more integrators (poles at s = 0) or one or more

pairs of complex poles on the imaginary axis
• Any discrete-time plant with one or more integrators (poles at z = –1) or pairs of

complex poles on the unit circle |z| = 1

If you do not have an initial PID controller, you can use the Open-Loop PID Autotuner
block to obtain one. You can then switch to closed-loop PID autotuning for refinement or
retuning.

The block supports code generation with Simulink Coder, Embedded Coder®, and
Simulink PLC Coder™. It does not support code generation with HDL Coder™.

For more information about using the Closed-Loop PID Autotuner block, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 7-9
• “PID Autotuning in Real Time” on page 7-17

For more general information about PID autotuning and a comparison of the closed-loop
and open-loop approaches, see “When to Use PID Autotuning” on page 7-2.

Ports

Input
u in — Signal from controller
scalar

Insert the block into your system such that this port accepts a control signal from a
source. Typically, this port accepts the signal from the PID controller in your system.
Data Types: single | double

 Closed-Loop PID Autotuner

14-63

y — Plant output
scalar

Connect this port to the plant output.
Data Types: single | double

start/stop — Start and stop the autotuning experiment
scalar

To start and stop the autotuning process, provide a signal at the start/stop port. When
the value of the signal changes from:

• Negative or zero to positive, the experiment starts
• Positive to negative or zero, the experiment stops

When the experiment is not running, the block passes signals unchanged from u in to u
out. In this state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from
1 to 0 to stop it. Some points to consider when configuring the start/stop signal include:

• Start the experiment when the plant is at the desired equilibrium operating point. Use
the initial controller to drive the plant to the operating point. If you have no initial
controller (open-loop tuning only) you can use a source block connected to u in to
drive the plant to the operating point.

• Avoid any load disturbance to the plant during the experiment. Load disturbance can
distort the plant output and reduce the accuracy of the frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a
good estimate at all frequencies it probes. There are two ways to determine when to
stop the experiment:

• Determine the experiment duration in advance. A conservative estimate for the
experiment duration is 200/ωc for closed-loop tuning, or 100/ωc for open-loop
tuning, where ωc is your target bandwidth.

• Observe the signal at the % conv output, and stop the experiment when the signal
stabilizes near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the
signal at the pid gains port.

14 Blocks — Alphabetical List

14-64

You can configure any logic appropriate for your application to control the start and stop
times of the experiment.
Data Types: single | double

bandwidth — Target bandwidth for tuning
scalar

Supply a value for the Target bandwidth (rad/sec) parameter. See that parameter
for details.

Dependencies

To enable this port, in the Tuning tab, next to Target bandwidth (rad/sec), select
Use external source.
Data Types: single | double

target PM — Target phase margin for tuning
scalar

Supply a value for the Target phase margin (degrees) parameter. See that
parameter for details.

Dependencies

To enable this port, in the Tuning tab, next to Target phase margin (degrees),
select Use external source.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal signals
scalar | vector

Supply a value for the Sine Amplitudes parameter. See that parameter for details.

Dependencies

To enable this port, in the Experiment tab, next to Sine Amplitudes, select Use
external source.
Data Types: single | double

 Closed-Loop PID Autotuner

14-65

Output
u out — Signal for plant input
scalar

Insert the block into your system such that this port feeds the input signal to your plant.

• When the experiment is running (start/stop positive), the block injects test signals
into the plant at this port. If you have any saturation or rate limit protecting the plant,
feed the signal from u out into it.

• When the experiment is not running (start/stop zero or negative), the block passes
signals unchanged from u in to u out.

Data Types: single | double

% conv — Convergence of FRD estimation during experiment
scalar

When the experiment is running (start/stop positive), the block injects test signals at u
out and measures the plant response at y. It uses these signals to estimate the frequency
response of the plant at several frequencies around the target bandwidth for tuning. %
conv indicates how close to completion the estimation of the plant frequency response is.
Typically, this value quickly rises to about 90% after the experiment begins, and then
gradually converges to a higher value. Stop the experiment when it levels off near 100%.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N.
These values correspond to the P, I, D, and N parameters in the expressions given in the
Form parameter. Initially, the values are 0, 0, 0, and 100, respectively. The block updates
the values when the experiment ends. This bus signal always has four elements, even if
you are not tuning a PIDF controller.

If you have a PID controller associated with the block, you can update that controller with
these values after the experiment ends. To do so, in the Block tab, click Update PID
Block.
Data Types: single | double

14 Blocks — Alphabetical List

14-66

estimated PM — Estimated phase margin with tuned controller
scalar

This port outputs the estimated phase margin achieved by the tuned controller, in
degrees. The block updates this value when the tuning experiment ends. The estimated
phase margin is calculated from the angle of G(jωc)C(jωc), where G is the estimated plant,
C is the tuned controller, and ωc is the crossover frequency (bandwidth). The estimated
phase margin might differ from the target phase margin specified by the Target phase
margin (degrees) parameter. It is an indicator of the robustness and stability achieved
by the tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the
larger the value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, in the Tuning tab, select Output estimated phase margin achieved
by tuned controller.

frd — Estimated frequency response
vector

This port outputs the frequency-response data estimated by the experiment. Initially, the
value at frd is [0, 0, 0, 0, 0]. During the experiment, the block injects signals at
frequencies [1/10, 1/3, 1, 3, 10]ωc, where ωc is the target bandwidth. At each sample time
during the experiment, the block updates frd with a vector containing the complex
frequency response at each of these frequencies, respectively. You can use the progress of
the response as an alternative to % conv to examine the convergence of the estimation.
When the experiment stops, the block updates frd with the final estimated frequency
response used for computing the PID gains.
Dependencies

To enable this port, in the Experiment tab, select Plant frequency responses near
bandwidth.

nominal — Plant input and output at nominal operating point
vector

This port outputs a vector containing the plant input (u out) and plant output (y) when
the experiment begins. These values are the plant input and output at the nominal
operating point at which the block performs the experiment.

 Closed-Loop PID Autotuner

14-67

Dependencies

To enable this port, in the Experiment tab, select Plant nominal input and output.

Parameters
Tuning Tab

Type — PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of the PID controller in your system. The controller type indicates what
actions are present in the controller. The following controller types are available for PID
autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller type matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDType
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — PID controller form
Parallel (default) | Ideal

Specify the controller form. The controller form determines the interpretation of the PID
coefficients P, I, D, and N.

14 Blocks — Alphabetical List

14-68

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF
controller is:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method
and Filter method). The transfer function of a continuous-time parallel-form PIDF
controller is:

C P
I

s

Ds

Ns
= + +

+1
.

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is:

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

The transfer function of a continuous-time ideal-form PIDF controller is:

C P
Is

Ds

Ds N
= + +

+
Ê

Ë
Á

ˆ

¯
˜1

1

1
.

Other controller actions amount to setting D to zero or setting, I to Inf. (In ideal form,
the controller must have proportional action.)

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller form matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDForm
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

 Closed-Loop PID Autotuner

14-69

Time Domain — PID controller time domain
discrete-time (default) | continuous-time

Specify whether your PID controller is a discrete-time or continuous-time controller.

• For discrete time, you must specify the sample time of your PID controller using the
Controller sample time (sec) parameter.

• For continuous time, you must also specify a sample time for the PID autotuning
experiment using the Experiment sample time (sec) parameter.

Tunable: No

Programmatic Use
Block Parameter: TimeDomain
Type: character vector
Values: 'discrete-time' | 'continuous-time'
Default: 'discrete-time'

Controller sample time (sec) — Sample time of PID controller
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller in seconds. This value also sets the sample
time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the
Nyquist frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts ωc is the
controller sample time that you specify with the Controller sample time (sec)
parameter.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller sample time matches.

Tip If you want to run the deployed block with different sample times in your application,
set this parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the
subsystem at the desired sample time. If you do not plan to change the sample time after
deployment, specify a fixed and finite sample time.

Tunable: No

14 Blocks — Alphabetical List

14-70

Dependencies

This parameter is enabled when the Time Domain is discrete-time.
Programmatic Use
Block Parameter: DiscreteTs
Type: scalar
Value positive scalar | –1
Default: 0.1

Experiment sample time (sec) — Sample time for experiment
0.02 (default) | positive scalar

Even when you tune a continuous-time controller, you must specify a sample time for the
experiment performed by the block. In general, continuous-time controller tuning is not
recommended for PID autotuning against a physical plant. If you want to tune in
continuous time against a Simulink model of the plant, use a fast experiment sample time,
such as 0.02/ωc.

Tunable: No
Dependencies

This parameter is enabled when the Time Domain is continuous-time.
Programmatic Use
Block Parameter: ContinuousTs
Type: positive scalar
Default: 0.02

Integrator method — Discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In
discrete time, the PID controller transfer function assumed by the block is:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

in parallel form, or in ideal form,

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

 Closed-Loop PID Autotuner

14-71

For a controller sample time Ts, the Integrator method parameter determines the
formula Fi as follows:

Integrator method Fi
Forward Euler T

z

s

-1

Backward Euler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

For more information about the relative advantages of each method, see the PID
Controller block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the integrator method matches.

Tunable: Yes

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller
includes integral action.

Programmatic Use
Block Parameter: IntegratorFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In
discrete time, the PID controller transfer function assumed by the block is:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

14 Blocks — Alphabetical List

14-72

in parallel form, or in ideal form,

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

For a controller sample time Ts, the Filter method parameter determines the formula
Fd as follows:

Filter method Fd
Forward Euler T

z

s

-1

Backward Euler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

For more information about the relative advantages of each method, see the PID
Controller block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the filter method matches.

Tunable: Yes

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller
includes derivative action.

Programmatic Use
Block Parameter: FilterFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Target crossover frequency of tuned response
1 (default) | positive scalar

 Closed-Loop PID Autotuner

14-73

The target bandwidth is the target value for the 0-dB gain crossover frequency of the
tuned open-loop response CP, where P is the plant response, and C is the controller
response. This crossover frequency roughly sets the control bandwidth. For a rise-time τ,
a good guess for the target bandwidth is 2/τ.

To perform PID tuning, the autotuner block measures frequency-response information up
to a frequency of 10 times the target bandwidth. To ensure that this frequency is less than
the Nyquist frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts is the
controller sample time that you specify with the Controller sample time (sec)
parameter. Because of this condition, the fastest rise time you can enforce for tuning is
about 1.67Ts. If this rise time does not meet your design goals, consider reducing Ts.

For best results with closed-loop tuning, use a target bandwidth that is within about a
factor of 10 of the bandwidth with the initial PID controller. To tune a controller for a
larger change in bandwidth, tune incrementally using smaller changes.

To provide the target bandwidth via an input port, select Use external source.

Programmatic Use
Block Parameter: Bandwidth
Type: positive scalar
Default: 1

Target phase margin (degrees) — Target minimum phase margin of open-loop
response
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response at the
crossover frequency. The target phase margin reflects desired robustness of the tuned
system. Typically, choose a value in the range of about 45°–60°. In general, higher phase
margin improves overshoot, but can limit response speed. The default value, 60°, tends to
balance performance and robustness, yielding about 5–10% overshoot, depending on the
characteristics of your plant.

To provide the target phase margin via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPM
Type: scalar
Values: 0–90

14 Blocks — Alphabetical List

14-74

Default: 60

Experiment Tab

Sine Amplitudes — Amplitude of sinusoidal perturbations
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant at the
frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at
the experiment frequencies do not vary widely. In such cases, you can use a scalar value
to apply the same magnitude perturbation at all frequencies. However, if you know that
the response decays sharply over the frequency range, consider decreasing the amplitude
of the lower-frequency inputs and increasing the amplitude of the higher-frequency
inputs. It is numerically better for the estimation experiment when all the plant responses
have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and
generates a response above the noise level

• Small enough to keep the plant running within the approximately linear region near
the nominal operating point, and to avoid saturating the plant input or output

In the experiment, the sinusoidal signals are superimposed. Thus, the perturbation can be
at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can
introduce errors into the estimated frequency response.

To provide the sine amplitudes via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSine
Type: scalar, vector of length 4
Default: 1

 Closed-Loop PID Autotuner

14-75

Block Tab

Decrease memory footprint (external mode only) — Deploy tuning
algorithm only
off (default) | on

The block contains two modules, one that performs the real-time frequency-response
estimation, and one that uses the resulting estimated response to tune the PID gains.
When you run a Simulink model containing the block in the external simulation mode, by
default both modules are deployed. You can save memory on the target hardware by
deploying the estimation module only (see “Control Real-Time PID Autotuning in
Simulink” on page 7-27). In this case, the tuning algorithm runs on the Simulink host
computer instead of the target hardware. When this option is selected, the deployed
algorithm uses about a third as much memory as when the option is cleared.

Additionally, the PID gain calculation demands more computational load than the
frequency-response estimation. For fast controller sample times, some hardware might
not finish the gain calculation within one execution cycle. Therefore, when using
hardware with limited computing power, selecting this option lets you tune a PID
controller with a fast sample time.

If you intend to deploy the block and perform PID tuning without using external
simulation mode, do not select this option.

Tunable: No

Programmatic Use
Block Parameter: DeployTuningModule
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Configure block for PLC Coder — Configure block for code generation with
Simulink PLC Coder
off (default) | on

Select this parameter if you are using Simulink PLC Coder to generate code for the
autotuner block. Clear the parameter for code generation with any other MathWorks
code-generation product.

Selecting this parameter affects internal block configuration only, for compatibility with
Simulink PLC Coder. The parameter has no operative effect on generated code.

14 Blocks — Alphabetical List

14-76

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on simulation environment or hardware
requirements.

Tunable: No

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Clicking "Update PID Block" writes tuned gains to the PID block
connected to "u in" port — Automatically detect target for writing tuned PID
coefficients
on (default) | off

Under some conditions, the autotuner block can write tuned gains to a standard or
custom PID controller block. To indicate that the target PID controller is the block
connected to the u in port of the autotuner block, select this option. To specify a PID
controller that is not connected to u in, clear this option.

To write tuned gains from the autotuner block to a PID controller anywhere in the model,
the target block must be either:

• A PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D,

and N, or whatever subset of these parameters exist in the your controller. For
example, if you use a custom PI controller, then you only need mask parameters P and
I.

Specify PID block path — Target PID controller block for writing tuned
coefficients
[] (default) | block path

Under some conditions, the autotuner block can write tuned gains to a standard or
custom PID controller block. Use this parameter to specify the path of the target PID
controller.

 Closed-Loop PID Autotuner

14-77

To write tuned gains from the autotuner block to a PID controller anywhere in the model,
the target block must be either:

• A PID Controller block
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D,

and N, or whatever subset of these parameters exist in your controller

Dependencies

This parameter is enabled when Clicking "Update PID Block" writes tuned gains to
the PID block connected to "u in" port is selected.

Update PID Block — Write tuned PID gains to target controller block
button

The block does not automatically push the tuned gains to the target PID block. If your PID
controller block meets the criteria described in the Specify PID block path
parameter description, after tuning, click this button to transfer the tuned gains to the
block.

You can update the PID block while the simulation is running, including when running in
external mode. Doing so is useful for immediately validating tuned PID gains. At any time
during simulation, you can change parameters, start the experiment again, and push the
new tuned gains to the PID block. You can then continue to run the model and observe the
behavior of your plant.

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

When you click this button, the block creates a structure in the MATLAB workspace
containing the experiment and tuning results. This structure, OnlinePIDTuningResult,
contains the following fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are
necessary for the controller type you are tuning. For instance, if you are tuning a PI
controller, the structure contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec)
parameter of the block.

• TargetPhaseMargin — The value you specified in the Target phase margin
(degrees) parameter of the block.

14 Blocks — Alphabetical List

14-78

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or

pidstd (for ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the

response data obtained at the experiment frequencies [1/10, 1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the

experiment begins, specified as a structure having fields u (input) and y (output).

You can export to the MATLAB workspace while the simulation is running, including when
running in external mode.

See Also
Open-Loop PID Autotuner

Topics
“PID Autotuning for a Plant Modeled in Simulink” on page 7-9
“PID Autotuning in Real Time” on page 7-17
“When to Use PID Autotuning” on page 7-2
“How PID Autotuning Works” on page 7-6

Introduced in R2018a

 Closed-Loop PID Autotuner

14-79

Gain and Phase Margin Plot
Gain and phase margins of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Gain and Phase Margins block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and view the gain and phase
margins on a Bode, Nichols or Nyquist plot. Alternatively, you can view the margins in a
table. By default, the margins are computed using negative feedback for the closed-loop
system.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the linear system on the specified plot type.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify only one gain and phase margin bound each and view them on the
selected plot or table. The block does not support multiple gain and phase margin bounds.
You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.

14 Blocks — Alphabetical List

14-80

• If a bound is not satisfied, the block asserts, and a warning message appears at the
MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Gain and Phase Margin Plot blocks to compute and plot the gain and
phase margins of various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Gain and Phase Margin Plot block parameters,
accessible via the block parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs

(I/Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 14-83.

• “Click a signal in the
model to select it” on
page 14-86.

 Gain and Phase Margin Plot

14-81

Task Parameters
Specify settings. In Linearizations tab:

• “Linearize on” on page
14-88.

• “Snapshot times” on
page 14-89.

• “Trigger type” on page
14-90.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 14-
90.

• “Use exact delays” on
page 14-92.

• “Linear system sample
time” on page 14-93.

• “Sample time rate
conversion method” on
page 14-94.

• “Prewarp frequency
(rad/s)” on page 14-95.

Specify labels for linear
system I/Os and state
names.

In Labels of Linearizations
tab:

• “Use full block names”
on page 14-96.

• “Use bus signal names”
on page 14-97.

Specify plot type for viewing gain and phase margins. “Plot type” on page 14-109.
Plot the linear system. Show Plot on page 14-110
Specify the feedback sign for closed-loop gain and phase
margins.

“Feedback sign” on page 14-
101 in Bounds tab.

14 Blocks — Alphabetical List

14-82

Task Parameters
(Optional) Specify bounds on gain and phase margins of
the linear system for assertion.

“Include gain and phase
margins in assertion” on
page 14-98 in Bounds tab.

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 14-105.

• “Simulation callback
when assertion fails
(optional)” on page 14-
106.

• “Stop simulation when
assertion fails” on page
14-107.

• “Output assertion signal”
on page 14-108.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 14-102 in Logging
tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open”
on page 14-110.

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1
Click .

 Gain and Phase Margin Plot

14-83

The dialog box expands to display a Click a signal in the model to select it on

page 14-86 area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 14-86
• “Show filtered results as a flat list” on page 14-87

4
Click to add the selected signals to the Linearization inputs/outputs table.

14 Blocks — Alphabetical List

14-84

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

 Gain and Phase Margin Plot

14-85

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-83.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a

14 Blocks — Alphabetical List

14-86

lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

 Gain and Phase Margin Plot

14-87

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-89.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
90.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

14 Blocks — Alphabetical List

14-88

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-88 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector

 Gain and Phase Margin Plot

14-89

Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-88 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-89.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may

14 Blocks — Alphabetical List

14-90

lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-90.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Gain and Phase Margin Plot

14-91

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-92

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-94.

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Gain and Phase Margin Plot

14-93

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
93 is not auto.

Default: Zero-Order Hold

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

14 Blocks — Alphabetical List

14-94

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-95.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

 Gain and Phase Margin Plot

14-95

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-94 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

14 Blocks — Alphabetical List

14-96

matlab: open_system('scdcstr')

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

 Gain and Phase Margin Plot

14-97

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include gain and phase margins in assertion
Check that the gain and phase margins are greater than the values specified in Gain
margin (dB) > on page 14-99 and Phase margin (deg) > on page 14-100, during
simulation. The software displays a warning if the gain or phase margin is less than or
equals the specified value.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the margins.

This parameter is used for assertion only if Enable assertion on page 14-105 in the
Assertion tab is selected.

You can view the gain and phase margin bound on one of the following plot types on page
14-109:

• Bode
• Nichols
• Nyquist
• Table

If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

14 Blocks — Alphabetical List

14-98

Default:

• Off for Gain and Phase Margin Plot block.
• On for Check Gain and Phase Margins block.

 On
Check that the gain and phase margins satisfy the specified values, during simulation.

 Off
Do not check that the gain and phase margins satisfy the specified values, during
simulation.

• Clearing this parameter disables the gain and phase margin bounds and the software
stops checking that the gain and phase margins satisfy the bounds during simulation.
The gain and phase margin bounds are also disabled on the plot.

• To only view the gain and phase margin on the plot, clear Enable assertion.

Parameter: EnableMargins
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Gain and Phase Margin Plot block, 'on' for Check Gain and Phase
Margins block

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Gain margin (dB) >
Gain margin, specified in decibels.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the gain margin.

You can specify only one gain margin bound on the linear system in this block.

Default:

 Gain and Phase Margin Plot

14-99

[] for Gain and Phase Margin Plot block.
20 for Check Gain and Phase Margins block.

Positive finite number.

• To assert that the gain margin is satisfied, select both Include gain and phase
margins in assertion on page 14-98 and Enable assertion on page 14-105.

• To modify the gain margin from the plot window, right-click the plot, and select
Bounds > Edit Bound. Specify the new gain margin in Gain margin >. You must
click Update Block before simulating the model.

Parameter: GainMargin
Type: character vector
Value: [] | 20 | positive finite number. Must be specified inside single quotes ('').
Default: '[]' for Gain and Phase Margin Plot block, '20' for Check Gain and Phase
Margins block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Phase margin (deg) >
Phase margin, specified in degrees.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the phase margin.

You can specify only one phase margin bound on the linear system in this block.

Default:
[] for Gain and Phase Margin Plot block.
30 for Check Gain and Phase Margins block.

Positive finite number.

• To assert that the phase margin is satisfied, select both Include gain and phase
margins in assertion on page 14-98 and Enable assertion on page 14-105.

14 Blocks — Alphabetical List

14-100

• To modify the phase margin from the plot window, right-click the plot, and select
Bounds > Edit Bound. Specify the new phase margin in Phase margin >. You must
click Update Block before simulating the model.

Parameter: PhaseMargin
Type: character vector
Value: [] | 30 | positive finite number. Must be specified inside single quotes ('').
Default: '[]' for Gain and Phase Margin Plot block, '30' for Check Gain and Phase
Margins block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Feedback sign
Feedback sign to determine the gain and phase margins of the linear system, computed
during simulation.

To determine the feedback sign, check if the path defined by the linearization inputs and
outputs include the feedback Sum block:

• If the path includes the Sum block, specify positive feedback.
• If the path does not include the Sum block, specify the same feedback sign as the Sum

block.

For example, in the aircraft model, the Check Gain and Phase Margins block includes the
negative sign in the summation block. Therefore, the Feedback sign is positive.

Default: negative feedback

negative feedback
Use when the path defined by the linearization inputs/outputs does not include the
Sum block and the Sum block feedback sign is -.

positive feedback
Use when:

• The path defined by the linearization inputs/outputs includes the Sum block.

 Gain and Phase Margin Plot

14-101

matlab: open_system('scdaircraft')

• The path defined by the linearization inputs/outputs does not include the Sum
block and the Sum block feedback sign is +.

Parameter: FeedbackSign
Type: character vector
Value: '-1' | '+1'
Default: '-1'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

14 Blocks — Alphabetical List

14-102

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-103.

Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

 Gain and Phase Margin Plot

14-103

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-102 enables this parameter.

Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a
field named operatingPoints to the data structure that stores the saved linear
systems.

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

14 Blocks — Alphabetical List

14-104

Save data to workspace on page 14-102 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-106.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-107.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

 Gain and Phase Margin Plot

14-105

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

14 Blocks — Alphabetical List

14-106

A MATLAB expression.

Enable assertion on page 14-105 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-105 enables this parameter.

 Gain and Phase Margin Plot

14-107

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector

14 Blocks — Alphabetical List

14-108

Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Plot type
Plot to view gain and phase margins of the linear system computed during simulation.

Default: Bode

Bode
Bode plot.

Nichols
Nichols plot

Nyquist
Nyquist plot

Tabular
Table.

Right-click the Bode , Nichols or Nyquist plot and select Characteristics > Minimum
Stability Margins to view gain and phase margins. The table displays the computed
margins automatically.

Parameter: PlotType
Type: character vector
Value: 'bode' | 'nichols' | 'nyquist' | 'table'
Default: 'bode'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Gain and Phase Margin Plot

14-109

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

14 Blocks — Alphabetical List

14-110

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

 Gain and Phase Margin Plot

14-111

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Gain and Phase Margins

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

14 Blocks — Alphabetical List

14-112

Linear Step Response Plot
Step response of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Linear Step Response Characteristics block except for
different default parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear step
response.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the step response of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify step response bounds and view them on the plot. You can also check that
the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

 Linear Step Response Plot

14-113

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Linear Step Response Plot blocks to compute and plot the linear
step response of various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Linear Step Response Plot block parameters,
accessible via the block parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs

(I/Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 14-116.

• “Click a signal in the
model to select it” on
page 14-119.

Specify settings. In Linearizations tab:

• “Linearize on” on page
14-121.

• “Snapshot times” on
page 14-122.

• “Trigger type” on page
14-123.

14 Blocks — Alphabetical List

14-114

Task Parameters
Specify algorithm options. In Algorithm Options of

Linearizations tab:

• “Enable zero-crossing
detection” on page 14-
123.

• “Use exact delays” on
page 14-125.

• “Linear system sample
time” on page 14-125.

• “Sample time rate
conversion method” on
page 14-127.

• “Prewarp frequency
(rad/s)” on page 14-128.

Specify labels for linear
system I/Os and state
names.

In Labels of Linearizations
tab:

• “Use full block names”
on page 14-129.

• “Use bus signal names”
on page 14-130.

Plot the linear system. Show Plot on page 14-146
(Optional) Specify bounds on step response of the linear
system for assertion.

Include step response bound
in assertion on page 14-131
in Bounds tab.

 Linear Step Response Plot

14-115

Task Parameters
Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 14-142.

• “Simulation callback
when assertion fails
(optional)” on page 14-
143.

• “Stop simulation when
assertion fails” on page
14-144.

• “Output assertion signal”
on page 14-145.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 14-139 in Logging
tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open”
on page 14-146.

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on

page 14-119 area and a new button.
2 Select one or more signals in the Simulink Editor.

14 Blocks — Alphabetical List

14-116

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 14-119
• “Show filtered results as a flat list” on page 14-120

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

 Linear Step Response Plot

14-117

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-118

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-116.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 Linear Step Response Plot

14-119

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

Default: Off

14 Blocks — Alphabetical List

14-120

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-122.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
123.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

 Linear Step Response Plot

14-121

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-121 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-122

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-121 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-122.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may
lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

 Linear Step Response Plot

14-123

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-123.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

14 Blocks — Alphabetical List

14-124

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

 Linear Step Response Plot

14-125

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-127.

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-126

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
125 is not auto.

Default: Zero-Order Hold

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

 Linear Step Response Plot

14-127

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-128.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Selecting either

14 Blocks — Alphabetical List

14-128

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-127 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For

 Linear Step Response Plot

14-129

matlab: open_system('scdcstr')

example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

14 Blocks — Alphabetical List

14-130

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include step response bound in assertion
Check that the linear step response satisfies all the characteristics specified in:

• Final value on page 14-133
• Rise time on page 14-134 and % Rise on page 14-134
• Settling time on page 14-135 and % Settling on page 14-136
• % Overshoot on page 14-137
• % Undershoot on page 14-138

The software displays a warning if the step response violates the specified values.

This parameter is used for assertion only if Enable assertion on page 14-142 in the
Assertion tab is selected.

The bounds also appear on the step response plot, as shown in the next figure.

 Linear Step Response Plot

14-131

Settling timeRise time

% Undershoot

% Settling
% Overshoot

% Rise

Final
value

Initial
value

If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Default:

• Off for Linear Step Response Plot block.
• On for Check Linear Step Response Characteristics block.

 On
Check that the step response satisfies the specified bounds, during simulation.

 Off
Do not check that the step response satisfies the specified bounds, during simulation.

• Clearing this parameter disables the step response bounds and the software stops
checking that the bounds are satisfied during simulation. The bound segments are also
greyed out on the plot.

• To only view the bounds on the plot, clear Enable assertion.

14 Blocks — Alphabetical List

14-132

Parameter: EnableStepResponseBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Linear Step Response Plot block, 'on' for Check Linear Step
Response Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Final value
Final value of the output signal level in response to a step input.

Default:

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Finite real scalar.

• To assert that final value is satisfied, select both Include step response bound in
assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the final value from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify the
new value in Final value. You must click Update Block before simulating the model.

Parameter: FinalValue
Type: character vector
Value: [] | 1 | finite real scalar. Must be specified inside single quotes ('').
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Linear Step Response Plot

14-133

Rise time
Time taken, in seconds, for the step response to reach a percentage of the final value
specified in % Rise on page 14-134.

Default:

• [] for Linear Step Response Plot block
• 5 for Check Linear Step Response Characteristics block

Finite positive real scalar, less than the settling time on page 14-135.

• To assert that the rise time is satisfied, select both Include step response bound in
assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the rise time from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Bounds > Edit. Specify the new
value in Rise time. You must click Update Block before simulating the model.

Parameter: RiseTime
Type: character vector
Value: [] | 5 | finite positive real scalar. Must be specified inside single quotes ('').
Default: '[]' for Linear Step Response Plot block, '5' for Check Linear Step Response
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

% Rise
The percentage of final value used with the Rise time on page 14-134.

Default:

Minimum: 0

Maximum: 100

14 Blocks — Alphabetical List

14-134

• [] for Linear Step Response Plot block
• 80 for Check Linear Step Response Characteristics block

Positive scalar, less than (100 – % settling on page 14-136).

• To assert that the percent rise is satisfied, select both Include step response bound
in assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the percent rise from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify the
new value in % Rise. You must click Update Block before simulating the model.

Parameter: PercentRise
Type: character vector
Value: [] | 80 | positive scalar between 0 and 100. Must be specified inside single quotes
('').
Default: '[]' for Linear Step Response Plot block, '80' for Check Linear Step
Response Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Settling time
The time, in seconds, taken for the step response to settle within a specified range around
the final value. This settling range is defined as the final value plus or minus the
percentage of the final value, specified in % Settling on page 14-136.

Default:

• [] for Linear Step Response Plot block
• 7 for Check Linear Step Response Characteristics block

Finite positive real scalar, greater than rise time on page 14-134.

• To assert that the settling time is satisfied, select both Include step response bound
in assertion on page 14-131 and Enable assertion on page 14-142.

 Linear Step Response Plot

14-135

• To modify the settling time from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify the
new value in Settling time. You must click Update Block before simulating the
model.

Parameter: SettlingTime
Type: character vector
Value: [] | 7 | positive finite real scalar. Must be specified inside single quotes ('').
Default: '[]' for Linear Step Response Plot block, '7' for Check Linear Step Response
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

% Settling
The percentage of the final value that defines the settling range of the Settling time on
page 14-135.

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Real number, less than (100 – % rise on page 14-134) and less than % overshoot on page
14-137.

• To assert that the percent settling is satisfied, select both Include step response
bound in assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the percent settling from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify the
new value in % Settling. You must click Update Block before simulating the model.

14 Blocks — Alphabetical List

14-136

Parameter: PercentSettling
Type: character vector
Value: [] | 1 | real value between 0 and 100. Must be specified inside single quotes ('').
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

% Overshoot
The amount by which the step response can exceed the final value, specified as a
percentage.

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 10 for Check Linear Step Response Characteristics block

Real number, greater than % settling on page 14-136.

• To assert that the percent overshoot is satisfied, select both Include step response
bound in assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the percent overshoot from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify the
new value in % Overshoot. You must click Update Block before simulating the
model.

Parameter: PercentOvershoot
Type: character vector
Value: [] | 10 | real value between 0 and 100. Must be specified inside single quotes
('').

 Linear Step Response Plot

14-137

Default: '[]' for Linear Step Response Plot block, '10' for Check Linear Step
Response Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

% Undershoot
The amount by which the step response can undershoot the initial value, specified as a
percentage.

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Real number.

• To assert that the percent undershoot is satisfied, select both Include step response
bound in assertion on page 14-131 and Enable assertion on page 14-142.

• To modify the percent undershoot from the plot window, drag the corresponding
bound segment. Alternatively, right-click the segment, and select Bounds > Edit.
Specify the new value in % Undershoot. You must click Update Block before
simulating the model.

Parameter: PercentUndershoot
Type: character vector
Value: [] | 1 | real value between 0 and 100. Must be specified inside single quotes ('').
Default: '1'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-138

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-140.

 Linear Step Response Plot

14-139

Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-139 enables this parameter.

Parameter: SaveName
Type: character vector

14 Blocks — Alphabetical List

14-140

Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a
field named operatingPoints to the data structure that stores the saved linear
systems.

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Save data to workspace on page 14-139 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Linear Step Response Plot

14-141

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-143.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-144.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

14 Blocks — Alphabetical List

14-142

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

A MATLAB expression.

Enable assertion on page 14-142 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Linear Step Response Plot

14-143

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-142 enables this parameter.

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-144

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Linear Step Response Plot

14-145

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

14 Blocks — Alphabetical List

14-146

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

 Linear Step Response Plot

14-147

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Linear Step Response Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

14 Blocks — Alphabetical List

14-148

Nichols Plot
Nichols plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Nichols Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on a
Nichols plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the open-loop gain and phase of the linear
system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify multiple open- and closed-loop gain and phase bounds and view them on
the Nichols plot. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

 Nichols Plot

14-149

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Nichols Plot blocks to compute and plot the gains and phases of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Nichols Plot block parameters, accessible via the
block parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs

(I/Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 14-152.

• “Click a signal in the
model to select it” on
page 14-155.

Specify settings. In Linearizations tab:

• “Linearize on” on page
14-158.

• “Snapshot times” on
page 14-159.

• “Trigger type” on page
14-159.

14 Blocks — Alphabetical List

14-150

Task Parameters
Specify algorithm options. In Algorithm Options of

Linearizations tab:

• “Enable zero-crossing
detection” on page 14-
160.

• “Use exact delays” on
page 14-162.

• “Linear system sample
time” on page 14-162.

• “Sample time rate
conversion method” on
page 14-163.

• “Prewarp frequency
(rad/s)” on page 14-165.

Specify labels for linear
system I/Os and state
names.

In Labels of Linearizations
tab:

• “Use full block names”
on page 14-166.

• “Use bus signal names”
on page 14-167.

Plot the linear system. Show Plot on page 14-185
Specify the feedback sign for closed-loop gain and phase
margins.

“Feedback sign” on page 14-
177 in Bounds tab.

 Nichols Plot

14-151

Task Parameters
(Optional) Specify bounds on gains and phases of the
linear system for assertion.

In Bounds tab:

• Include gain and phase
margins in assertion on
page 14-168.

• Include closed-loop peak
gain in assertion on page
14-171.

• Include open-loop gain-
phase bound in assertion
on page 14-173.

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 14-180.

• “Simulation callback
when assertion fails
(optional)” on page 14-
182.

• “Stop simulation when
assertion fails” on page
14-182.

• “Output assertion signal”
on page 14-183.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 14-177 in Logging
tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open”
on page 14-184.

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

14 Blocks — Alphabetical List

14-152

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on

page 14-155 area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 14-156
• “Show filtered results as a flat list” on page 14-157

4
Click to add the selected signals to the Linearization inputs/outputs table.

 Nichols Plot

14-153

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

14 Blocks — Alphabetical List

14-154

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

 Nichols Plot

14-155

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-152.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

14 Blocks — Alphabetical List

14-156

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

 Nichols Plot

14-157

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-159.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
159.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

14 Blocks — Alphabetical List

14-158

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-158 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

 Nichols Plot

14-159

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-158 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-159.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may
lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-159.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger

14 Blocks — Alphabetical List

14-160

signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Nichols Plot

14-161

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-163.

14 Blocks — Alphabetical List

14-162

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
162 is not auto.

Default: Zero-Order Hold

 Nichols Plot

14-163

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

14 Blocks — Alphabetical List

14-164

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-165.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-163 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

 Nichols Plot

14-165

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-166

matlab: open_system('scdcstr')

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Nichols Plot

14-167

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include gain and phase margins in assertion
Check that the gain and phase margins are greater than the values specified in Gain
margin (dB) > on page 14-169 and Phase margin (deg) > on page 14-170, during
simulation. The software displays a warning if the gain or phase margin is less than or
equal to the specified value.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the margins.

This parameter is used for assertion only if Enable assertion on page 14-180 in the
Assertion tab is selected.

You can specify multiple gain and phase margin bounds on the linear system. The bounds
also appear on the Nichols plot. If you clear Enable assertion, the bounds are not used
for assertion but continue to appear on the plot.

Default:

• Off for Nichols Plot block.
• On for Check Nichols Characteristics block.

 On
Check that the gain and phase margins satisfy the specified values, during simulation.

 Off
Do not check that the gain and phase margins satisfy the specified values, during
simulation.

• Clearing this parameter disables the gain and phase margin bounds and the software
stops checking that the gain and phase margins satisfy the bounds during simulation.
The bounds are also greyed out on the plot.

• To only view the gain and phase margin on the plot, clear Enable assertion.

Parameter: EnableMargins
Type: character vector

14 Blocks — Alphabetical List

14-168

Value: 'on' | 'off'
Default: 'off' for Nichols Plot block, 'on' for Check Nichols Characteristics block

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Gain margin (dB) >
Gain margin, in decibels.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the gain margin.

Default:
[] for Nichols Plot block.
20 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.

• To assert that the gain margin is satisfied, select both Include gain and phase
margins in assertion on page 14-168 and Enable assertion on page 14-180.

• You can add or modify gain margins from the plot window:

• To add new gain margin, right-click the plot, and select Bounds > New Bound.
Select Gain margin in Design requirement type, and specify the margin in
Gain margin.

• To modify the gain margin, drag the segment. Alternatively, right-click the plot, and
select Bounds > Edit Bound. Specify the new gain margin in Gain margin >.

You must click Update Block before simulating the model.

Parameter: GainMargin
Type: character vector
Value: [] | 20 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '20' for Check Nichols Characteristics block.

 Nichols Plot

14-169

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Phase margin (deg) >
Phase margin, in degrees.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the phase margin.

[] for Nichols Plot block.
30 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.

• To assert that the phase margin is satisfied, select both Include gain and phase
margins in assertion on page 14-168 and Enable assertion on page 14-180.

• You can add or modify phase margins from the plot window:

• To add new phase margin, right-click the plot, and select Bounds > New Bound.
Select Phase margin in Design requirement type, and specify the margin in
Phase margin.

• To modify the phase margin, drag the segment. Alternatively, right-click the bound,
and select Bounds > Edit Bound. Specify the new phase margin in Phase
margin >.

You must click Update Block before simulating the model.

Parameter: PhaseMargin
Type: character vector
Value: [] | 30 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '30' for Check Nichols Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-170

Include closed-loop peak gain in assertion
Check that the closed-loop peak gain is less than the value specified in Closed-loop peak
gain (dB) < on page 14-172, during simulation. The software displays a warning if the
closed-loop peak gain is greater than or equal to the specified value.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the closed-loop peak gain.

This parameter is used for assertion only if Enable assertion on page 14-180 in the
Assertion tab is selected.

You can specify multiple closed-loop peak gain bounds on the linear system. The bound
also appear on the Nichols plot as an m-circle. If you clear Enable assertion, the bounds
are not used for assertion but continue to appear on the plot.

Default: Off

 On
Check that the closed-loop peak gain satisfies the specified value, during simulation.

 Off
Do not check that the closed-loop peak gain satisfies the specified value, during
simulation.

• Clearing this parameter disables the closed-loop peak gain bound and the software
stops checking that the peak gain satisfies the bounds during simulation. The bounds
are greyed out on the plot.

 Nichols Plot

14-171

• To only view the closed-loop peak gain on the plot, clear Enable assertion.

Parameter: EnableCLPeakGain
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Closed-loop peak gain (dB) <
Closed-loop peak gain, in decibels.

By default, negative feedback, specified in Feedback sign on page 14-101, is used to
compute the margins.

Default []

14 Blocks — Alphabetical List

14-172

• Positive or negative finite number for one bound.
• Cell array of positive or negative finite numbers for multiple bounds.

• To assert that the gain margin is satisfied, select both Include closed-loop peak
gain in assertion on page 14-171 and Enable assertion on page 14-180.

• You can add or modify closed-loop peak gains from the plot window:

• To add the closed-loop peak gain, right-click the plot, and select Bounds > New
Bound. Select Closed-Loop peak gain in Design requirement type, and
specify the gain in Closed-Loop peak gain <.

• To modify the closed-loop peak gain, drag the segment. Alternatively, right-click the
bound, and select Bounds > Edit Bound. Specify the new closed-loop peak gain in
Closed-Loop peak gain <.

You must click Update Block before simulating the model.

Parameter: CLPeakGain
Type: character vector
Value: [] | positive or negative number | cell array of positive or negative numbers. Must
be specified inside single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include open-loop gain-phase bound in assertion
Check that the Nichols response satisfies open-loop gain and phase bounds, specified in
Open-loop phases (deg) on page 14-175 and Open-loop gains (dB) on page 14-176,
during simulation. The software displays a warning if the Nichols response violates the
bounds.

This parameter is used for assertion only if Enable assertion on page 14-180 in the
Assertion tab is selected.

You can specify multiple gain and phase bounds on the linear systems computed during
simulation. The bounds also appear on the Nichols plot. If you clear Enable assertion,
the bounds are not used for assertion but continue to appear on the plot.

 Nichols Plot

14-173

Default: Off

 On
Check if the Nichols response satisfies the specified open-loop gain and phase
bounds, during simulation.

 Off
Do not check if the Nichols response satisfies the specified open-loop gain and phase
bounds, during simulation.

• Clearing this parameter disables the gain-phase bound and the software stops
checking that the gain and phase satisfy the bound during simulation. The bound
segments are also greyed out on the plot.

• To only view the bound on the plot, clear Enable assertion.

Parameter: EnableGainPhaseBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

14 Blocks — Alphabetical List

14-174

Open-loop phases (deg)
Open-loop phases, in degrees.

Specify the corresponding open-loop gains in Open-loop gains (dB) on page 14-176.

Default: []

Must be specified as start and end phases:

• Positive or negative finite numbers for a single bound with one edge
• Matrix of positive or negative finite numbers , for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds

• To assert that the open-loop gains and phases are satisfied, select both Include open-
loop gain-phase bound in assertion on page 14-173 and Enable assertion on page
14-180.

• You can add or modify open-loop phases from the plot window:

• To add a new phases, right-click the plot, and select Bounds > New Bound. Select
Gain-Phase requirement in Design requirement type, and specify the phases
in the Open-Loop phase column. Specify the corresponding gains in the Open-
Loop gain column.

• To modify the phases, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bounds. Specify the new phases in the Open-
Loop phase column.

You must click Update Block before simulating the model.

Parameter: OLPhases
Type: character vector
Value: [] | positive or negative finite numbers | matrix of positive or negative finite
numbers | cell array of matrices with finite numbers. Must be specified inside single
quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Nichols Plot

14-175

Open-loop gains (dB)
Open-loop gains, in decibels.

Specify the corresponding open-loop phases in Open-loop phases (deg) on page 14-175.

Default: []

Must be specified as start and end gains:

• Positive or negative number for a single bound with one edge
• Matrix of positive or negative finite numbers for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds

• To assert that the open-loop gains are satisfied, select both Include open-loop gain-
phase bound in assertion on page 14-173 and Enable assertion on page 14-180.

• You can add or modify open-loop gains from the plot window:

• To add a new gains, right-click the plot, and select Bounds > New Bound. Select
Gain-Phase requirement in Design requirement type, and specify the gains
in the Open-Loop phase column. Specify the phases in the Open-Loop phase
column.

• To modify the gains, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bounds. Specify the new gains in the Open-
Loop gain column.

You must click Update Block before simulating the model.

Parameter: OLGains
Type: character vector
Value: [] | positive or negative number | matrix of positive or negative finite numbers |
cell array of matrices with finite numbers. Must be specified inside single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-176

Feedback sign
Feedback sign to determine the closed-loop gain and phase characteristics of the linear
system, computed during simulation.

To determine the feedback sign, check if the path defined by the linearization inputs and
outputs include the feedback Sum block:

• If the path includes the Sum block, specify positive feedback.
• If the path does not include the Sum block, specify the same feedback sign as the Sum

block.

For example, in the aircraft model, the Check Gain and Phase Margins block includes the
negative sign in the summation block. Therefore, the Feedback sign is positive.

Default: negative feedback

negative feedback
Use when the path defined by the linearization inputs/outputs does not include the
Sum block and the Sum block feedback sign is -.

positive feedback
Use when:

• The path defined by the linearization inputs/outputs includes the Sum block.
• The path defined by the linearization inputs/outputs does not include the Sum

block and the Sum block feedback sign is +.

Parameter: FeedbackSign
Type: character vector
Value: '-1' | '+1'
Default: '-1'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

 Nichols Plot

14-177

matlab: open_system('scdaircraft')

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-179.

Parameter: SaveToWorkspace
Type: character vector

14 Blocks — Alphabetical List

14-178

Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-177 enables this parameter.

Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

 Nichols Plot

14-179

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a
field named operatingPoints to the data structure that stores the saved linear
systems.

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Save data to workspace on page 14-177 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

14 Blocks — Alphabetical List

14-180

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-182.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-182.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

 Nichols Plot

14-181

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

A MATLAB expression.

Enable assertion on page 14-180 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

14 Blocks — Alphabetical List

14-182

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-180 enables this parameter.

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

 Nichols Plot

14-183

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

14 Blocks — Alphabetical List

14-184

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

 Nichols Plot

14-185

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Nichols Characteristics

14 Blocks — Alphabetical List

14-186

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

 Nichols Plot

14-187

Open-Loop PID Autotuner
Automatically tune PID gains based on plant frequency responses estimated from open-
loop experiment in real time
Library: Simulink Control Design

Description
The Open-Loop PID Autotuner block lets you tune a PID controller in real time against a
physical plant. The block can tune a PID controller to achieve a specified bandwidth and
phase margin without a parametric plant model or an initial controller design. If you have
a code-generation product such as Simulink Coder, you can generate code that
implements the tuning algorithm on hardware, letting you tune in real time with or
without using Simulink to manage the autotuning process.

If you have a plant model in Simulink, you can also use the block to obtain an initial PID
design. Doing so lets you preview plant response and adjust the settings for PID
autotuning before tuning the controller in real time.

To achieve model-free tuning, the Open-Loop PID Autotuner block:

1 Injects a test signal into the plant at the nominal operating point to collect plant
input-output data and estimate frequency response in real time. The test signal is a
combination of sine and step perturbation signals added on top of the nominal plant
input measured when the experiment starts. If the plant is part of a feedback loop,
the block opens the loop during the experiment.

2 At the end of the experiment, tunes PID controller parameters based on estimated
plant frequency responses near the open-loop bandwidth.

3 Updates a PID Controller block or a custom PID controller with the tuned
parameters, allowing you to validate closed-loop performance in real time.

Because the block performs an open-loop estimation experiment, do not use this block
with an unstable plant or a plant with multiple integrators.

14 Blocks — Alphabetical List

14-188

To use the algorithm, you do not need an initial PID controller design. However, you must
have some way to get the plant to a nominal operating point for the frequency-response
estimation experiment. If you have an initial controller design, you can use the Closed-
Loop PID Autotuner. For a comparison of closed-loop and open-loop PID autotuning, see
“When to Use PID Autotuning” on page 7-2.

The block supports code generation with Simulink Coder, Embedded Coder, and Simulink
PLC Coder. It does not support code generation with HDL Coder.

For more information about using the Open-Loop PID Autotuner block, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 7-9
• “PID Autotuning in Real Time” on page 7-17

For more general information about PID autotuning and a comparison of the closed-loop
and open-loop approaches, see “When to Use PID Autotuning” on page 7-2.

Ports
Input
u in — Signal from controller
scalar

Insert the block into your system such that this port accepts a control signal from a
source. Typically, this port accepts the signal from the PID controller in your system.
Data Types: single | double

y — Plant output
scalar

Connect this port to the plant output.
Data Types: single | double

start/stop — Start and stop the autotuning experiment
scalar

To start and stop the autotuning process, provide a signal at the start/stop port. When
the value of the signal changes from:

 Open-Loop PID Autotuner

14-189

• Negative or zero to positive, the experiment starts
• Positive to negative or zero, the experiment stops

When the experiment is not running, the block passes signals unchanged from u in to u
out. In this state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from
1 to 0 to stop it. Some points to consider when configuring the start/stop signal include:

• Start the experiment when the plant is at the desired equilibrium operating point. Use
the initial controller to drive the plant to the operating point. If you have no initial
controller (open-loop tuning only) you can use a source block connected to u in to
drive the plant to the operating point.

• Avoid any load disturbance to the plant during the experiment. Load disturbance can
distort the plant output and reduce the accuracy of the frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a
good estimate at all frequencies it probes. There are two ways to determine when to
stop the experiment:

• Determine the experiment duration in advance. A conservative estimate for the
experiment duration is 200/ωc for closed-loop tuning, or 100/ωc for open-loop
tuning, where ωc is your target bandwidth.

• Observe the signal at the % conv output, and stop the experiment when the signal
stabilizes near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the
signal at the pid gains port.

You can configure any logic appropriate for your application to control the start and stop
times of the experiment.
Data Types: single | double

bandwidth — Target bandwidth for tuning
scalar

Supply a value for the Target bandwidth (rad/sec) parameter. See that parameter
for details.
Dependencies

To enable this port, in the Tuning tab, next to Target bandwidth (rad/sec), select
Use external source.

14 Blocks — Alphabetical List

14-190

Data Types: single | double

target PM — Target phase margin for tuning
scalar

Supply a value for the Target phase margin (degrees) parameter. See that
parameter for details.
Dependencies

To enable this port, in the Tuning tab, next to Target phase margin (degrees),
select Use external source.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal signals
scalar | vector

Supply a value for the Sine Amplitudes parameter. See that parameter for details.
Dependencies

To enable this port, in the Experiment tab, next to Sine Amplitudes, select Use
external source.
Data Types: single | double

step Amp — Amplitude of injected step signal
scalar

Supply a value for the Step Amplitude parameter. See that parameter for details.
Dependencies

To enable this port, in the Experiment tab, next to Step Amplitudes, select Use
external source.
Data Types: single | double

Output
u out — Signal for plant input
scalar

Insert the block into your system such that this port feeds the input signal to your plant.

 Open-Loop PID Autotuner

14-191

• When the experiment is running (start/stop positive), the block injects test signals
into the plant at this port. If you have any saturation or rate limit protecting the plant,
feed the signal from u out into it.

• When the experiment is not running (start/stop zero or negative), the block passes
signals unchanged from u in to u out.

Data Types: single | double

% conv — Convergence of FRD estimation during experiment
scalar

When the experiment is running (start/stop positive), the block injects test signals at u
out and measures the plant response at y. It uses these signals to estimate the frequency
response of the plant at several frequencies around the target bandwidth for tuning. %
conv indicates how close to completion the estimation of the plant frequency response is.
Typically, this value quickly rises to about 90% after the experiment begins, and then
gradually converges to a higher value. Stop the experiment when it levels off near 100%.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N.
These values correspond to the P, I, D, and N parameters in the expressions given in the
Form parameter. Initially, the values are 0, 0, 0, and 100, respectively. The block updates
the values when the experiment ends. This bus signal always has four elements, even if
you are not tuning a PIDF controller.

If you have a PID controller associated with the block, you can update that controller with
these values after the experiment ends. To do so, in the Block tab, click Update PID
Block.
Data Types: single | double

estimated PM — Estimated phase margin with tuned controller
scalar

This port outputs the estimated phase margin achieved by the tuned controller, in
degrees. The block updates this value when the tuning experiment ends. The estimated
phase margin is calculated from the angle of G(jωc)C(jωc), where G is the estimated plant,
C is the tuned controller, and ωc is the crossover frequency (bandwidth). The estimated

14 Blocks — Alphabetical List

14-192

phase margin might differ from the target phase margin specified by the Target phase
margin (degrees) parameter. It is an indicator of the robustness and stability achieved
by the tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the
larger the value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, in the Tuning tab, select Output estimated phase margin achieved
by tuned controller.

frd — Estimated frequency response
vector

This port outputs the frequency-response data estimated by the experiment. Initially, the
value at frd is [0, 0, 0, 0]. During the experiment, the block injects signals at frequencies
[1/3, 1, 3, 10]ωc, where ωc is the target bandwidth. At each sample time during the
experiment, the block updates frd with a vector containing the complex frequency
response at each of these frequencies, respectively. You can use the progress of the
response as an alternative to % conv to examine the convergence of the estimation.
When the experiment stops, the block updates frd with the final estimated frequency
response used for computing the PID gains.
Dependencies

To enable this port, in the Experiment tab, select Plant frequency responses near
bandwidth.

dcgain — Estimated DC gain of plant
scalar

If you select Estimate DC gain with step signal in the Experiment tab, the block
estimates the DC gain of the plant by injecting a step signal at u out. When the
experiment stops, the block updates this port with the estimated DC gain value.
Dependencies

To enable this port, in the Experiment tab, select Plant DC Gain.

nominal — Plant input and output at nominal operating point
vector

 Open-Loop PID Autotuner

14-193

This port outputs a vector containing the plant input (u out) and plant output (y) when
the experiment begins. These values are the plant input and output at the nominal
operating point at which the block performs the experiment.
Dependencies

To enable this port, in the Experiment tab, select Plant nominal input and output.

Parameters
Tuning Tab

Type — PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of the PID controller in your system. The controller type indicates what
actions are present in the controller. The following controller types are available for PID
autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller type matches.

Tunable: Yes
Programmatic Use
Block Parameter: PIDType
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — PID controller form
Parallel (default) | Ideal

14 Blocks — Alphabetical List

14-194

Specify the controller form. The controller form determines the interpretation of the PID
coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF
controller is:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method
and Filter method). The transfer function of a continuous-time parallel-form PIDF
controller is:

C P
I

s

Ds

Ns
= + +

+1
.

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is:

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

The transfer function of a continuous-time ideal-form PIDF controller is:

C P
Is

Ds

Ds N
= + +

+
Ê

Ë
Á

ˆ

¯
˜1

1

1
.

Other controller actions amount to setting D to zero or setting, I to Inf. (In ideal form,
the controller must have proportional action.)

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller form matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDForm
Type: character vector

 Open-Loop PID Autotuner

14-195

Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Time Domain — PID controller time domain
discrete-time (default) | continuous-time

Specify whether your PID controller is a discrete-time or continuous-time controller.

• For discrete time, you must specify the sample time of your PID controller using the
Controller sample time (sec) parameter.

• For continuous time, you must also specify a sample time for the PID autotuning
experiment using the Experiment sample time (sec) parameter.

Tunable: No

Programmatic Use
Block Parameter: TimeDomain
Type: character vector
Values: 'discrete-time' | 'continuous-time'
Default: 'discrete-time'

Controller sample time (sec) — Sample time of PID controller
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller in seconds. This value also sets the sample
time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the
Nyquist frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts ωc is the
controller sample time that you specify with the Controller sample time (sec)
parameter.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the controller sample time matches.

Tip If you want to run the deployed block with different sample times in your application,
set this parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the
subsystem at the desired sample time. If you do not plan to change the sample time after
deployment, specify a fixed and finite sample time.

14 Blocks — Alphabetical List

14-196

Tunable: No

Dependencies

This parameter is enabled when the Time Domain is discrete-time.

Programmatic Use
Block Parameter: DiscreteTs
Type: scalar
Value positive scalar | –1
Default: 0.1

Experiment sample time (sec) — Sample time for experiment
0.02 (default) | positive scalar

Even when you tune a continuous-time controller, you must specify a sample time for the
experiment performed by the block. In general, continuous-time controller tuning is not
recommended for PID autotuning against a physical plant. If you want to tune in
continuous time against a Simulink model of the plant, use a fast experiment sample time,
such as 0.02/ωc.

Tunable: No

Dependencies

This parameter is enabled when the Time Domain is continuous-time.

Programmatic Use
Block Parameter: ContinuousTs
Type: positive scalar
Default: 0.02

Integrator method — Discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In
discrete time, the PID controller transfer function assumed by the block is:

C P F z I
D

N F z
i

d

= + () +
+ ()

,

in parallel form, or in ideal form,

 Open-Loop PID Autotuner

14-197

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

For a controller sample time Ts, the Integrator method parameter determines the
formula Fi as follows:

Integrator method Fi
Forward Euler T

z

s

-1

Backward Euler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

For more information about the relative advantages of each method, see the PID
Controller block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the integrator method matches.

Tunable: Yes
Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller
includes integral action.
Programmatic Use
Block Parameter: IntegratorFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In
discrete time, the PID controller transfer function assumed by the block is:

14 Blocks — Alphabetical List

14-198

C P F z I
D

N F z
i

d

= + () +
+ ()

,

in parallel form, or in ideal form,

C P
F z

I

D

D N F z

i

d

= +
()

+
+ ()

Ê

Ë
ÁÁ

ˆ

¯
˜̃1 .

For a controller sample time Ts, the Filter method parameter determines the formula
Fd as follows:

Filter method Fd
Forward Euler T

z

s

-1

Backward Euler T z

z

s

-1

Trapezoidal T z

z

s

2

1

1

+

-

For more information about the relative advantages of each method, see the PID
Controller block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter
values, make sure the filter method matches.

Tunable: Yes

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller
includes derivative action.

Programmatic Use
Block Parameter: FilterFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'

 Open-Loop PID Autotuner

14-199

Default: 'Forward Euler'

Target bandwidth (rad/sec) — Target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth is the target value for the 0-dB gain crossover frequency of the
tuned open-loop response CP, where P is the plant response, and C is the controller
response. This crossover frequency roughly sets the control bandwidth. For a rise-time τ,
a good guess for the target bandwidth is 2/τ.

To perform PID tuning, the autotuner block measures frequency-response information up
to a frequency of 10 times the target bandwidth. To ensure that this frequency is less than
the Nyquist frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts is the
controller sample time that you specify with the Controller sample time (sec)
parameter. Because of this condition, the fastest rise time you can enforce for tuning is
about 1.67Ts. If this rise time does not meet your design goals, consider reducing Ts.

To provide the target bandwidth via an input port, select Use external source.

Programmatic Use
Block Parameter: Bandwidth
Type: positive scalar
Default: 1

Target phase margin (degrees) — Target minimum phase margin of open-loop
response
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response at the
crossover frequency. The target phase margin reflects desired robustness of the tuned
system. Typically, choose a value in the range of about 45°–60°. In general, higher phase
margin improves overshoot, but can limit response speed. The default value, 60°, tends to
balance performance and robustness, yielding about 5–10% overshoot, depending on the
characteristics of your plant.

To provide the target phase margin via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPM
Type: scalar

14 Blocks — Alphabetical List

14-200

Values: 0–90
Default: 60

Experiment Tab

Sine Amplitudes — Amplitude of sinusoidal perturbations
1 (default) | scalar | vector of length 4

During the tuning experiment, the block injects a sinusoidal signal into the plant at the
frequencies [1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 4 to specify a different amplitude at each of [1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at
the experiment frequencies do not vary widely. In such cases, you can use a scalar value
to apply the same magnitude perturbation at all frequencies. However, if you know that
the response decays sharply over the frequency range, consider decreasing the amplitude
of the lower-frequency inputs and increasing the amplitude of the higher-frequency
inputs. It is numerically better for the estimation experiment when all the plant responses
have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and
generates a response above the noise level

• Small enough to keep the plant running within the approximately linear region near
the nominal operating point, and to avoid saturating the plant input or output

In the experiment, the sinusoidal signals are superimposed (with the step perturbation, if
any, in the case of open-loop tuning). Thus, the perturbation can be at least as large as the
sum of all amplitudes. Therefore, to obtain appropriate values for the amplitudes,
consider:

• Actuator limits. Make sure that the largest possible perturbation is within the range of
your plant actuator. Saturating the actuator can introduce errors into the estimated
frequency response.

• How much the plant response changes in response to a given actuator input at the
nominal operating point for tuning. For instance, suppose that you are tuning a PID
controller used in engine-speed control. You have determined that at frequencies

 Open-Loop PID Autotuner

14-201

around the target bandwidth, a 1° change in throttle angle causes a change of about
200 rpm in the engine speed. Suppose further that to preserve linear performance the
speed must not deviate by more than 100 rpm from the nominal operating point. In
this case, choose amplitudes to ensure that the perturbation signal is no greater than
0.5 (assuming that value is within actuator limits).

To provide the sine amplitudes via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSine
Type: scalar, vector of length 4
Default: 1

Estimate DC gain with step signal — Inject step signal into plant
on (default) | off

When this option is selected, the experiment includes an estimation of the plant DC gain.
The block performs this estimation by injecting a step signal into the plant.

Caution If your plant has a single integrator, clear this option. For plants with multiple
integrators or unstable poles, do not use the Open-Loop PID Autotuner block.

Tunable: Yes

Programmatic Use
Block Parameter: EstimateDCGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Step Amplitude — Amplitude of step perturbation
1 (default) | scalar

If Estimate DC gain with step signal is selected, the block estimates the DC gain by
injecting a step signal into the plant. Use this parameter to set the amplitude of the
signal. The considerations for choosing a step amplitude are the same as the
considerations for specifying Sine Amplitudes.

To provide the step amplitude via an input port, select Use external source.

14 Blocks — Alphabetical List

14-202

Tunable: Yes

Dependencies

This parameter is enabled when Estimate DC gain with step signal is selected.

Programmatic Use
Block Parameter: AmpStep
Type: scalar
Default: 1

Block Tab

Decrease memory footprint (external mode only) — Deploy tuning
algorithm only
off (default) | on

The block contains two modules, one that performs the real-time frequency-response
estimation, and one that uses the resulting estimated response to tune the PID gains.
When you run a Simulink model containing the block in the external simulation mode, by
default both modules are deployed. You can save memory on the target hardware by
deploying the estimation module only (see “Control Real-Time PID Autotuning in
Simulink” on page 7-27). In this case, the tuning algorithm runs on the Simulink host
computer instead of the target hardware. When this option is selected, the deployed
algorithm uses about a third as much memory as when the option is cleared.

Additionally, the PID gain calculation demands more computational load than the
frequency-response estimation. For fast controller sample times, some hardware might
not finish the gain calculation within one execution cycle. Therefore, when using
hardware with limited computing power, selecting this option lets you tune a PID
controller with a fast sample time.

If you intend to deploy the block and perform PID tuning without using external
simulation mode, do not select this option.

Tunable: No

Programmatic Use
Block Parameter: DeployTuningModule
Type: character vector
Values: 'off' | 'on'
Default: 'off'

 Open-Loop PID Autotuner

14-203

Configure block for PLC Coder — Configure block for code generation with
Simulink PLC Coder
off (default) | on

Select this parameter if you are using Simulink PLC Coder to generate code for the
autotuner block. Clear the parameter for code generation with any other MathWorks
code-generation product.

Selecting this parameter affects internal block configuration only, for compatibility with
Simulink PLC Coder. The parameter has no operative effect on generated code.

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on simulation environment or hardware
requirements.

Tunable: No

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Clicking "Update PID Block" writes tuned gains to the PID block
connected to "u in" port — Automatically detect target for writing tuned PID
coefficients
on (default) | off

Under some conditions, the autotuner block can write tuned gains to a standard or
custom PID controller block. To indicate that the target PID controller is the block
connected to the u in port of the autotuner block, select this option. To specify a PID
controller that is not connected to u in, clear this option.

To write tuned gains from the autotuner block to a PID controller anywhere in the model,
the target block must be either:

• A PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D,

and N, or whatever subset of these parameters exist in the your controller. For

14 Blocks — Alphabetical List

14-204

example, if you use a custom PI controller, then you only need mask parameters P and
I.

Specify PID block path — Target PID controller block for writing tuned
coefficients
[] (default) | block path

Under some conditions, the autotuner block can write tuned gains to a standard or
custom PID controller block. Use this parameter to specify the path of the target PID
controller.

To write tuned gains from the autotuner block to a PID controller anywhere in the model,
the target block must be either:

• A PID Controller block
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D,

and N, or whatever subset of these parameters exist in your controller

Dependencies

This parameter is enabled when Clicking "Update PID Block" writes tuned gains to
the PID block connected to "u in" port is selected.

Update PID Block — Write tuned PID gains to target controller block
button

The block does not automatically push the tuned gains to the target PID block. If your PID
controller block meets the criteria described in the Specify PID block path
parameter description, after tuning, click this button to transfer the tuned gains to the
block.

You can update the PID block while the simulation is running, including when running in
external mode. Doing so is useful for immediately validating tuned PID gains. At any time
during simulation, you can change parameters, start the experiment again, and push the
new tuned gains to the PID block. You can then continue to run the model and observe the
behavior of your plant.

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

 Open-Loop PID Autotuner

14-205

When you click this button, the block creates a structure in the MATLAB workspace
containing the experiment and tuning results. This structure, OnlinePIDTuningResult,
contains the following fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are
necessary for the controller type you are tuning. For instance, if you are tuning a PI
controller, the structure contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec)
parameter of the block.

• TargetPhaseMargin — The value you specified in the Target phase margin
(degrees) parameter of the block.

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or

pidstd (for ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the

response data obtained at the experiment frequencies [1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the

experiment begins, specified as a structure having fields u (input) and y (output).
• PlantDCGain — The estimated DC gain of the system in absolute units, if Estimate

DC gain with step signal is selected during tuning.

You can export to the MATLAB workspace while the simulation is running, including when
running in external mode.

See Also
Closed-Loop PID Autotuner

Topics
“PID Autotuning for a Plant Modeled in Simulink” on page 7-9
“PID Autotuning in Real Time” on page 7-17
“When to Use PID Autotuning” on page 7-2
“How PID Autotuning Works” on page 7-6

Introduced in R2017b

14 Blocks — Alphabetical List

14-206

Pole-Zero Plot
Pole-zero plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Pole-Zero Characteristics block except for different
default parameter settings in the Bounds tab.

Compute a linear system from a Simulink model and plot the poles and zeros on a pole-
zero map.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the poles and zeros of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify multiple bounds that approximate second-order characteristics on the
pole locations and view them on the plot. You can also check that the bounds are satisfied
during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

 Pole-Zero Plot

14-207

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Pole-Zero Plot blocks to compute and plot the poles and zeros of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Pole-Zero Plot block parameters, accessible via the
block parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs

(I/Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 14-211.

• “Click a signal in the
model to select it” on
page 14-213.

Specify settings. In Linearizations tab:

• “Linearize on” on page
14-216.

• “Snapshot times” on
page 14-217.

• “Trigger type” on page
14-217.

14 Blocks — Alphabetical List

14-208

Task Parameters
Specify algorithm options. In Algorithm Options of

Linearizations tab:

• “Enable zero-crossing
detection” on page 14-
218.

• “Use exact delays” on
page 14-220.

• “Linear system sample
time” on page 14-220.

• “Sample time rate
conversion method” on
page 14-221.

• “Prewarp frequency
(rad/s)” on page 14-223.

Specify labels for linear
system I/Os and state
names.

In Labels of Linearizations
tab:

• “Use full block names”
on page 14-224.

• “Use bus signal names”
on page 14-225.

Plot the linear system. Show Plot on page 14-244

 Pole-Zero Plot

14-209

Task Parameters
(Optional) Specify bounds on pole-zero for assertion. In Bounds tab:

• Include settling time
bound in assertion on
page 14-226.

• Include percent
overshoot bound in
assertion on page 14-
228.

• Include damping ratio
bound in assertion on
page 14-231.

• Include natural
frequency bound in
assertion on page 14-
234.

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 14-239.

• “Simulation callback
when assertion fails
(optional)” on page 14-
241.

• “Stop simulation when
assertion fails” on page
14-241.

• “Output assertion signal”
on page 14-242.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 14-236 in Logging
tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open”
on page 14-243.

14 Blocks — Alphabetical List

14-210

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on

page 14-213 area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 14-214
• “Show filtered results as a flat list” on page 14-215

 Pole-Zero Plot

14-211

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

14 Blocks — Alphabetical List

14-212

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

 Pole-Zero Plot

14-213

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-211.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

14 Blocks — Alphabetical List

14-214

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

 Pole-Zero Plot

14-215

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-217.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
217.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

14 Blocks — Alphabetical List

14-216

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-216 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

 Pole-Zero Plot

14-217

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-216 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-217.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may
lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-217.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger

14 Blocks — Alphabetical List

14-218

signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Pole-Zero Plot

14-219

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-221.

14 Blocks — Alphabetical List

14-220

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
220 is not auto.

Default: Zero-Order Hold

 Pole-Zero Plot

14-221

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

14 Blocks — Alphabetical List

14-222

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-223.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-221 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

 Pole-Zero Plot

14-223

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-224

matlab: open_system('scdcstr')

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Pole-Zero Plot

14-225

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include settling time bound in assertion
Check that the pole locations satisfy approximate second-order bounds on the settling
time, specified in Settling time (sec) <= on page 14-227. The software displays a
warning if the poles lie outside the region defined by the settling time bound.

This parameter is used for assertion only if Enable assertion on page 14-239 in the
Assertion tab is selected.

You can specify multiple settling time bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continue to appear on the plot.

Default:

• Off for Pole-Zero Plot block.
• On for Check Pole-Zero Characteristics block.

 On
Check that each pole lies in the region defined by the settling time bound, during
simulation.

 Off
Do not check that each pole lies in the region defined by the settling time bound,
during simulation.

• Clearing this parameter disables the settling time bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.

14 Blocks — Alphabetical List

14-226

• If you also specify other bounds, such as percent overshoot on page 14-228, damping
ratio on page 14-231 or natural frequency on page 14-234, but want to exclude the
settling time bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Parameter: EnableSettlingTime
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Settling time (sec) <=
Settling time, in seconds, of the second-order system.

Default:
[] for Pole-Zero Plot block
1 for Check Pole-Zero Characteristics block

• Finite positive real scalar for one bound.
• Cell array of finite positive real scalars for multiple bounds.

 Pole-Zero Plot

14-227

• To assert that the settling time bounds are satisfied, select both Include settling
time bound in assertion on page 14-226 and Enable assertion on page 14-239.

• You can add or modify settling time bounds from the plot window:

• To add a new settling time bound, right-click the plot, and select Bounds > New
Bound. Specify the new value in Settling time.

• To modify a settling time bound, drag the corresponding bound segment.
Alternatively, right-click the bound and select Bounds > Edit. Specify the new
value in Settling time (sec) <.

You must click Update Block before simulating the model.

Parameter: SettlingTime
Type: character vector
Value: [] | 1 | finite positive real scalar| cell array of finite positive
real scalars. Must be specified inside single quotes ('').
Default: '[]' for Pole-Zero Plot block, '1' for Check Pole-Zero Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include percent overshoot bound in assertion
Check that the pole locations satisfy approximate second-order bounds on the percent
overshoot, specified in Percent overshoot <= on page 14-227. The software displays a
warning if the poles lie outside the region defined by the percent overshoot bound.

This parameter is used for assertion only if Enable assertion on page 14-239 in the
Assertion tab is selected.

You can specify multiple percent overshoot bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continues to appear on the plot.

Default:
Off for Pole-Zero Plot block.
On for Check Pole-Zero Characteristics block.

14 Blocks — Alphabetical List

14-228

 On
Check that each pole lies in the region defined by the percent overshoot bound,
during simulation.

 Off
Do not check that each pole lies in the region defined by the percent overshoot bound,
during simulation.

• Clearing this parameter disables the percent overshoot bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.

• If you specify other bounds, such as settling time on page 14-226, damping ratio on
page 14-231 or natural frequency on page 14-234, but want to exclude the percent
overshoot bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Parameter: EnablePercentOvershoot

 Pole-Zero Plot

14-229

Type: character vector
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Percent overshoot <=
Percent overshoot of the second-order system.

Default:
[] for Pole-Zero Plot block
10 for Check Pole-Zero Characteristics block

Minimum: 0

Maximum: 100

• Real scalar for single percent overshoot bound.
• Cell array of real scalars for multiple percent overshoot bounds.

• The percent overshoot p.o can be expressed in terms of the damping ratio on page 14-
233 ζ, as:

p o e. . .
/= - -

100
1

2pz z

• To assert that the percent overshoot bounds are satisfied, select both Include
percent overshoot bound in assertion on page 14-226 and Enable assertion on
page 14-239.

• You can add or modify percent overshoot bounds from the plot window:

• To add a new percent overshoot bound, right-click the plot, and select Bounds >
New Bound. Select Percent overshoot in Design requirement type and
specify the value in Percent overshoot <.

14 Blocks — Alphabetical List

14-230

• To modify a percent overshoot bound, drag the corresponding bound segment.
Alternatively, right-click the bound, and select Bounds > Edit. Specify the new
damping ratio for the corresponding percent overshoot value in Damping ratio >.

You must click Update Block before simulating the model.

Parameter: PercentOvershoot
Type: character vector
Value: [] | 10 | real scalar between 0 and 100 | cell array of real
scalars between 0 and 100. Must be specified inside single quotes ('').
Default: '[]' for Pole-Zero Plot block, '10' for Check Pole-Zero Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include damping ratio bound in assertion
Check that the pole locations satisfy approximate second-order bounds on the damping
ratio, specified in Damping ratio >= on page 14-231. The software displays a warning if
the poles lie outside the region defined by the damping ratio bound.

This parameter is used for assertion only if Enable assertion on page 14-239 in the
Assertion tab is selected.

You can specify multiple damping ratio bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continues to appear on the plot.

Default: Off

 On
Check that each pole lies in the region defined by the damping ratio bound, during
simulation.

 Off
Do not check that each pole lies in the region defined by the damping ratio bound,
during simulation.

 Pole-Zero Plot

14-231

• Clearing this parameter disables the damping ratio bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.

• If you specify other bounds, such as settling time on page 14-226, percent overshoot
on page 14-228 or natural frequency on page 14-234, but want to exclude the damping
ratio bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Parameter: EnableDampingRatio
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-232

Damping ratio >=
Damping ratio of the second-order system.

Default: []

Minimum: 0

Maximum: 1

• Finite positive real scalar for single damping ratio bound.
• Cell array of finite positive real scalars for multiple damping ratio bounds.

• The damping ratio ζ, and percent overshoot p.o are related as:

p o e. . .
/= - -

100
1

2pz z

• To assert that the damping ratio bounds are satisfied, select both Include damping
ratio bound in assertion on page 14-231 and Enable assertion on page 14-239.

• You can add or modify damping ratio bounds from the plot window:

• To add a new damping ratio bound, right-click the plot and select Bounds > New
Bound. Select Damping ratio in Design requirement type and specify the
value in Damping ratio >.

• To modify a damping ratio bound, drag the corresponding bound segment or right-
click it and select Bounds > Edit. Specify the new value in Damping ratio >.

You must click Update Block before simulating the model.

Parameter: DampingRatio
Type: character vector
Value: [] | finite positive real scalar between 0 and 1 | cell array of
finite positive real scalars between 0 and 1 . Must be specified inside
single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Pole-Zero Plot

14-233

Include natural frequency bound in assertion
Check that the pole locations satisfy approximate second-order bounds on the natural
frequency, specified in Natural frequency (rad/sec) on page 14-235. The natural
frequency bound can be greater than, less than or equal one or more specific values. The
software displays a warning if the pole locations do not satisfy the region defined by the
natural frequency bound.

This parameter is used for assertion only if Enable assertion on page 14-239 in the
Assertion tab is selected.

You can specify multiple natural frequency bounds on the linear system. The bounds also
appear on the pole-zero plot. If Enable assertion is cleared, the bounds are not used for
assertion but continue to appear on the plot.

Default: Off

 On
Check that each pole lies in the region defined by the natural frequency bound,
during simulation.

 Off
Do not check that each pole lies in the region defined by the natural frequency bound,
during simulation.

• Clearing this parameter disables the natural frequency bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.

14 Blocks — Alphabetical List

14-234

• If you also specify settling time on page 14-226, percent overshoot on page 14-228 or
damping ratio on page 14-231 bounds and want to exclude the natural frequency
bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Parameter: NaturalFrequencyBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Natural frequency (rad/sec)
Natural frequency of the second-order system.

Default: []

• Finite positive real scalar for single natural frequency bound.
• Cell array of finite positive real scalars for multiple natural frequency bounds.

 Pole-Zero Plot

14-235

• To assert that the natural frequency bounds are satisfied, select both Include natural
frequency bound in assertion on page 14-231 and Enable assertion on page 14-
239.

• You can add or modify natural frequency bounds from the plot window:

• To add a new natural frequency bound, right-click the plot and select Bounds >
New Bound. Select Natural frequency in Design requirement type and
specify the natural frequency in Natural frequency.

• To modify a natural frequency bound, drag the corresponding bound segment or
right-click it and select Bounds > Edit. Specify the new value in Natural
frequency.

You must click Update Block before simulating the model.

Parameter: NaturalFrequency
Type: character vector
Value: [] | positive finite real scalar | cell array of positive finite
real scalars. Must be specified inside single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

14 Blocks — Alphabetical List

14-236

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-237.

Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

 Pole-Zero Plot

14-237

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-236 enables this parameter.

Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a
field named operatingPoints to the data structure that stores the saved linear
systems.

14 Blocks — Alphabetical List

14-238

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Save data to workspace on page 14-236 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-241.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-241.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

 Pole-Zero Plot

14-239

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-240

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

A MATLAB expression.

Enable assertion on page 14-239 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Pole-Zero Plot

14-241

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-239 enables this parameter.

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

14 Blocks — Alphabetical List

14-242

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen

 Pole-Zero Plot

14-243

Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

14 Blocks — Alphabetical List

14-244

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Pole-Zero Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120

 Pole-Zero Plot

14-245

• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

14 Blocks — Alphabetical List

14-246

Singular Value Plot
Singular value plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Singular Value Characteristics block except for different
default parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on a
singular value plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the singular values of the linear system.

The Simulink model can be continuous- or discrete-time or multirate, and can have time
delays. The linear system can be Single-Input Single-Output (SISO) or Multi-Input Multi-
Output (MIMO). For MIMO systems, the plots for all input/output combinations are
displayed.

You can specify piecewise-linear frequency-dependent upper and lower singular value
bounds and view them on the plot. You can also check that the bounds are satisfied during
simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

 Singular Value Plot

14-247

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values of linear systems computed
for all input/output combinations.

You can add multiple Singular Value Plot blocks to compute and plot the singular values of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Singular Value Plot block parameters, accessible via
the block parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs

(I/Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 14-250.

• “Click a signal in the
model to select it” on
page 14-253.

14 Blocks — Alphabetical List

14-248

Task Parameters
Specify settings. In Linearizations tab:

• “Linearize on” on page
14-256.

• “Snapshot times” on
page 14-257.

• “Trigger type” on page
14-257.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 14-
258.

• “Use exact delays” on
page 14-260.

• “Linear system sample
time” on page 14-260.

• “Sample time rate
conversion method” on
page 14-261.

• “Prewarp frequency
(rad/s)” on page 14-263.

Specify labels for linear
system I/Os and state
names.

In Labels of Linearizations
tab:

• “Use full block names”
on page 14-264.

• “Use bus signal names”
on page 14-265.

Plot the linear system. Show Plot on page 14-281

 Singular Value Plot

14-249

Task Parameters
(Optional) Specify bounds on singular values for assertion. In Bounds tab:

• Include upper singular
value bound in assertion
on page 14-266.

• Include lower singular
value bound in assertion
on page 14-270.

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 14-277.

• “Simulation callback
when assertion fails
(optional)” on page 14-
278.

• “Stop simulation when
assertion fails” on page
14-279.

• “Output assertion signal”
on page 14-280.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 14-274 in Logging
tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open”
on page 14-281.

Linearization inputs/outputs
Linearization inputs and outputs that define the portion of a nonlinear Simulink model to
linearize.

If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

14 Blocks — Alphabetical List

14-250

1
Click .

The dialog box expands to display a Click a signal in the model to select it on

page 14-253 area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model
to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB regular expression (MATLAB).

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 14-254
• “Show filtered results as a flat list” on page 14-255

4
Click to add the selected signals to the Linearization inputs/outputs table.

 Singular Value Plot

14-251

To remove a signal from the Linearization inputs/outputs table, select the signal

and click .

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

14 Blocks — Alphabetical List

14-252

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note If you simulate the model without specifying an input or output, the software does
not compute a linear system. Instead, you see a warning message at the MATLAB prompt.

No default

Use getlinio and setlinio to specify linearization inputs and outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

 Singular Value Plot

14-253

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs on
page 14-250.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

No default

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable regular expression
Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”
(MATLAB).

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats
the text you enter in the Filter by name edit box as a literal character vector.

14 Blocks — Alphabetical List

14-254

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Show filtered results as a flat list
Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy of
bus signals. The following is an example of a flat list format for a filtered set of nested bus
signals.

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

 Singular Value Plot

14-255

Selecting the Options button on the right-hand side of the Filter by name edit box ()
enables this parameter.

Linearize on
When to compute the linear system during simulation.

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 14-257.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 14-
257.

Use when a signal generated during simulation indicates steady-state operating point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

14 Blocks — Alphabetical List

14-256

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Snapshot times
One or more simulation times. The linear system is computed at these times.

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink
model.

Selecting Simulation snapshots in Linearize on on page 14-256 enables this
parameter.

Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Trigger type
Trigger type of an external trigger for computing linear system.

Default: Rising edge

 Singular Value Plot

14-257

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Selecting External trigger in Linearize on on page 14-256 enables this parameter.

Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Enable zero-crossing detection
Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 14-257.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may
lie between the simulation time steps Tn-1 and Tn which are automatically chosen by
the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type on
page 14-257.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger

14 Blocks — Alphabetical List

14-258

signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection”
(Simulink) in the Simulink User Guide.

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Singular Value Plot

14-259

Use exact delays
How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Linear system sample time
Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the
software uses the conversion method specified in Sample time rate conversion
method on page 14-261.

14 Blocks — Alphabetical List

14-260

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models), least

common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Parameter: SampleTime
Type: character vector
Value: auto | Positive finite value | 0
Default: auto

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Sample time rate conversion method
Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time on page 14-
260 is not auto.

Default: Zero-Order Hold

 Singular Value Plot

14-261

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” (Control System
Toolbox) in Control System Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” (Control System Toolbox) in Control System
Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” (Control System Toolbox) in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

14 Blocks — Alphabetical List

14-262

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 14-263.

Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Prewarp frequency (rad/s)
Prewarp frequency for Tustin method, specified in radians/second.

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 14-261 enables this parameter.

Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10

 Singular Value Plot

14-263

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use full block names
How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For
example, in the chemical reactor model, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is
unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-264

matlab: open_system('scdcstr')

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Use bus signal names
How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following
blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem

boundaries

 Off
Use the bus signal channel number.

Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

 Singular Value Plot

14-265

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Include upper singular value bound in assertion
Check that the singular values satisfy upper bounds, specified in Frequencies (rad/sec)
on page 14-267 and Magnitude (dB) on page 14-268, during simulation. The software
displays a warning during simulation if the singular values violate the upper bound.

This parameter is used for assertion only if Enable assertion on page 14-277 in the
Assertion tab is selected.

You can specify multiple upper singular value bounds on the linear system. The bounds
also appear on the singular value plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Default:

• Off for Singular Value Plot block.
• On for Check Singular Value Characteristics block.

 On
Check that the singular value satisfies the specified upper bounds, during simulation.

 Off
Do not check that the singular value satisfies the specified upper bounds, during
simulation.

• Clearing this parameter disables the upper singular value bounds and the software
stops checking that the bounds are satisfied during simulation. The bound segments
are also greyed out on the plot.

14 Blocks — Alphabetical List

14-266

• If you specify both upper and lower singular value bounds on page 14-270 but want to
include only the lower bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Parameter: EnableUpperBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Singular Value Plot block, 'on' for Check Singular Value
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Frequencies (rad/sec)
Frequencies for one or more upper singular value bound segments, specified in radians/
sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 14-268.

Default:
[] for Singular Value Plot block
[0.1 100] for Check Singular Value Characteristics block

Must be specified as start and end frequencies:

 Singular Value Plot

14-267

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds.

• To assert that magnitudes that correspond to the frequencies are satisfied, select both
Include upper singular value bound in assertion on page 14-266 and Enable
assertion on page 14-277.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Parameter: UpperBoundFrequencies
Type: character vector
Value: [] | [0.1 100] | positive finite numbers | matrix of positive finite numbers | cell
array of matrices with positive finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0.1 100]' for Check Singular Value
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Magnitudes (dB)
Magnitude values for one or more upper singular value bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec) on page 14-267.

14 Blocks — Alphabetical List

14-268

Default:
[] for Singular Value Plot block
[0 0] for Check Singular Value Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges at magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

• To assert that magnitudes are satisfied, select both Include upper singular value
bound in assertion on page 14-266 and Enable assertion on page 14-277.

• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
magnitude in the Magnitude column. Specify the corresponding frequencies in the
Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Parameter: UpperBoundMagnitudes
Type: character vector
Value: [] | [0 0] | finite number | matrix of finite numbers | cell array of matrices with
finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0 0]' for Check Singular Value
Characteristics block.

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Singular Value Plot

14-269

Include lower singular value bound in assertion
Check that the singular values satisfy lower bounds, specified in Frequencies (rad/sec)
on page 14-271 and Magnitude (dB) on page 14-272, during simulation. The software
displays a warning if the singular values violate the lower bound.

This parameter is used for assertion only if Enable assertion on page 14-277 in the
Assertion tab is selected.

You can specify multiple lower singular value bounds on the linear system. The bounds
also appear on the singular value plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Default: Off

 On
Check that the singular value satisfies the specified lower bounds, during simulation.

 Off
Do not check that the singular value satisfies the specified lower bounds, during
simulation.

• Clearing this parameter disables the upper bounds and the software stops checking
that the bounds are satisfied during simulation. The bound segments are also greyed
out in the plot window.

14 Blocks — Alphabetical List

14-270

• If you specify both lower and upper singular value bounds on page 14-266 but want to
include only the upper bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Parameter: EnableLowerBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Frequencies (rad/sec)
Frequencies for one or more lower singular value bound segments, specified in radians/
sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 14-272.

Default []

 Singular Value Plot

14-271

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.01 0.1;0.1 1] to specify two edges with frequencies [0.01 0.1] and
[0.1 1].

• Cell array of matrices with positive finite numbers for multiple bounds.

• To assert that magnitude bounds that correspond to the frequencies are satisfied,
select both Include lower singular value bound in assertion on page 14-270 and
Enable assertion on page 14-277.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Parameter: LowerBoundFrequencies
Type: character vector
Value: [] | positive finite number | matrix of positive finite numbers | cell array of
matrices with positive finite numbers. Must be specified inside single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Magnitudes (dB)
Magnitude values for one or more lower singular value bound segments, specified in
decibels.

14 Blocks — Alphabetical List

14-272

Specify the corresponding frequencies in Frequencies (rad/sec) on page 14-271.

Default []

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges with magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

• To assert that magnitudes are satisfied, select both Include lower singular value
bound in assertion on page 14-270 and Enable assertion on page 14-277.

• You can add or modify magnitudes from the plot window:

• To add new magnitudes, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type, and specify the
magnitudes in the Magnitude column. Specify the corresponding frequencies in
the Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Parameter: LowerBoundFrequencies
Type: character vector
Value: [] | finite number | matrix of finite numbers | cell array of matrices with finite
numbers. Must be specified inside single quotes ('').
Default: '[]'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Singular Value Plot

14-273

Save data to workspace
Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink
editor, select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, in the Data Import/Export pane, check Single simulation
output.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

This parameter enables Variable name on page 14-275.

14 Blocks — Alphabetical List

14-274

Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Variable name
Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data”
(Simulink) and the Simulink.SimulationOutput reference page.

Default: sys

Character vector.

Save data to workspace on page 14-274 enables this parameter.

Parameter: SaveName
Type: character vector

 Singular Value Plot

14-275

Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Save operating points for each linearization
When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds a
field named operatingPoints to the data structure that stores the saved linear
systems.

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Save data to workspace on page 14-274 enables this parameter.

Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-276

Enable assertion
Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional) on page 14-278.

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails on page 14-279.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters dialog box, the Model
Verification block enabling parameter lets you to enable or disable all model
verification blocks in a model, regardless of the setting of this option in the block.

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB prompt
if bounds are violated.

 Singular Value Plot

14-277

 Off
Do not check that bounds included for assertion are satisfied during simulation.

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Simulation callback when assertion fails (optional)
MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

No Default

A MATLAB expression.

Enable assertion on page 14-277 enables this parameter.

Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

14 Blocks — Alphabetical List

14-278

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Stop simulation when assertion fails
Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Enable assertion on page 14-277 enables this parameter.

Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

 Singular Value Plot

14-279

Output assertion signal
Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if, in theSimulinkmodel, in the Configuration
Parameters dialog box, the Implement logic signals as Boolean data parameter is
selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

• Use this parameter to design complex assertion logic. For an example, see “Verify
Model Using Simulink Control Design and Simulink Verification Blocks” on page 12-
25.

Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

14 Blocks — Alphabetical List

14-280

Show plot on block open
Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot on page 14-36.

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Plot Linear Characteristics of Simulink Models During Simulation on page 2-80

“Verify Model at Default Simulation Snapshot Time” on page 12-6

Show Plot
Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

 Singular Value Plot

14-281

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-
click the plot and select Bounds > New Bound. For more information on the types of
bounds you can specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action also
linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the
Bounds tab, open the Response Optimization tool by selecting Tools > Response
Optimization in the plot window. This option is only available if you have Simulink
Design Optimization software installed.

Response Optimization
Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

14 Blocks — Alphabetical List

14-282

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design
Optimization)

• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”
(Simulink Design Optimization)

See Also
Check Singular Value Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-80
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-113
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-120
• “Plotting Linear System Characteristics of a Chemical Reactor”

Introduced in R2010b

 Singular Value Plot

14-283

Trigger-Based Operating Point Snapshot
Generate operating points, linearizations, or both at triggered events

Library
Simulink Control Design

Description
Attach this block to a signal in a model when you want to take a snapshot of the system's
operating point at triggered events such as when the signal crosses zero or when the
signal sends a function call. You can also perform a linearization at these events. To
extract the operating point or perform the linearization, you need to simulate the model
using either the findop or linearize functions. Alternatively, you can interactively
export the operating point and linearize the model using the Linear Analysis Tool.

Choose the trigger type in the Block Parameters dialog box, as shown in the following
figure.

The possible trigger types are

• rising: the signal crosses zero while increasing.

14 Blocks — Alphabetical List

14-284

• falling: the signal crosses zero while decreasing.
• either: the signal crosses zero while either increasing or decreasing.
• function-call: the signal send a function call.

Note “Computing Operating Point Snapshots at Triggered Events” illustrates how to use
this block.

See Also
findop | linearize

Topics
“Computing Operating Point Snapshots at Triggered Events”

Introduced before R2006a

 Trigger-Based Operating Point Snapshot

14-285

Objects — Alphabetical List

15

BlockDiagnostic
Diagnostic information for individual block linearization

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains BlockDiagnostic objects. Each BlockDiagnostic object contains
diagnostic information regarding the linearization of the corresponding Simulink block.
You can troubleshoot the block linearization by examining the BlockDiagnostic object
properties.

Creation
To access block diagnostic information in a LinearizationAdvisor object, use the
getBlockInfo function. Using this function, you can obtain either a single
BlockDiagnostic object or multiple BlockDiagnostic objects. For example, see:

• “Obtain Diagnostics for Potentially Problematic Blocks” on page 15-4
• “Obtain Diagnostics Using Block Names” on page 15-5

Properties
IsOnPath — Flag indicating whether the block is on the linearization path
'Yes' | 'No'

Flag indicating whether the block is on the linearization path, specified as one of the
following:

• 'Yes' — Block is on linearization path
• 'No' — Block is not on linearization path

The linearization path connects the linearization inputs to the linearization outputs. To
view the linearization path in the Simulink model, use the highlight function.

15 Objects — Alphabetical List

15-2

ContributesToLinearization — Flag indicating whether the block numerically
influences the model linearization
'Yes' | 'No'

Flag indicating whether the block numerically influences the model linearization,
specified as one of the following:

• 'Yes' — Block contributes to the linearization result
• 'No' — Block does not contribute to the linearization result

If a block is not on the linearization path; that is, if IsOnPath is 'No', then
ContributesToLinearization is 'No'.

DiagnosticMessages — Diagnostic messages
cell array of character vectors

Diagnostic message regarding the block linearization, specified as a cell array of
character vectors. These messages indicate possible issues that can affect the block
linearization.

If HasDiagnostics is 'No', then DiagnosticMessages is an empty cell array.

BlockPath — Block path
character vector

Block path in Simulink model, specified as a character vector.

HasDiagnostics — Flag indicating whether the block has diagnostic messages
'Yes' | 'No'

Flag indicating whether the block has diagnostic messages regarding its linearization,
specified as one of the following:

• 'Yes' — Block has diagnostic messages
• 'No' — Block does not have diagnostic messages

If HasDiagnostics is 'Yes', then DiagnosticMessages is a cell array of character
vectors that contains the messages.

Linearization — Block linearization
state-space model

 BlockDiagnostic

15-3

Block linearization, specified as a state-space model.

LinearizationMethod — Linearization method
'Exact' | 'Perturbation' | 'Block Substituted' | 'Simscape Network' | 'Not
Supported'

Linearization method, specified as one of the following:

• 'Exact' — Block linearized using its defined exact linearization
• 'Perturbation' — Block linearized using numerical perturbation
• 'Block Substituted' — Block linearized using a specified custom linearization
• 'Simscape Network' — Simscape network linearized using the exact linearization
defined in the Simscape engine. A LinearizationAdvisor object does not provide
diagnostic information on a component-level basis for Simscape networks. Instead, it
groups diagnostic information together for multiple Simscape components connected
to a single Solver Configuration block.

• 'Not Supported' — Block in its current configuration does not support
linearization. For example, a Discrete Transfer Fcn block with an external reset does
not support linearization.

In this case, the block Linearization is zero. For more troubleshooting information,
check the DiagnosticMessages property.

OperatingPoint — Operating point
BlockOperatingPoint object

Operating point at which the block is linearized, specified as a BlockOperatingPoint
object.

Usage
You can troubleshoot the linearization of a Simulink model by examining the diagnostics
for individual block linearizations. To do so, examine the properties of BlockDiagnostic
objects returned from getBlockInfo. For more information, see “Troubleshoot
Linearization Results at Command Line” on page 4-42.

Examples

15 Objects — Alphabetical List

15-4

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Obtain Diagnostics Using Block Names

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);

 BlockDiagnostic

15-5

[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain diagnostic information for the saturation block.

satDiag = getBlockInfo(advisor,'scdpendulum/pendulum/Saturation')

satDiag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostic information for multiple blocks at once. Obtain diagnostics
for the sin blocks in the model.

sinBlocks = {'scdpendulum/pendulum/Trigonometric Function';
 'scdpendulum/angle_wrap/Trigonometric Function1'};

sinDiag = getBlockInfo(advisor,sinBlocks)

sinDiag =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

See Also
Objects
BlockOperatingPoint | LinearizationAdvisor

Functions
getBlockInfo | getBlockPaths | highlight

15 Objects — Alphabetical List

15-6

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 BlockDiagnostic

15-7

BlockOperatingPoint
Operating point at which block is linearized

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains BlockDiagnostic objects. Each BlockDiagnostic object contains
diagnostic information regarding the linearization of the corresponding Simulink block.
Each BlockDiagnostic object contains a BlockOperatingPoint with the input and
state values for the operating point at which the block was linearized.

Creation
To obtain the operating point at which a block was linearized, use the OperatingPoint
property of a BlockDiagnostic object. For example, see “Obtain Block Operating Point”
on page 15-9.

Properties
States — Block state values
structure | structure array

State values at operating point, specified as a structure if the block has a single state, or a
structure array if the block has multiple states. Each state structure has the following
fields:

• Name — State name
• x — State value

Inputs — Block input values
structure | structure array

Input values at operating point, specified as a structure if the block has a single input, or
a structure array if the block has multiple inputs. Each input structure has the following
fields:

15 Objects — Alphabetical List

15-8

• Port — Input port number
• u — Input value

BlockPath — Block path
character vector

Block path in Simulink model, specified as a character vector.

Usage
When troubleshooting a block linearization, you can check the input and state values for
the operating point at which the block was linearized using the OperatingPoint
property of a BlockDiagnostic object.

Examples

Obtain Block Operating Point

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain a LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain block diagnostics for the second block in the list. This block is a second-order
integrator.

diags = getBlockInfo(advisor,2);

Obtain the operating point at which this block was linearized.

blockOP = diags.OperatingPoint

 BlockOperatingPoint

15-9

blockOP =
Block Operating Point for scdpendulum/pendulum/Integrator, Second-Order

States:

Name x
theta 1.5708
theta_dot 0

Inputs:

Port u
1 0.0090909

The block has two states and one input.

See Also
Objects
BlockDiagnostic

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-10

CompoundQuery
Complex query object for finding specific blocks in linearization results

Description
CompoundQuery query object for finding all the blocks in a LinearizationAdvisor
object that have a specified number of inputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation
To create a CompoundQuery object, combine other query objects using AND (&), OR (|),
and NOT (~) logical operations. For example, see:

• “Find All SISO Blocks” on page 15-13
• “Create Complex Query Object” on page 15-12

Properties
QueryType — Query type
character vector

Query type, specified as a character vector. By default, QueryType is constructed using
logical operators and the QueryType properties of the queries used to create the
compound query. For example, suppose that you create a compound query for finding all
SISO blocks:

 CompoundQuery

15-11

qIn = linqueryHasInputs(1);
qOut = linqueryHasOutputs(1);
qSISO = qIn & qOut;

Then, QueryType is '(Has 1 Inputs & Has 1 Outputs)'.

You can modify QueryType for your application. For example:

qSISO.QueryType = 'SISO Blocks';

Description — Query description
'' (default) | character vector

Query description, specified as '' by default. You can add your own description to the
query object using this property.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Create Complex Query Object

Create a CompundQuery object for finding any blocks that linearize to zero or any non-
SISO blocks that are on the linearization path.

Create a query object for finding all non-SISO blocks.

qNotSISO = ~(linqueryHasOutputs(1) & linqueryHasInputs(1));

Create a query object for finding all blocks on the linearization path.

qOnPath = linqueryIsOnPath;

Create a query object for finding all blocks that linearize to zero.

qZero = linqueryIsZero;

To create a query for finding any blocks that linearize to zero or any non-SISO blocks that
are on the linearization path, combine the other query objects.

15 Objects — Alphabetical List

15-12

query = (qNotSISO & qOnPath) | qZero

query =
 CompoundQuery with properties:

 QueryType: '((~((Has 1 Outputs & Has 1 Inputs)) & On Linearization Path) | Linearized to Zero)'
 Description: ''

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

 CompoundQuery

15-13

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-14

LinearizationAdvisor
Diagnostic information for troubleshooting linearization results

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. You can
troubleshoot your linearization results by reviewing this diagnostic information.

To access the diagnostic information, use the getBlockInfo function.

Creation
There are several ways to create a LinearizationAdvisor object when linearizing a
Simulink model. When you linearize a model using:

• The linearize function, first create a linearizeOptions option set, setting the
StoreAdvisor option to true. Then, linearize the model using linearize, returning
the info argument.

• An slLinearizer interface, first create a linearizeOptions option set, setting the
StoreAdvisor option to true. Then, create the slLinearizer interface. When you
obtain a linear model from the interface using a linearization function, such as
getIOTransfer, return the info argument.

• An slTuner interface, first create a slTunerOptions option set, setting the
StoreAdvisor option to true. Then, create the slTuner interface. When you obtain
a linear model from the interface using a linearization function, such as
getIOTransfer, return the info argument.

You can then access the LinearizationAdvisor object using info.Advisor. If you
linearize the model at multiple operating points or using parameter variation,
info.Advisor is an array of LinearizationAdvisor objects.

Also, the advise and find functions return a LinearizationAdvisor object that
contains diagnostic information for blocks that satisfy the relevant search criteria.

 LinearizationAdvisor

15-15

Properties
Model — Simulink model
character vector

Simulink model associated with the linearization diagnostic information, returned as a
character vector.

Model is a read-only property.

AnalysisPoints — Linear analysis points
linearization I/O object | vector of linearization I/O objects

Linear analysis points, including inputs, outputs, and openings, returned as a linearization
I/O object or a vector of linearization I/O objects.

AnalysisPoints corresponds to the:

• io input argument of the linearize command.
• Analysis points and loop openings of an slLinearizer or slTuner interface.

For more information on analysis points, see “Specify Portion of Model to Linearize” on
page 2-13.

AnalysisPoints is a read-only property.

OperatingPoint — Operating point
operating point object

Operating point at which the model was linearized, specified as an operating point object.

OperatingPoint is a read-only property.

Parameters — Parameter samples
[] (default) | structure | structure array

Parameter samples for linearization, specified as one of the following:

• [] — Linearization result has no associated parameter values.
• Structure — Value for a single parameter, specified as a structure with the following
fields:

15 Objects — Alphabetical List

15-16

• Name — Parameter name
• Value — Parameter value

• Structure array — Values for multiple parameters.

For more information on parameter variation, see “Specify Parameter Samples for Batch
Linearization” on page 3-62.

Parameters is a read-only property.

LinearizationOptions — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions object.

LinearizationOptions corresponds to the options input argument of linearize,
slLinearizer, or slTuner.

LinearizationOptions is a read-only property.

BlockDiagnostics — Diagnostic information
BlockDiagnostic object | vector of BlockDiagnostic objects

Diagnostic information for each block that matches the search criteria used to create the
LinearizationAdvisor object, specified as a BlockDiagnostic object or a vector of
BlockDiagnostic objects.

You can access these block diagnostics using the getBlockInfo command. To obtain a
list of the blocks, use the getBlockPaths command.

BlockDiagnostics is a read-only property.

QueryType — Query type
character vector

Query type used to obtain the linearization diagnostics, specified as one of the following:

• 'All Blocks' when you initially create a LinearizationAdvisor object using a
linearization function such as linearize or getIOTransfer.

• 'Linearization Advice' when you create a LinearizationAdvisor object
using the advise command.

 LinearizationAdvisor

15-17

• A character vector matching the QueryType property of the corresponding custom
query object when you create a LinearizationAdvisor object using the find
command.

QueryType is a read-only property.

Description — Query description
character vector

Description of the query used to obtain the linearization diagnostics, specified as one of
the following:

• 'All Linearized Blocks' when you initially create a LinearizationAdvisor
object using a linearization function such as linearize or getIOTransfer.

• 'Blocks that are Potentially Problematic for Linearization' when
you create a LinearizationAdvisor object using the advise command.

• A character vector matching the Description property of the corresponding custom
query object when you create a LinearizationAdvisor object using the find
command.

Description is a read-only property.

Object Functions
advise Find blocks that are potentially problematic for linearization
highlight Highlight linearization path in Simulink model
find Find blocks in linearization results that match specific criteria
getBlockInfo Obtain diagnostic information for block linearizations
getBlockPaths Obtain list of blocks in LinearizationAdvisor object

Examples

Create LinearizationAdvisor Using linearize

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

15 Objects — Alphabetical List

15-18

Create a linearization option set, enabling the StoreAdvisor option.

opt = linearizeOptions('StoreAdvisor',true);

Linearize the model using this option set, returning the info argument.

io = getlinio(mdl);
[linsys,~,info] = linearize(mdl,io,opt);

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x11 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Create LinearizationAdvisor Using slLinearizer Interface

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Create a linearization option set, enabling the StoreAdvisor option.

opt = linearizeOptions('StoreAdvisor',true);

Define input and output analysis points, and create an slLinearizer interface using
this option set.

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
SL = slLinearizer(mdl,io,opt);

Find the transfer function from the input to the output, returning the info argument.

[linsys,info] = getIOTransfer(SL,'scdspeed/throttle (degrees)','scdspeed/rad//s to rpm');

 LinearizationAdvisor

15-19

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x27 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Create LinearizationAdvisor Using slTuner Interface

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Create a slTunerOptions option set, enabling the StoreAdvisor option.

opt = slTunerOptions('StoreAdvisor',true);

Define input and output analysis points, and create an slTuner interface using this
option set.

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
ST = slTuner(mdl,io,opt);

Typically, you would tune your control system using the systune function. Then, you can
find the transfer function from the input to the output, returning the info argument.

[linsys,info] = getIOTransfer(ST,'scdspeed/throttle (degrees)','scdspeed/rad//s to rpm');

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

15 Objects — Alphabetical List

15-20

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x27 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Find Potentially Problematic Blocks for Linearization

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find potentially problematic blocks for linearization.

result = advise(advisor)

result =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

 LinearizationAdvisor

15-21

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

15 Objects — Alphabetical List

15-22

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Alternative Functionality

App
You can interactively troubleshoot linearization results using the Linearization Advisor in
the Linear Analysis Tool. For an example, see “Troubleshoot Linearization Results in
Linear Analysis Tool” on page 4-23.

See Also
Objects
BlockDiagnostic

Functions
advise | find | getCompSensitivity | getIOTransfer | getLoopTransfer |
getSensitivity | linearize

Topics
“Identify and Fix Common Linearization Issues” on page 4-9
“Troubleshoot Linearization Results at Command Line” on page 4-42
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54

 LinearizationAdvisor

15-23

Introduced in R2017b

15 Objects — Alphabetical List

15-24

linqueryAdvise
Query object for finding blocks that are potentially problematic for linearization

Description
linqueryAdvise creates a custom query object for finding the blocks in a linearization
result that are potentially problematic for linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Using the find function with a linqueryAdvise object is equivalent to using the
advise function.

Creation

Syntax
query = linqueryAdvise

Description
query = linqueryAdvise creates a query object for finding all the blocks in a
LinearizationAdvisor object that are potentially problematic for linearization.

 linqueryAdvise

15-25

Properties
QueryType — Query type
'Linearization Advice' (default) | character vector

Query type, specified as 'Linearization Advice'.

Description — Query description
'Blocks that are Potentially Problematic for Linearization' (default) |
character vector

Query description, specified as 'Blocks that are Potentially Problematic for
Linearization'. You can add your own description to the query object using this
property.

Usage
After creating a linqueryAdvise query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are potentially
problematic for linearization by using the linqueryAdvise query directly with the
find command.

• Create a CompoundQuery object by logically combining the linqueryAdvise query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Potentially Problematic Linearizations

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

15 Objects — Alphabetical List

15-26

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks that have potentially problematic
linearizations.

qAdvise = linqueryAdvise;
advAdvise = find(advisor,qAdvise)

advAdvise =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

Algorithms
Creating a linqueryAdvise object is equivalent to creating the following custom query:

qPath = linqueryIsOnPath;
qZero = linqueryIsZero;
qBlkRep = linqueryIsBlockSubstituted;
qDiags = linqueryHasDiagnostics;

q = qPath & (qZero | qDiags | qBlkRep);

advisor_new = find(advisor,q);

 linqueryAdvise

15-27

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-28

linqueryAllBlocks
Query object for finding all linearized blocks

Description
linqueryAllBlocks creates a custom query object for finding all the linearized blocks
listed in a LinearizationAdvisor object.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

When you use this query object with the find command, the LinearizationAdvisor
object returned by find contains the same blocks as the input LinearizationAdvisor
object. Therefore, it is not necessary to use linqueryAllBlocks. This command is a
utility function used by the Linearization Advisor in the Linear Analysis Tool.

Creation

Syntax
query = linqueryAllBlocks

Description
query = linqueryAllBlocks creates a query object for finding all the linearized
blocks listed in a LinearizationAdvisor object.

 linqueryAllBlocks

15-29

Properties
QueryType — Query type
'All Blocks' (default) | character vector

Query type, specified as 'All Blocks'.

Description — Query description
'All Linearized Blocks' (default) | character vector

Query description, specified as 'All Linearized Blocks'.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Linearized Blocks

Load the Simulink model.

mdl = 'scdpwm';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
[sys,op,info] = linearize(mdl,getlinio(mdl),opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks.

qAll = linqueryAllBlocks;
advAll = find(advisor,qAll)

advAll =
 LinearizationAdvisor with properties:

 Model: 'scdpwm'

15 Objects — Alphabetical List

15-30

 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryAllBlocks

15-31

linqueryContributesToLinearization
Query object for finding blocks that contribute to the model linearization result

Description
linqueryContributesToLinearization creates a custom query object for finding all
the blocks that numerically contribute to the model linearization result.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryContributesToLinearization

Description
query = linqueryContributesToLinearization creates a query object for finding
all the blocks in a LinearizationAdvisor object that numerically contribute to the
model linearization result.

Properties
QueryType — Query type
'Contributes to Linearization' (default) | character vector

15 Objects — Alphabetical List

15-32

Query type, specified as 'Contributes to Linearization'.

Description — Query description
'Blocks that Contribute to the Model Linearization' (default) | character
vector

Query description, specified as 'Blocks that Contribute to the Model
Linearization'. You can add your own description to the query object using this
property.

Usage
After creating a linqueryContributesToLinearization query object, you can:

• Find all the blocks in a LinearizationAdvisor object that numerically contribute to
the model linearization result by using the
linqueryContributesToLinearization query directly with the find command.

• Create a CompoundQuery object by logically combining the
linqueryContributesToLinearization query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks That Contribute to Linearization Result

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model, and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');

 linqueryContributesToLinearization

15-33

[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks that numerically contribute to the model
linearization result.

qContribute = linqueryContributesToLinearization;
advContribute = find(advisor,qContribute)

advContribute =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x22 linearize.advisor.BlockDiagnostic]
 QueryType: 'Contributes to Linearization'

To find blocks that do not contribute to the linearization result, use the same query object
with a NOT (~) logical operator.

advNoContribute = find(advisor,~qContribute)

advNoContribute =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x5 linearize.advisor.BlockDiagnostic]
 QueryType: '~(Contributes to Linearization)'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

15 Objects — Alphabetical List

15-34

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find | highlight

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryContributesToLinearization

15-35

linqueryHasDiagnostics
Query object for finding blocks that have diagnostic messages regarding their
linearization

Description
linqueryHasDiagnostics creates a custom query object for finding all the blocks in a
linearization result that have diagnostic messages regarding their linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasDiagnostics

Description
query = linqueryHasDiagnostics creates a query object for finding all the blocks in
a LinearizationAdvisor object that have diagnostic messages regarding their
linearization.

15 Objects — Alphabetical List

15-36

Properties
QueryType — Query type
'Has Diagnostics' (default) | character vector

Query type, specified as 'Has Diagnostics'.

Description — Query description
'Blocks that have Linearization Diagnostic Messages' (default) | character
vector

Query description, specified as 'Blocks that have Linearization Diagnostic
Messages'. You can add your own description to the query object using this property.

Usage
After creating a linqueryHasDiagnostics query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have diagnostic
messages regarding their linearization by using the linqueryHasDiagnostics
query directly with the find command.

• Create a CompoundQuery object by logically combining the
linqueryHasDiagnostics query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks with Linearization Diagnostic Messages

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

 linqueryHasDiagnostics

15-37

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks with diagnostic messages regarding their
linearization.

qDiag = linqueryHasDiagnostics;
advDiag = find(advisor,qDiag)

advDiag =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has Diagnostics'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

15 Objects — Alphabetical List

15-38

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryHasDiagnostics

15-39

linqueryHasInputs
Query object for finding blocks with specified number of inputs

Description
linqueryHasInputs creates a custom query object for finding all the blocks in a
linearization result that have a specified number of inputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasInputs(Nu)

Description
query = linqueryHasInputs(Nu) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have Nu inputs.

Input Arguments
Nu — Number of block inputs
nonnegative integer

Number of block inputs, specified as a nonnegative integer.

15 Objects — Alphabetical List

15-40

Properties
NumInputs — Number of block inputs
nonnegative integer

Number of block inputs, specified as a nonnegative integer equal to Nu.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> Inputs', where <N>
is equal to NumInputs.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N>
Inputs', where <N> is equal to NumInputs. You can add your own description to the
query object using this property.

Usage
After creating a linqueryHasInputs query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified
number of inputs by using the linqueryHasInputs query directly with the find
command.

• Create a CompoundQuery object by logically combining the linqueryHasInputs
query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

 linqueryHasInputs

15-41

Find All Blocks with Two Inputs

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two inputs.

qIn = linqueryHasInputs(2);
advIn = find(advisor,qIn)

advIn =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x13 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 Inputs'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

15 Objects — Alphabetical List

15-42

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

 linqueryHasInputs

15-43

Introduced in R2017b

15 Objects — Alphabetical List

15-44

linqueryHasOrder
Query object for finding blocks with specified number of states

Description
linqueryHasOrder creates a custom query object for finding all the blocks in a
linearization result that have a specified number of states.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasStates(Nx)

Description
query = linqueryHasStates(Nx) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have Nx states.

Input Arguments
Nx — Number of block states
nonnegative integer

Number of block states, specified as a nonnegative integer.

 linqueryHasOrder

15-45

Properties
NumStates — Number of block states
nonnegative integer

Number of block states, specified as a nonnegative integer equal to Nx.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> States', where <N>
is equal to NumStates.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N>
States, where <N> is equal to NumStates. You can add your own description to the
query object using this property.

Usage
After creating a linqueryHasOrder query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified
number of states by using the linqueryHasOrder query directly with the find
command.

• Create a CompoundQuery object by logically combining the linqueryHasOrder
query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

15 Objects — Alphabetical List

15-46

Find All Blocks with Two States

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two states.

qOrder = linqueryHasOrder(2);
advOrder = find(advisor,qOrder)

advOrder =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 States'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

 linqueryHasOrder

15-47

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-48

linqueryHasOutputs
Query object for finding blocks with specified number of outputs

Description
linqueryHasOutputs creates a custom query object for finding all the blocks in a
linearization result that have a specified number of outputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasOutputs(Ny)

Description
query = linqueryHasOutputs(Ny) creates a query object for finding all the blocks in
a LinearizationAdvisor object that have Ny outputs.

Input Arguments
Ny — Number of block outputs
nonnegative integer

Number of block outputs, specified as a nonnegative integer.

 linqueryHasOutputs

15-49

Properties
NumOutputs — Number of block outputs
nonnegative integer

Number of block outputs, specified as a nonnegative integer equal to Ny.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> Outputs', where <N>
is equal to NumOutputs.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N>
Outputs', where <N> is equal to NumOutputs. You can add your own description to the
query object using this property.

Usage
After creating a linqueryHasOutputs query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified
number of outputs by using the linqueryHasOutputs query directly with the find
command.

• Create a CompoundQuery object by logically combining the linqueryHasOutputs
query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

15 Objects — Alphabetical List

15-50

Find All Blocks with Two Outputs

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two outputs.

qOut = linqueryHasOutputs(2);
advOut = find(advisor,qOut)

advOut =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 Outputs'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

 linqueryHasOutputs

15-51

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

15 Objects — Alphabetical List

15-52

Introduced in R2017b

 linqueryHasOutputs

15-53

linqueryHasSampleTime
Query object for finding blocks with specified sample time

Description
linqueryHasSampleTime creates a custom query object for finding all the blocks in a
linearization result that have a specified sample time.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasSampleTime(SampleTime)

Description
query = linqueryHasSampleTime(SampleTime) creates a query object for finding
all the blocks in a LinearizationAdvisor object that have a sample time equal to
SampleTime.

Input Arguments
SampleTime — Block sample time
nonnegative scalar

15 Objects — Alphabetical List

15-54

Block sample time, specified as a nonnegative scalar. Specify SampleTime in the time
units of the linearized model.

To find continuous-time blocks, specify SampleTime as 0.

Properties
Ts — Sample
nonnegative scalar

Number of block outputs, specified as a nonnegative integer equal to SampleTime.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <T> Sample Time', where
<T> is equal to Ts.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <T>
Sample Time', where <T> is equal to Ts. You can add your own description to the query
object using this property.

Usage
After creating a linqueryHasSampleTime query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have a specified sample
time by using the linqueryHasSampleTime query directly with the find command.

• Create a CompoundQuery object by logically combining the
linqueryHasSampleTime query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

 linqueryHasSampleTime

15-55

Examples

Find Blocks with Specified Sample Time

Load the Simulink model.

mdl = 'scdmrate';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdmrate/Constant',1,'input');
io(2) = linio('scdmrate/sysTs2',1,'openoutput');
[linsys,linop,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object and find all the linearized blocks with a sample time of 0.1 seconds.

qTs = linqueryHasSampleTime(0.01);
advTs = find(advisor,qTs)

advTs =
 LinearizationAdvisor with properties:

 Model: 'scdmrate'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 0.01 Sample Time'

Find All Continuous-Time Blocks

Load the Simulink model.

mdl = 'scdmrate';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);

15 Objects — Alphabetical List

15-56

[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all linearized blocks with continuous-time linearizations.

qCont = linqueryHasSampleTime(0);
advCont = find(advisor,qCont)

advCont =
 LinearizationAdvisor with properties:

 Model: 'scdmrate'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x5 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 0 Sample Time'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

 linqueryHasSampleTime

15-57

Introduced in R2017b

15 Objects — Alphabetical List

15-58

linqueryHasZeroIOPair
Query object for finding blocks with at least one input/output pair that linearizes to zero

Description
linqueryHasZeroIOPair creates a custom query object for finding all the blocks in a
linearization result that have at least one input/output pair that linearizes to zero. For a
zero input/output pair, a change in the input value has no effect on the output value.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryHasZeroIOPair

Description
query = linqueryHasZeroIOPair creates a query object for finding all the blocks in a
LinearizationAdvisor object that have at least one input/output path that linearizes
to zero.

 linqueryHasZeroIOPair

15-59

Properties
QueryType — Query type
'Has Zero I/O Pair' (default) | character vector

Query type, specified as 'Has Zero I/O Pair'.

Description — Query description
'Blocks with a Zero IO Pair' (default) | character vector

Query description, specified as 'Blocks with a Zero IO Pair'. You can add your
own description to the query object using this property.

Usage
After creating a linqueryHasZeroIOPair query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have at least one input/
output path that linearizes to zero by using the linqueryHasZeroIOPair query
directly with the find command.

• Create a CompoundQuery object by logically combining the
linqueryHasZeroIOPair query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Zero Input/Output Paths

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

15 Objects — Alphabetical List

15-60

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks with at least one input/output path that linearizes
to zero.

qZeroPair = linqueryHasZeroIOPair;
advZeroPair = find(advisor,qZeroPair)

advZeroPair =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x6 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has Zero I/O Pair'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

 linqueryHasZeroIOPair

15-61

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-62

linqueryIsBlockSubstituted
Query object for finding blocks that have custom block linearizations specified

Description
linqueryIsBlockSubstituted creates a custom query object for finding all the blocks
in a linearization result that have custom block linearizations specified.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryIsBlockSubstituted

Description
query = linqueryIsBlockSubstituted creates a query object for finding all the
blocks in a LinearizationAdvisor object that have custom block linearization
specified.

Properties
QueryType — Query type
'Block Substituted' (default) | character vector

 linqueryIsBlockSubstituted

15-63

Query type, specified as 'Block Substituted'.

Description — Query description
'Blocks Linearized with Block Substitution' (default) | character vector

Query description, specified as 'Blocks Linearized with Block Substitution'.
You can add your own description to the query object using this property.

Usage
After creating a linqueryIsBlockSubstituted query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have a custom
linearization specified by using the linqueryIsBlockSubstituted query directly
with the find command.

• Create a CompoundQuery object by logically combining the
linqueryIsBlockSubstituted query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Substitute Linearizations

Load the Simulink model.

mdl = 'scdpwmCustom';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
[sys,op,info] = linearize(mdl,getlinio(mdl),opts);
advisor = info.Advisor;

Create query object, and find all blocks with substitute linearizations.

15 Objects — Alphabetical List

15-64

qSub = linqueryIsBlockSubstituted;
advSub = find(advisor,qSub)

advSub =
 LinearizationAdvisor with properties:

 Model: 'scdpwmCustom'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Block Substituted'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryIsBlockSubstituted

15-65

linqueryIsBlockType
Query object for finding blocks of the specified type

Description
linqueryIsBlockType creates a custom query object for finding all the blocks of a
specified type in a linearization result.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueriIsBlockType(Type)

Description
query = linqueriIsBlockType(Type) creates a query object for finding all the
blocks in a LinearizationAdvisor object that are of type Type.

Input Arguments
Type — Block type
character vector | string

15 Objects — Alphabetical List

15-66

Block type, specified as a character vector or string. To specify a block type, use the
corresponding blocktype parameter of the block. To get the blocktype parameter for
the currently selected block in the Simulink model, at the MATLAB command line, type:

get_param(gcb,'blocktype')

Also, to find:

• MATLAB Function blocks, specify Type as 'matlab function'.
• Stateflow charts, specify Type as 'chart'.
• Simscape networks, specify Type as 'simscape'. A LinearizationAdvisor object

does not provide diagnostic information on a component-level basis for Simscape
networks. Instead, it groups diagnostic information together for multiple Simscape
components connected to a single Solver Configuration block.

Properties
QueryType — Query type
character vector

Query type, specified as a character vector of the form '<type> Blocks', where
<type> is equal the block type specified in Type.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <type>
Block types', where <type> is equal to Type. You can add your own description to the
query object using this property.

Usage
After creating a linqueryIsBlockType query object, you can:

• Find all the blocks of a specified type in a LinearizationAdvisor object by using
the linqueryIsBlockType query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsBlockType
query with other query objects.

 linqueryIsBlockType

15-67

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Integrator Blocks in Linearization Result

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the integrator blocks.

qInteg = linqueryIsBlockType('Integrator');
advInteg = find(advisor,qInteg)

advInteg =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x2 linearize.advisor.BlockDiagnostic]
 QueryType: 'Integrator Blocks'

15 Objects — Alphabetical List

15-68

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryIsBlockType

15-69

linqueryIsExact
Query object for finding blocks linearized using their defined exact linearization

Description
linqueryIsExact creates a custom query object for finding all the blocks in a
linearization result that are linearized using their defined exact linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryIsExact

Description
query = linqueryIsExact creates a query object for finding all the blocks in a
LinearizationAdvisor object that are linearized using their defined exact
linearization.

Properties
QueryType — Query type
'Exact' (default) | character vector

15 Objects — Alphabetical List

15-70

Query type, specified as 'Exact'.

Description — Query description
'Blocks that are Analytically Linearized' (default) | character vector

Query description, specified as 'Blocks that are Analytically Linearized'. You
can add your own description to the query object using this property.

Usage
After creating a linqueryIsExact query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are linearized using their
defined exact linearization by using the linqueryIsExact query directly with the
find command.

• Create a CompoundQuery object by logically combining the linqueryIsExact query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks Linearized Using Exact Linearization

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

 linqueryIsExact

15-71

Create query object, and find all blocks linearized using their defined exact linearization.

qExact = linqueryIsExact;
advExact = find(advisor,qExact)

advExact =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x21 linearize.advisor.BlockDiagnostic]
 QueryType: 'Exact'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-72

linqueryIsNumericallyPerturbed
Query object for finding blocks linearized using numerical perturbation

Description
linqueryIsNumericallyPerturbed creates a custom query object for finding all the
blocks in a linearization result that are linearized using numerical perturbation.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryIsNumericallyPerturbed

Description
query = linqueryIsNumericallyPerturbed creates a query object for finding all
the blocks in a LinearizationAdvisor object that are linearized using numerical
perturbation.

Properties
QueryType — Query type
'Perturbation' (default) | character vector

 linqueryIsNumericallyPerturbed

15-73

Query type, specified as 'Perturbation'.

Description — Query description
'Blocks that are Numerically Perturbed' (default) | character vector

Query description, specified as 'Blocks that are Numerically Perturbed'. You
can add your own description to the query object using this property.

Usage
After creating a linqueryIsNumericallyPerturbed query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are linearized using
numerical perturbation by using the linqueryIsNumericallyPerturbed query
directly with the find command.

• Create a CompoundQuery object by logically combining the
linqueryIsNumericallyPerturbed query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Numerically Perturbed Blocks

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

15 Objects — Alphabetical List

15-74

Create query object, and find all numerically perturbed blocks.

qPert = linqueryIsNumericallyPerturbed;
advPert = find(advisor,qPert)

advPert =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x4 linearize.advisor.BlockDiagnostic]
 QueryType: 'Perturbation'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryIsNumericallyPerturbed

15-75

linqueryIsOnPath
Query object for finding blocks that are on the linearization path

Description
linqueryIsOnPath creates a custom query object for finding all the blocks in a
linearization result that are on the linearization path.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryIsOnPath

Description
query = linqueryIsOnPath creates a query object for finding all the blocks in a
LinearizationAdvisor object that are on the linearization path.

Properties
QueryType — Query type
'On Linearization Path' (default) | character vector

Query type, specified as 'On Linearization Path'.

15 Objects — Alphabetical List

15-76

Description — Query description
'Blocks on the Linearization Path' (default) | character vector

Query description, specified as 'Blocks on the Linearization Path'. You can add
your own description to the query object using this property.

Usage
After creating a linqueryIsOnPath query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are on the linearization
path by using the linqueryIsOnPath query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsOnPath
query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks On Linearization Path

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks on the linearization path.

 linqueryIsOnPath

15-77

qPath = linqueryIsOnPath;
advPath = find(advisor,qPath)

advPath =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x26 linearize.advisor.BlockDiagnostic]
 QueryType: 'On Linearization Path'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find | highlight

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

15 Objects — Alphabetical List

15-78

linqueryIsZero
Query object for finding blocks that linearize to zero

Description
linqueryIsZero creates a custom query object for finding all the blocks in a
linearization result that linearize to zero.

When you linearize a Simulink model, you can create a LinearizationAdvisor object
that contains diagnostic information about individual block linearizations. To find block
linearizations that satisfy specific criteria, you can use the find function with custom
query objects. Alternatively, you can analyze linearization diagnostics using the
Linearization Advisor in the Linear Analysis Tool. For more information on finding specific
blocks in linearization results, see “Find Blocks in Linearization Results Matching Specific
Criteria” on page 4-54.

Creation

Syntax
query = linqueryIsZero

Description
query = linqueryIsZero creates a query object for finding all the blocks in a
LinearizationAdvisor object that linearize to zero.

Properties
QueryType — Query type
'Linearized to Zero' (default) | character vector

Query type, specified as 'Linearized to Zero'.

 linqueryIsZero

15-79

Description — Query description
'Blocks Linearized to Zero' (default) | character vector

Query description, specified as 'Blocks Linearized to Zero'. You can add your own
description to the query object using this property.

Usage
After creating a linqueryIsZero query object, you can:

• Find all the blocks in a LinearizationAdvisor object that linearize to zero by using
the linqueryIsZero query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsZero query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks That Linearize to Zero

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks that linearize to zero.

qZero = linqueryIsZero;
advZero = find(advisor,qZero)

15 Objects — Alphabetical List

15-80

advZero =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearized to Zero'

Alternative Functionality

App
You can also create custom queries for finding specific blocks in linearization results
using the Linearization Advisor in the Linear Analysis Tool. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54.

See Also
Objects
CompoundQuery | LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-54
“Troubleshoot Linearization Results at Command Line” on page 4-42

Introduced in R2017b

 linqueryIsZero

15-81

Model Advisor Checks

16

Simulink Control Design Checks

Identify time-varying source blocks interfering with frequency
response estimation
Identify all time-varying source blocks in the signal path of any output linearization point
marked in the Simulink model.

Description

Frequency response estimation uses the steady-state response of a Simulink model to a
specified input signal. Time-varying source blocks in the signal path prevent the response
from reaching steady-state. In addition, when such blocks appear in the signal path, the
resulting response is not purely a response to the specified input signal. Thus, time-
varying source blocks can interfere with accurate frequency response estimation.

This check finds and reports all the time-varying source blocks which appear in the signal
path of any output linearization output points currently marked on the Simulink model.
The report:

• Includes blocks in subsystems and in referenced models that are in normal simulation
mode

• Excludes any blocks specified as BlocksToHoldConstant in the
frestimateOptions object you enter as the input parameter

For more information about the algorithm that identifies time-varying source blocks, see
the frest.findSources reference page.

Available with Simulink Control Design.

Input Parameters

FRESTIMATE options object to compare results against
Provide the paths of any blocks to exclude from the check. Specify the block paths as
an array of Simulink.BlockPath objects. This array is stored in the
BlocksToHoldConstant field of an option set you create with
frestimateOptions. See the frestimateOptions reference page for more
information.

16 Model Advisor Checks

16-2

Results and Recommended Actions

Condition Recommended Action
Source blocks exist whose
output reaches linearization
output points currently marked
on the model.

Consider holding these source blocks constant during frequency
response estimation.

Use the frest.findSources command to identify time-varying
source blocks at the command line. Then use the
BlocksToHoldConstant option of frestimateOptions to pass
these blocks to the frestimate command. For example,

% Get linearization I/Os from the model.
mdl = 'scdengine';
io = getlinio(mdl);
% Find time-varying source blocks.
blks = frest.findSources(mdl,io);
% Create options set with blocks to hold constant.
opts = frestimateOptions;
opts.BlocksToHoldConstant = blks;
% Run estimation with the options.
in = frest.Sinestream;
sysest = frestimate(mdl,io,in,opts);

For more information and examples, see the
frest.findSources and frestimateOptions reference
pages.

Tip

Sometimes, the model includes referenced models containing source blocks in the signal
path of an output linearization point. In such cases, set the referenced models to normal
simulation mode to ensure that this check locates them. Use the set_param command to
set SimulationMode of any referenced models to Normal before running the check.

See Also

• “Estimate Frequency Response Using Linear Analysis Tool” on page 5-25
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-

56
• frest.findSources reference page
• frestimateOptions reference page

 Simulink Control Design Checks

16-3

• frestimate reference page

16 Model Advisor Checks

16-4

